1
|
Madeira MM, Hage Z, Kokkosis AG, Nnah K, Guzman R, Schappell LE, Koliatsis D, Resutov E, Nadkarni NA, Rahme GJ, Tsirka SE. Oligodendroglia Are Primed for Antigen Presentation in Response to Chronic Stress-Induced Microglial-Derived Inflammation. Glia 2025; 73:1130-1147. [PMID: 39719686 PMCID: PMC12014386 DOI: 10.1002/glia.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
Chronic stress is a major contributor to the development of major depressive disorder, one of the leading causes of disability worldwide. Using a model of repeated social defeat stress in mice, we and others have reported that neuroinflammation plays a dynamic role in the development of behavioral deficits consistent with social avoidance and impaired reward responses. Animals susceptible to the model also exhibit hypomyelination in the medial prefrontal cortex, indicative of changes in the differentiation pathway of cells of the oligodendroglial lineage (OLN). We computationally confirmed the presence of immune oligodendrocytes, a population of OLN cells, which express immune markers and myelination deficits. In the current study, we report that microglia are necessary to induce expression of antigen presentation markers (and other immune markers) on oligodendroglia. We further associate the appearance of these markers with changes in the OLN and confirm that microglial changes precede OLN changes. Using co-cultures of microglia and OLN, we show that under inflammatory conditions the processes of phagocytosis and expression of MHCII are linked, suggesting potential priming for antigen presentation by OLN cells. Our findings provide insights into the nature of these OLN cells with immune capabilities, their obligatory interaction with microglia, and identify them as a potential cellular contributor to the pathological manifestations of psychosocial stress.
Collapse
Affiliation(s)
- Miguel M. Madeira
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Zachary Hage
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Alexandros G. Kokkosis
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Kimberly Nnah
- Scholars in Biomedical Sciences Program
- Program in Neuroscience
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Ryan Guzman
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Laurel E. Schappell
- Molecular and Cellular Pharmacology Program
- Medical Scientist Training Program
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Neil A. Nadkarni
- Molecular and Cellular Pharmacology Program
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Gilbert J. Rahme
- Molecular and Cellular Pharmacology Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E. Tsirka
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Program in Neuroscience
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Gu S, Park D, Seo S, Kim S, Kim Y, Webster M, Eom H, Lee D, Hong J, Han S, Cha H, Yun J. Crystallin Alpha B Inhibits Cocaine-Induced Conditioned Place Preference via the Modulation of Dopaminergic Neurotransmission. Addict Biol 2025; 30:e70028. [PMID: 40095747 PMCID: PMC11912016 DOI: 10.1111/adb.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/04/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Nonneuronal cells mediate neurotransmission and drug addiction. However, the role of oligodendrocytes in stress-induced cocaine relapses remains unclear. In the present study, we investigated the role of the oligodendrocyte-abundant molecule crystallin alpha B (CRYAB) in cocaine-induced conditioned place preference (CPP) relapsed by restraint stress. RNA sequencing (RNA-seq) was performed to identify oligodendrocytes and stress-associated molecules in the nucleus accumbens (NAcc) of both drug users and cocaine-treated animals. Further, we studied which cell subtypes in the brain express CRYAB. The effects of stress hormones and cocaine on CRYAB expression were evaluated in vitro in human oligodendrocytes. CRYAB is upregulated in the NAcc of both cocaine-treated animals and drug users. CRYAB levels in the NAcc of mice increased during CPP development but decreased following stress-induced relapse. Interestingly, CRYAB is expressed in oligodendrocytes in the NAcc of mice. Extracellular CRYAB levels are regulated by cocaine and stress hormone treatments in oligodendrocyte cultures. Dopamine levels in the NAcc and CPP development of CPP are significantly increased by cocaine in CRYAB knockout (KO) mice. Further, we demonstrated that CRYAB binds to the excitatory amino acid transporter 2 (EAAT2) in the NAcc of mice treated with cocaine. We suggest that oligodendrocyte-derived CRYAB regulates dopamine neurotransmission and stress-evoked cocaine reward behaviour via the modulation of EAAT2 in the NAcc.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| | - Daejin Park
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| | - Sowoon Seo
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| | - Sanghyeon Kim
- Stanley Brain Research LaboratoryStanley Medical Research InstituteRockvilleMarylandUSA
| | - Young Eun Kim
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| | - Maree J. Webster
- Stanley Brain Research LaboratoryStanley Medical Research InstituteRockvilleMarylandUSA
| | - Heejong Eom
- Laboratory Animal CenterOsong Medical Innovation FoundationCheongjuChungcheongbukRepublic of Korea
| | - Dohyun Lee
- Laboratory Animal CenterOsong Medical Innovation FoundationCheongjuChungcheongbukRepublic of Korea
| | - Jin Tae Hong
