1
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. Pain 2025; 166:614-630. [PMID: 39928726 PMCID: PMC11819886 DOI: 10.1097/j.pain.0000000000003508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 02/12/2025]
Abstract
ABSTRACT Cell states are influenced by the regulation of gene expression orchestrated by transcription factors capable of binding to accessible DNA regions. To uncover if sex differences exist in chromatin accessibility in the human dorsal root ganglion (hDRG), where nociceptive neurons innervating the body are found, we performed bulk and spatial assays for transposase-accessible chromatin technology followed by sequencing (ATAC-seq) from organ donors without a history of chronic pain. Using bulk ATAC-seq, we detected abundant sex differences in the hDRG. In women, differentially accessible regions (DARs) mapped mostly to the X chromosome, whereas in men, they mapped to autosomal genes. Hormone-responsive transcription factor binding motifs such as EGR1/3 were abundant within DARs in women, while JUN, FOS, and other activating protein 1 factor motifs were enriched in men, suggesting a higher activation state of cells compared with women. These observations were consistent with spatial ATAC-seq data. Furthermore, we validated that EGR1 expression is biased to female hDRG using RNAscope. In neurons, spatial ATAC-seq revealed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in women and in Ca2+-signaling-related genes in men. Strikingly, XIST, responsible for inactivating 1 X chromosome by compacting it and maintaining at the periphery of the nucleus, was found to be highly dispersed in female neuronal nuclei. This is likely related to the higher chromatin accessibility in X in female hDRG neurons observed using both ATAC-seq approaches. We have documented baseline epigenomic sex differences in the hDRG which provide important descriptive information to test future hypotheses.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadijah Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
2
|
Bonet IJM, Araldi D, Khomula EV, Bogen O, Green PG, Levine JD. G-protein-coupled estrogen receptor 30 regulation of signaling downstream of protein kinase Cε mediates sex dimorphism in hyaluronan-induced antihyperalgesia. Pain 2025; 166:539-556. [PMID: 39787533 PMCID: PMC11810595 DOI: 10.1097/j.pain.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females. In nociceptors cultured from rats that had been treated with oxaliplatin, HMWH reverses nociceptor sensitization from male and GPER antisense-treated female, but not from gonad intact females. G-protein-coupled estrogen receptor-dependent sex dimorphism for HMWH-induced antihyperalgesia was also observed for the prolongation of prostaglandin E 2 (PGE 2 )-induced hyperalgesia in primed nociceptors. While in primed rats, HMWH inhibits early, protein kinase A-dependent hyperalgesia, 30 minutes post PGE 2 injection, in both sexes; measured 4 hours post-PGE 2 , HMWH inhibits the protein kinase Cε (PKCε)-dependent prolongation of PGE 2 hyperalgesia only in males and GPER antisense-treated females. In females, hyperalgesia induced by PKCε agonist, ψεRACK, in control but not in primed nociceptors, was inhibited by HMWH. Inhibitors of 2 GPER second messengers, extracellular-regulated kinase 1/2 and nonreceptor tyrosine kinase, also unmasked HMWH antihyperalgesia in females with oxaliplatin chemotherapy-induced peripheral neuropathy, a condition in which nociceptors are primed as well as sensitized. Our results support GPER-dependent sex dimorphism in HMWH-induced antihyperalgesia for pain induced by pattern recognition receptor agonists, and chronic inflammatory and neuropathic pain, mediated by changes in signaling downstream of PKCε in primed nociceptors.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eugen V. Khomula
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oliver Bogen
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Baumbach JL, Leonetti AM, Martin LJ. Inflammatory injury induces pain sensitization that is expressed beyond the site of injury in male (and not in female) mice. Behav Brain Res 2024; 475:115215. [PMID: 39191370 DOI: 10.1016/j.bbr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Pain is a crucial protective mechanism for the body. It alerts us to potential tissue damage or injury and promotes the avoidance of harmful stimuli. Injury-induced inflammation and tissue damage lead to pain sensitization, which amplifies responses to subsequent noxious stimuli even after an initial primary injury has recovered. This phenomenon, commonly referred to as hyperalgesic priming, was investigated in male and female mice to determine whether it is specific to the site of previous injury. We used 10μl of 50 % Freund's complete adjuvant (CFA) administered to the left hind paw as a model of peripheral injury. Both male and female mice exhibited robust site-specific mechanical hypersensitivity after CFA, which resolved within one-week post-injection. After injury resolution, only male CFA-primed mice showed enhanced and prolonged mechanical sensitivity in response to a chemical challenge or a single 0.5 mA electric footshock. Among CFA-primed male mice, shock-induced mechanical hypersensitivity was expressed in both the left (previously injured) and the right (uninjured) hind paws, suggesting a pivotal role for altered centralized processes in the expression of pain sensitization. These findings indicate that pain history regulates sensory responses to subsequent mechanical and chemical pain stimuli in a sex-specific manner-foot-shock-induced hyperalgesic priming expression among male mice generalized beyond the initial injury site.