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| | - Sang‐Bae Han
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| | - Hye Jin Cha
- College of Veterinary MedicineGyeongsang National UniversityJinjuGyeongsangnamRepublic of Korea
| | - Jaesuk Yun
- College of PharmacyChungbuk National UniversityCheongjuChungcheongbukRepublic of Korea
| |
Collapse
|
3
|
Li Y, Zhang Y, Lin D, Fu X, Jing C. Demyelination of the amygdala mediates psychological stress-induced emotional disorders partially contributed by activation of P2X7R/NLRP3 cascade. Brain Behav Immun 2025; 124:365-375. [PMID: 39689840 DOI: 10.1016/j.bbi.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024] Open
Abstract
Psychological stress can lead to emotional disorders, such as anxiety and depression; however, the underlying mechanisms are complicated and remain unclear. In this study, we established a mouse psychological stress model using an improved communication box, in which the psychologically stressed mice received visual, auditory, and olfactory emotional stimuli from the mice receiving electric foot shock, thus avoiding physical stress interference. After the 14-day psychological stress paradigm, our mice exhibited a significant increase in depressive and anxious behaviors. We then performed proteomic liquid chromatography-tandem mass spectrometry for proteomic data analysis of the amygdala, and the results demonstrated that differentially expressed proteins were more enriched in myelin-related biological processes, cellular components, and molecular functions, indicating a correlation between psychological stress-induced emotional disorders and amygdala myelin damage. Molecular and morphological evidence further confirmed that psychological stress damages myelin ultrastructure, downregulated myelin basic protein and proteolipid protein expression, and reduced oligodendrocyte proliferation in the amygdala. Moreover, clemastine, an antimuscarinic and antihistaminic compound that has been shown to enhance oligodendrocyte differentiation and myelination, rescued depressive behaviors accompanied by increased oligodendrogenesis. In the amygdala, psychological stress was also noted to activate microglia and increase the levels of NOD-like receptor protein 3 (NLRP3) and the proinflammatory cytokines interleukin 1β and tumor necrosis factor α, as indicated by ELISA and Western blot analyses. Moreover, in stressed mice, the administration of Brilliant Blue G, a purinergic ligand-gated ion channel 7 receptor (P2X7R) antagonist, completely reversed the increases in NLRP3 and cleaved caspase-1 levels and partially prevented amygdala myelin damage. In conclusion, amygdala demyelination may mediate psychological stress-induced emotional disorders, and P2X7R/NLRP3 cascade activation partially contributes to amygdala myelin damage after psychological stress.
Collapse
Affiliation(s)
- Yanning Li
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China; School of Basic Medicine, Gannan Medical University, Ganzhou, PR China.
| | - Yi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| | - Dandan Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Xiaoliang Fu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Chenchen Jing
- School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| |
Collapse
|
4
|
Milewski TM, Lee W, Young RL, Hofmann HA, Curley JP. Rapid changes in plasma corticosterone and medial amygdala transcriptome profiles during social status change reveal molecular pathways associated with a major life history transition in mouse dominance hierarchies. PLoS Genet 2025; 21:e1011548. [PMID: 39804961 PMCID: PMC11761145 DOI: 10.1371/journal.pgen.1011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/24/2025] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies. We show that mice of all social ranks rapidly establish new stable social hierarchies when placed in novel social groups with animals of equivalent social status. Seventy minutes following social hierarchy formation, males that were socially dominant prior to being placed into new social hierarchies exhibit higher increases in plasma corticosterone and vastly greater transcriptional changes in the medial amygdala (MeA), which is central to the regulation of social behavior, compared to males who were socially subordinate prior to being placed into a new hierarchy. Specifically, the loss of social status in a new hierarchy (social descent) is associated with reductions in MeA expression of myelination and oligodendrocyte differentiation genes. Maintaining high social status is associated with high expression of genes related to cholinergic signaling in the MeA. Conversely, gaining social status in a new hierarchy (social ascent) is related to relatively few unique rapid changes in the MeA. We also identify novel genes associated with social transition that show common changes in expression when animals undergo either social descent or social ascent compared to maintaining their status. Two genes, Myosin binding protein C1 (Mybpc1) and μ-Crystallin (Crym), associated with vasoactive intestinal polypeptide (VIP) and thyroid hormone pathways respectively, are highly upregulated in socially transitioning individuals. Further, increases in genes associated with synaptic plasticity, excitatory glutamatergic signaling and learning and memory pathways were observed in transitioning animals suggesting that these processes may support rapid social status changes.