Collapse
Affiliation(s)
| | | | - Loren J Martin
- Department of Psychology, University of Toronto, Canada; Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
4
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
5
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
6
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
7
|
Chan WS, Ng CF, Pang BPS, Hang M, Tse MCL, Iu ECY, Ooi XC, Yang X, Kim JK, Lee CW, Chan CB. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci Signal 2024; 17:eadh2783. [PMID: 38502732 PMCID: PMC11022078 DOI: 10.1126/scisignal.adh2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator-activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
Collapse
Affiliation(s)
- Wing Suen Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Chun Fai Ng
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Miaojia Hang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Margaret Chui Ling Tse
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Elsie Chit Yu Iu
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xin Ci Ooi
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 101399, China
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Fotio Y, Mabou Tagne A, Squire E, Lee HL, Phillips CM, Chang K, Ahmed F, Greenberg AS, Villalta SA, Scarfone VM, Spadoni G, Mor M, Piomelli D. NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice. Nat Commun 2024; 15:1705. [PMID: 38402219 PMCID: PMC10894261 DOI: 10.1038/s41467-024-46139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Connor M Phillips
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Kayla Chang
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | | | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università di Urbino "Carlo Bo,", Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
10
|
Xia L, Li P, Bi W, Yang R, Zhang Y. CDK5R1 promotes Schwann cell proliferation, migration, and production of neurotrophic factors via CDK5/BDNF/TrkB after sciatic nerve injury. Neurosci Lett 2023; 817:137514. [PMID: 37848102 DOI: 10.1016/j.neulet.2023.137514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) is necessary for central nervous system development and neuronal migration. At present, there are few reports about the role of CDK5R1 in peripheral nerve injury, and these need to be further explored. The CCK-8 and EdU assay was performed to examine cell proliferation. The migration ability of Schwann cells was tested by the cell scratch test. The apoptosis of Schwann cells was detected by flow cytometry. Sciatic nerve injury model in rats was established by crush injury. The sciatic function index (SFI) and the paw withdrawal mechanical threshold (PWMT) were measured at different time points. The results revealed that overexpression of CDK5R1 promoted the proliferation and migration of Schwann cells, and inhibited the apoptosis. Further studies found that pcDNA3.1-CDK5R1 significantly upregulated the expression of CDK5, BDNF and TrkB. More importantly, CDK5R1 promoted the recovery of nerve injury in rats. In addition, the CDK5 mediated BDNF/TrkB pathway was involved in the molecular mechanism of CDK5R1 on Schwann cells. It is suggested that the mechanism by which CDK5R1 promotes functional recovery after sciatic nerve injury is by CDK5 mediated activation of BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Lei Xia
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Peng Li
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenchao Bi
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ruize Yang
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yuelin Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
11
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565022. [PMID: 37961342 PMCID: PMC10635076 DOI: 10.1101/2023.10.31.565022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Activity-induced muscle pain increases release of interleukin-1β (IL-1β) in muscle macrophages and the development of pain is prevented by blockade of IL-1β. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesized that metabolites released during fatiguing muscle contractions activate macrophages to release IL-1β, which subsequently activate sensory neurons to secrete BDNF. To test this hypothesis, we used an animal model of activity-induced pain induced by repeated intramuscular acidic saline injections combined with fatiguing muscle contractions. Intrathecal or intramuscular injection of inhibitors of BDNF-Tropomyosin receptor kinase B (TrkB) signaling, ANA-12 or TrkB-Fc, reduced the decrease in muscle withdrawal thresholds in male, but not in female, mice when given before or 24hr after, but not 1 week after induction of the model. BDNF messenger ribonucleic acid (mRNA) was significantly increased in L4-L6 dorsal root ganglion (DRG), but not the spinal dorsal horn or gastrocnemius muscle, 24hr after induction of the model in either male or female mice. No changes in TrkB mRNA or p75 neurotrophin receptor mRNA were observed. BDNF protein expression via immunohistochemistry was significantly increased in L4-L6 spinal dorsal horn and retrogradely labelled muscle afferent DRG neurons, at 24hr after induction of the model in both sexes. In cultured DRG, fatigue metabolites combined with IL-1β significantly increased BDNF expression in both sexes. In summary, fatigue metabolites release, combined with IL-1β, BDNF from primary DRG neurons and contribute to activity-induced muscle pain only in males, while there were no sex differences in the changes in expression observed in BDNF.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J. Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F. Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K. Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Barry AM, Zhao N, Yang X, Bennett DL, Baskozos G. Deep RNA-seq of male and female murine sensory neuron subtypes after nerve injury. Pain 2023; 164:2196-2215. [PMID: 37318015 PMCID: PMC10502896 DOI: 10.1097/j.pain.0000000000002934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Dorsal root ganglia (DRG) neurons have been well described for their role in driving both acute and chronic pain. Although nerve injury is known to cause transcriptional dysregulation, how this differs across neuronal subtypes and the impact of sex is unclear. Here, we study the deep transcriptional profiles of multiple murine DRG populations in early and late pain states while considering sex. We have exploited currently available transgenics to label numerous subpopulations for fluorescent-activated cell sorting and subsequent transcriptomic analysis. Using bulk tissue samples, we are able to circumvent the issues of low transcript coverage and drop-outs seen with single-cell data sets. This increases our power to detect novel and even subtle changes in gene expression within neuronal subtypes and discuss sexual dimorphism at the neuronal subtype level. We have curated this resource into an accessible database for other researchers ( https://livedataoxford.shinyapps.io/drg-directory/ ). We see both stereotyped and unique subtype signatures in injured states after nerve injury at both an early and late timepoint. Although all populations contribute to a general injury signature, subtype enrichment changes can also be seen. Within populations, there is not a strong intersection of sex and injury, but previously unknown sex differences in naïve states-particularly in Aβ-RA + Aδ-low threshold mechanoreceptors-still contribute to differences in injured neurons.
Collapse
Affiliation(s)
- Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Na Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Fuller AM, Bharde S, Sikandar S. The mechanisms and management of persistent postsurgical pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1154597. [PMID: 37484030 PMCID: PMC10357043 DOI: 10.3389/fpain.2023.1154597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
An estimated 10%-50% of patients undergoing a surgical intervention will develop persistent postsurgical pain (PPP) lasting more than 3 months despite adequate acute pain management and the availability of minimally invasive procedures. The link between early and late pain outcomes for surgical procedures remains unclear-some patients improve while others develop persistent pain. The elective nature of a surgical procedure offers a unique opportunity for prophylactic or early intervention to prevent the development of PPP and improve our understanding of its associated risk factors, such as pre-operative anxiety and the duration of severe acute postoperative pain. Current perioperative pain management strategies often include opioids, but long-term consumption can lead to tolerance, addiction, opioid-induced hyperalgesia, and death. Pre-clinical models provide the opportunity to dissect mechanisms underpinning the transition from acute to chronic, or persistent, postsurgical pain. This review highlights putative mechanisms of PPP, including sensitisation of peripheral sensory neurons, neuroplasticity in the central nervous system and nociceptive signalling along the neuro-immune axis.
Collapse
|
14
|
Rubione J, Sbrascini SM, Miguel B, Leiguarda C, Coronel MF, McCarthy CJ, Montaner A, Villar MJ, Brumovsky PR. Modulation of the Inflammatory Response by Pre-emptive Administration of IMT504 Reduces Postoperative Pain in Rats and has Opioid-Sparing Effects. THE JOURNAL OF PAIN 2023; 24:991-1008. [PMID: 36706889 DOI: 10.1016/j.jpain.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Despite the available knowledge on underlying mechanisms and the development of several therapeutic strategies, optimal management of postoperative pain remains challenging. This preclinical study hypothesizes that, by promoting an anti-inflammatory scenario, pre-emptive administration of IMT504, a noncoding, non-CpG oligodeoxynucleotide with immune modulating properties, will reduce postincisional pain, also facilitating therapeutic opioid-sparing. Male adult Sprague-Dawley rats with unilateral hindpaw skin-muscle incision received pre-emptive (48 and 24 hours prior to surgery) or postoperative (6 hours after surgery) subcutaneous vehicle (saline) or IMT504. Various groups of rats were prepared for pain-like behavior analyses, including subgroups receiving morphine or naloxone, as well as for flow-cytometry or quantitative RT-PCR analyses of the spleen and hindpaws (for analysis of inflammatory phenotype). Compared to vehicle-treated rats, pre-emptive IMT504 significantly reduced mechanical allodynia by 6 hours after surgery, and accelerated recovery of basal responses from 72 hours after surgery and onwards. Cold allodynia was also reduced by IMT504. Postoperative administration of IMT504 resulted in similar positive effects on pain-like behavior. In IMT504-treated rats, 3 mg/kg morphine resulted in comparable blockade of mechanical allodynia as observed in vehicle-treated rats receiving 10 mg/kg morphine. IMT504 significantly increased hindpaw infiltration of mesenchymal stem cells, CD4+T and B cells, and caused upregulated or downregulated transcript expressions of interleukin-10 and interleukin-1β, respectively. Also, IMT504 treatment targeted the spleen, with upregulated or downregulated transcript expressions, 6 hours after incision, of interleukin-10 and interleukin-1β, respectively. Altogether, pre-emptive or postoperative IMT504 provides protection against postincisional pain, through participation of significant immunomodulatory actions, and exhibiting opioid-sparing effects. PERSPECTIVE: This preclinical study introduces the noncoding non-CpG oligodeoxynucleotide IMT504 as a novel modulator of postoperative pain and underlying inflammatory events. The opioid-sparing effects observed for IMT504 appear as a key feature that could contribute, in the future, to reducing opioid-related adverse events in patients undergoing surgical intervention.
Collapse
Affiliation(s)
- Julia Rubione
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Sandra M Sbrascini
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina; Hospital Universitario Austral, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Bernardo Miguel
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Carly J McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología "Dr. César Milstein", CONICET, Fundación Pablo Cassará, Pilar, Buenos Aires, Argentina
| | - Marcelo J Villar
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Pablo R Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT) CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Caxaria S, Bharde S, Fuller AM, Evans R, Thomas B, Celik P, Dell’Accio F, Yona S, Gilroy D, Voisin MB, Wood JN, Sikandar S. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc Natl Acad Sci U S A 2023; 120:e2211631120. [PMID: 37071676 PMCID: PMC10151464 DOI: 10.1073/pnas.2211631120] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 04/19/2023] Open
Abstract
Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Alice M. Fuller
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Romy Evans
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Bethan Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Petek Celik
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Francesco Dell’Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Simon Yona
- Institute of Biomedical and Oral Research, Hebrew University, 9112102Jerusalem, Israel
| | - Derek Gilroy
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - John N. Wood
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| |
Collapse
|
16
|
Phạm TL, Noh C, Neupane C, Sharma R, Shin HJ, Park KD, Lee CJ, Kim HW, Lee SY, Park JB. MAO-B Inhibitor, KDS2010, Alleviates Spinal Nerve Ligation-induced Neuropathic Pain in Rats Through Competitively Blocking the BDNF/TrkB/NR2B Signaling. THE JOURNAL OF PAIN 2022; 23:2092-2109. [PMID: 35940543 DOI: 10.1016/j.jpain.2022.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
MAO-B inhibitors have been implicated to reverse neuropathic pain behaviors. Our previous study has demonstrated that KDS2010 (KDS), a newly developed reversible MAO-B inhibitor, could attenuate Paclitaxel (PTX)-induced tactile hypersensitivity in mice through suppressing reactive oxidant species (ROS)-decreased inhibitory GABA synaptic transmission in the spinal cord. In this study, we evaluated the analgesic effect of KDS under a new approach, in which KDS acts on dorsal horn sensory neurons to reduce excitatory transmission. Oral administration of KDS effectively enhanced mechanical thresholds in the spinal nerve ligation (SNL) induced neuropathic pain in rats. Moreover, we discovered that although treatment with KDS increased brain-derived neurotrophic factor (BDNF) levels, KDS inhibited Tropomyosin receptor kinase B (TrkB) receptor activation, suppressing increased p-NR2B-induced hyperexcitability in spinal dorsal horn sensory neurons after nerve injury. In addition, KDS showed its anti-inflammatory effects by reducing microgliosis and astrogliosis and the activation of MAPK and NF-ᴋB inflammatory pathways in these glial cells. The levels of ROS production in the spinal cords after the SNL procedure were also decreased with KDS treatment. Taken together, our results suggest that KDS may represent a promising therapeutic option for treating neuropathic pain. PERSPECTIVE: Our study provides evidence suggesting the mechanisms by which KDS, a novel MAO-B inhibitor, can be effective in pain relief. KDS, by targeting multiple mechanisms involved in BDNF/TrkB/NR2B-related excitatory transmission and neuroinflammation, may represent the next future of pain medicine.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Histo-Pathology, Hai Phong University of Medicine & Pharmacy, Hai Phong 042-12, Vietnam
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Chiranjivi Neupane
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramesh Sharma
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jin Shin
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Bong Park
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Abstract
We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.