Collapse
Affiliation(s)
- Tyler M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Won Lee
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, California, United States of America
| | - Rebecca L. Young
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Hans A. Hofmann
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
5
|
Radulescu CI, Ferrari Bardile C, Garcia-Miralles M, Sidik H, Yusof NABM, Pouladi MA. Environmental Deprivation Effects on Myelin Ultrastructure in Huntington Disease and Wildtype Mice. Mol Neurobiol 2024; 61:4278-4288. [PMID: 38079108 DOI: 10.1007/s12035-023-03799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/12/2023] [Indexed: 07/11/2024]
Abstract
Environmental deprivation can have deleterious effects on adaptive myelination and oligodendroglia function. Early stage Huntington disease (HD) is characterised by white-matter myelin abnormalities in both humans and animal models. However, whether deprived environments exacerbate myelin-related pathological features of HD is not clearly understood. Here, we investigated the impact of deprivation and social isolation on ultrastructural features of myelin in the corpus callosum of the YAC128 mouse model of HD and wildtype (WT) mice using transmission electron microscopy. HD pathology on its own leads to increased representation of altered myelin features, such as thinner sheaths and compromised morphology. Interestingly, deprivation mirrors these effects in WT mice but does not greatly exacerbate the already aberrant myelin in HD mice, indicating a disease-related floor effect in the latter animals. These novel findings indicate that environmental deprivation causes abnormalities in myelin ultrastructure in the otherwise healthy corpus callosum of wild-type mice but has distinct effects on HD mice, where compromised myelin integrity is manifest from early stages of the disease.
Collapse
Affiliation(s)
- Carola I Radulescu
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
- UK Dementia Research Institute (DRI), Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Costanza Ferrari Bardile
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada
| | - Marta Garcia-Miralles
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
| | - Harwin Sidik
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
| | - Mahmoud A Pouladi
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore.
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
6
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
7
|
Gigliotta A, Mingardi J, Cummings S, Alikhani V, Trontti K, Barbon A, Kothary R, Hovatta I. Genetic background modulates the effect of glucocorticoids on proliferation, differentiation and myelin formation of oligodendrocyte lineage cells. Eur J Neurosci 2024; 59:2276-2292. [PMID: 38385867 DOI: 10.1111/ejn.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.
Collapse
Affiliation(s)
- Adrien Gigliotta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jessica Mingardi
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sarah Cummings
- Regenerative Medicine Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Vida Alikhani
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
11
|
Mei R, Qiu W, Yang Y, Xu S, Rao Y, Li Q, Luo Y, Huang H, Yang A, Tao H, Qiu M, Zhao X. Evidence That DDR1 Promotes Oligodendrocyte Differentiation during Development and Myelin Repair after Injury. Int J Mol Sci 2023; 24:10318. [PMID: 37373466 DOI: 10.3390/ijms241210318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the central nervous system. Mounting evidence suggests that receptor tyrosine kinases (RTKs) are crucial for oligodendrocyte differentiation and myelination in the CNS. It was recently reported that discoidin domain receptor 1 (Ddr1), a collagen-activated RTK, is expressed in oligodendrocyte lineage. However, its specific expression stage and functional role in oligodendrocyte development in the CNS remain to be determined. In this study, we report that Ddr1 is selectively upregulated in newly differentiated oligodendrocytes in the early postnatal CNS and regulates oligodendrocyte differentiation and myelination. Ddr1 knock-out mice of both sexes displayed compromised axonal myelination and apparent motor dysfunction. Ddr1 deficiency alerted the ERK pathway, but not the AKT pathway in the CNS. In addition, Ddr1 function is important for myelin repair after lysolecithin-induced demyelination. Taken together, the current study described, for the first time, the role of Ddr1 in myelin development and repair in the CNS, providing a novel molecule target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Ruyi Mei
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wanwan Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingying Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Siyu Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyu Rao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qingxin Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaping Tao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaofeng Zhao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Ramírez-Rodríguez GB, Meneses San-Juan D, Rico-Becerra AI, González-Olvera JJ, Reyes-Galindo V. Repetitive transcranial magnetic stimulation and fluoxetine reverse depressive-like behavior but with differential effects on Olig2-positive cells in chronically stressed mice. Neuropharmacology 2023; 236:109567. [PMID: 37209812 DOI: 10.1016/j.neuropharm.2023.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico.