Collapse
|
18
|
Grayson M, Arris D, Wu P, Merlo J, Ibrahim T, Mei C, Valenzuela V, Ganatra S, Ruparel S. Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation. Pain 2022; 163:496-507. [PMID: 34321412 PMCID: PMC8678394 DOI: 10.1097/j.pain.0000000000002382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Oral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known. The current study evaluates a novel peripheral role of BDNF-tropomyosin receptor kinase B (TrkB) signaling in oral cancer pain. Using human oral squamous cell carcinoma (OSCC) cells and an orthotopic mouse tongue cancer pain model, we found that BDNF levels were upregulated in superfusates and lysates of tumor tongues and that BDNF was expressed by OSCC cells themselves. Moreover, neutralization of BDNF or inhibition of TrkB activity by ANA12, within the tumor-bearing tongue reversed tumor-induced pain-like behaviors in a sex-dependent manner. Oral squamous cell carcinoma conditioned media also produced pain-like behaviors in naïve male mice that was reversed by local injection of ANA12. On a physiological level, using single-fiber tongue-nerve electrophysiology, we found that acutely blocking TrkB receptors reversed tumor-induced mechanical sensitivity of A-slow high threshold mechanoreceptors. Furthermore, single-cell reverse transcription polymerase chain reaction data of retrogradely labeled lingual neurons demonstrated expression of full-form TrkB and truncated TrkB in distinct neuronal subtypes. Last but not the least, intra-TG siRNA for TrkB also reversed tumor-induced orofacial pain behaviors. Our data suggest that TrkB activities on lingual sensory afferents are partly controlled by local release of OSCC-derived BDNF, thereby contributing to oral cancer pain. This is a novel finding and the first demonstration of a peripheral role for BDNF signaling in oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Dominic Arris
- Department of Pharmacology and Physiology, University of Texas Health San Antonio, Texas, USA
| | - Ping Wu
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Jaclyn Merlo
- Department of Microbiology and Immunology, University of Texas Health San Antonio, Texas, USA
| | - Tarek Ibrahim
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Chang Mei
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Vanessa Valenzuela
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shilpa Ganatra
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| |
Collapse
|
19
|
Walker SM. Developmental Mechanisms of CPSP: Clinical Observations and Translational Laboratory Evaluations. Can J Pain 2021; 6:49-60. [PMID: 35910395 PMCID: PMC9331197 DOI: 10.1080/24740527.2021.1999796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Understanding mechanisms that underly the transition from acute to chronic pain and identifying potential targets for preventing or minimizing this progression have specific relevance for chronic postsurgical pain (CPSP). Though it is clear that multiple psychosocial, family, and environmental factors may influence CPSP, this review will focus on parallels between clinical observations and translational laboratory studies investigating the acute and long-term effects of surgical injury on nociceptive pathways. This includes data related to alterations in sensitivity at different points along nociceptive pathways from the periphery to the brain; age- and sex-dependent mechanisms underlying the transition from acute to persistent pain; potential targets for preventive interventions; and the impact of prior surgical injury. Ongoing preclinical studies evaluating age- and sex-dependent mechanisms will also inform comparative efficacy and preclinical safety assessments of potential preventive pharmacological interventions aimed at reducing the risk of CPSP. In future clinical studies, more detailed and longitudinal peri-operative phenotyping with patient- and parent-reported chronic pain core outcomes, alongside more specialized evaluations of somatosensory function, modulation, and circuitry, may enhance understanding of individual variability in postsurgical pain trajectories and improve recognition and management of CPSP.
Collapse
Affiliation(s)
- Suellen M. Walker
- Clinical Neurosciences (Pain Research), Developmental Neurosciences, UCL GOS Institute of Child Health, London, UK; Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Zorzin S, Corsi A, Ciarpella F, Bottani E, Dolci S, Malpeli G, Pino A, Amenta A, Fumagalli GF, Chiamulera C, Bifari F, Decimo I. Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling. Int J Mol Sci 2021; 22:ijms221910657. [PMID: 34638999 PMCID: PMC8508649 DOI: 10.3390/ijms221910657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced β3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.
Collapse
Affiliation(s)
- Stefania Zorzin
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Andrea Corsi
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesca Ciarpella
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Emanuela Bottani
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Sissi Dolci
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy;
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Guido Franceso Fumagalli
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
- Correspondence: ; Tel.: +39-045-802-7509; Fax: +39-045-802-7452
| |
Collapse
|
21
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
22
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
23
|
Kitayama T. The Role of Astrocytes in the Modulation ofK +-Cl --Cotransporter-2 Function. Int J Mol Sci 2020; 21:E9539. [PMID: 33333849 PMCID: PMC7765297 DOI: 10.3390/ijms21249539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain is characterized by spontaneous pain, pain sensations, and tactile allodynia. The pain sensory system normally functions under a fine balance between excitation and inhibition. Neuropathic pain arises when this balance is lost for some reason. In past reports, various mechanisms of neuropathic pain development have been reported, one of which is the downregulation of K+-Cl--cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease in KCC2 expression. This decrease in KCC2 expression is often due to a brain-derived neurotrophic factor that is released from microglia. However, a similar reaction has been reported in astrocytes, and it is unclear whether astrocytes or microglia are more important. This review discusses the hypothesis that astrocytes have a crucial influence on the alteration of KCC2 expression.
Collapse
Affiliation(s)
- Tomoya Kitayama
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| |
Collapse
|
24
|
Halievski K, Ghazisaeidi S, Salter MW. Sex-Dependent Mechanisms of Chronic Pain: A Focus on Microglia and P2X4R. J Pharmacol Exp Ther 2020; 375:202-209. [PMID: 32114512 DOI: 10.1124/jpet.120.265017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 03/08/2025] Open
Abstract
For over two decades, purinergic signaling in microglia has persisted in the spotlight as a major pathomechanism of chronic pain. Of the many purinoreceptors, the P2X4R of the ionotropic family, has a well-described causal role underlying chronic neuropathic pain. This review will briefly examine microglial P2X4R signaling in the spinal cord as it relates to chronic pain through a historical lens, followed by a more in-depth examination of recent work, which has revealed major sex differences. We also discuss the generalizability of sex differences in microglial and P2X4R signaling in other pain conditions as well as in nonspinal regions. Finally, we speculate on remaining gaps in the literature as well as what can be done to address them with the ultimate goal of using our collective knowledge to treat chronic pain effectively and in both sexes. SIGNIFICANCE STATEMENT: Effective treatments are lacking for chronic pain sufferers, and this may be explained by the vast sex differences underlying chronic pain mechanisms. In this minireview, we focus on the roles of microglia and P2X4R in chronic pain, with specific attention to the circumstances under which these pathomechanisms differ between males and females. By delineating the ways in which pain occurs differently between the sexes, we can start developing successful therapies for all.
Collapse
Affiliation(s)
- Katherine Halievski
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); The University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); and The Department of Physiology, University of Toronto, Toronto, Ontario, Canada (S.G., M.W.S.)
| | - Shahrzad Ghazisaeidi
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); The University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); and The Department of Physiology, University of Toronto, Toronto, Ontario, Canada (S.G., M.W.S.)
| | - Michael W Salter
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); The University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); and The Department of Physiology, University of Toronto, Toronto, Ontario, Canada (S.G., M.W.S.)
| |
Collapse
|
25
|
Baptista-de-Souza D, Tavares-Ferreira D, Megat S, Sankaranarayanan I, Shiers S, Flores CM, Ghosh S, Luiz Nunes-de-Souza R, Canto-de-Souza A, Price TJ. Sex differences in the role of atypical PKC within the basolateral nucleus of the amygdala in a mouse hyperalgesic priming model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100049. [PMID: 32548337 PMCID: PMC7284072 DOI: 10.1016/j.ynpai.2020.100049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 04/15/2023]
Abstract
Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E2 (PGE2) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male Prkcz-/- mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Diana Tavares-Ferreira
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Ishwarya Sankaranarayanan
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Stephanie Shiers
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Christopher M. Flores
- Janssen Research & Development, Neuroscience Therapeutic Area, San Diego, CA, United States
| | - Sourav Ghosh
- Yale University School of Medicine, Department of Neurology, United States
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista – UNESP, Araraquara, SP 14800-903, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Graduate Program in Psychology UFSCar, São Carlos, SP 13565-905, Brazil
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
- Corresponding author at: University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 W Campbell Rd., BSB 14.102, Richardson, TX 75080, United States.
| |
Collapse
|