| | - David Meneses San-Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Allan Irasek Rico-Becerra
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico; Licenciatura en Neurociencias, Facultad de Medicina. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101. Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Verónica Reyes-Galindo
- Instituto de Ecología. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria. Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| |
Collapse
|
13
|
Chen H, Kang Z, Liu X, Zhao Y, Fang Z, Zhang J, Zhang H. Chronic social defeat stress caused region-specific oligodendrogenesis impairment in adolescent mice. Front Neurosci 2023; 16:1074631. [PMID: 36685249 PMCID: PMC9846137 DOI: 10.3389/fnins.2022.1074631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Social stress in adolescents precipitates stress-related emotional disorders. In this study we aimed to investigate oligodendrogenesis in three stress-associated brain regions, medial prefrontal cortex (mPFC), habenula, and amygdala in adolescent mice exposed to social defeat stress. Methods Four-week-old adolescent mice were subjected to social defeat for 10 days, followed by behavioral tests and evaluations of oligodendroglial proliferation and differentiation. Results Stressed mice showed reduced social interaction, more stretched approach posture, lower sucrose preference, but no changes in the forced swimming test. EdU labeled proliferative cells, newly formed NG2+EdU + oligodendrocyte precursor cells (OPCs), and Olig2+EdU+ oligodendrocyte lineage cells (OLLs) were significantly decreased in the mPFC and the lateral habenula, but not in the amygdala and the medial habenula in socially defeated mice. APC+Edu+ newly-generated mature oligodendrocytes (OLs) were decreased in the mPFC in stressed mice. However, the total number of NG2+ OPCs, APC+ mature OLs, and Olig2+ OLLs were comparable in all the brain regions examined between stressed and control mice except for a decrease of APC+ mature OLs in the prelimbic cortex of stressed mice. Conclusion Our findings indicate that adolescent social stress causes emotion-related behavioral changes and region-specific impairment of oligodendrogenesis.
Collapse
Affiliation(s)
- Huan Chen
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Zhewei Kang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Xueqing Liu
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Yinglin Zhao
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Zeman Fang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Jinling Zhang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,*Correspondence: Jinling Zhang,
| | - Handi Zhang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,Handi Zhang,
| |
Collapse
|
14
|
NG2-glia: rising stars in stress-related mental disorders? Mol Psychiatry 2023; 28:518-520. [PMID: 36280754 PMCID: PMC9908535 DOI: 10.1038/s41380-022-01838-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
|
15
|
Guo Y, Wu H, Dong D, Zhou F, Li Z, Zhao L, Long Z. Stress and the brain: Emotional support mediates the association between myelination in the right supramarginal gyrus and perceived chronic stress. Neurobiol Stress 2022; 22:100511. [PMID: 36632310 PMCID: PMC9826980 DOI: 10.1016/j.ynstr.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Perceived stress, which refers to people's evaluation of a stressful event and their ability to cope with it, has emerged as a stable predictor for physical and mental health outcomes. Increasing evidence has suggested the buffering effect of social support on perceived stress. Although previous studies have investigated the brain structural features (e.g., gray matter volume) associated with perceived stress, less is known about the association between perceived chronic stress and intra-cortical myelin (ICM), which is an important microstructure of brain and is essential for healthy brain functions, and the role of social support in this association. Using a sample of 1076 healthy young adults drawn from the Human Connectome Project, we quantified the ICMby the contrast of T1w and T2w images and examined its association with perceived chronic stress during the last month and social support. Behavioral results showed that perceived chronic stress was negatively associated with both emotional support and instrumental support. Vertex-wise multiple regression analyses revealed that higher level of perceived chronic stress was significantly associated with lower ICM content of a cluster in the right supramarginal gyrus (rSMG). Interestingly, the emotional support, but not the instrumental support, significantly mediated the association of perceived chronic stress with ICM in the rSMG. Overall, the present study provides novel evidence for the cortical myelination of perceived chronic stress in humans and highlights the essential role of the rSMG in perceived chronic stress and emotional support.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China,School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China,Key Laboratory of Cognition and Personality, Ministry of Education, China,Corresponding author. School of Bioinformatics, Chongqing University of Posts and Telecommunications, No. 2, Chongwen Road, Nanan District, China.
| | - Huimin Wu
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhangyong Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhiliang Long
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|