1
|
Bertarini L, Imbeni F, Vilella A, Alboni S, Pellati F. Targeted Metabolomics for the Analysis of p-Cresol in Mouse Brain: Impact of Biological Sex and Strain. ACS Chem Neurosci 2025; 16:452-461. [PMID: 39829036 DOI: 10.1021/acschemneuro.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
p-Cresol, an environmental contaminant and endogenous metabolite derived primarily from the conversion of l-tyrosine by intestinal microflora, is gaining increasing attention, due to its potential impact on human health. Recent studies have highlighted elevated levels of p-cresol and its metabolites, including p-cresyl sulfate and p-cresyl glucuronide, in various populations, suggesting a correlation with neurodevelopmental and neurodegenerative conditions. While the role of this compound as a uremic toxin is well established, its presence and concentration within the central nervous system (CNS) remain largely unexplored. To address this gap, an high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method was optimized and validated for the first time in this work for the targeted metabolomics of p-cresol in brain tissues. This method enabled the quantification of this compound in different brain areas of adult male and female C57BL/6J mice and in the cortex of various mouse strains, including CD-1 and the idiopathic autism model BTBR T+Itpr3tf/J. Additionally, preliminary analyses of human cortex samples confirmed the presence of p-cresol, suggesting its relevance in human brain health. Moreover, metabolomic analyses have further explored the correlations between p-cresol and neurotransmitters, with a particular focus on dopaminergic and noradrenergic pathways. These findings pave the way for understanding the potential impact of p-cresol on neurochemical networks and its implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Federico Imbeni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
| |
Collapse
|
2
|
Ou H, Kawaguchi S, Sonomura K, Kawaguchi T, Kitada S, Yoshiji S, Brial F, Gauguier D, Xia J, Matsuda F. A phenome-wide association study (PheWAS) to identify the health impacts of 4-cresol sulfate in the Nagahama Study. Sci Rep 2023; 13:13926. [PMID: 37626071 PMCID: PMC10457396 DOI: 10.1038/s41598-023-40697-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Gut-microbiota derived metabolites are important regulators of host biology and metabolism. To understand the impacts of the microbial metabolite 4-cresol sulfate (4-CS) on four chronic diseases [type 2 diabetes mellitus, metabolic syndrome (MetS), non-alcoholic fatty liver disease, and chronic kidney disease (CKD)], we conducted association analyses of plasma 4-CS quantified by liquid chromatography coupled to mass spectrometry (LC-MS) in 3641 participants of the Nagahama study. Our results validated the elevation of 4-CS in CKD and identified a reducing trend in MetS. To delineate the holistic effects of 4-CS, we performed a phenome-wide association analysis (PheWAS) with 937 intermediate biological and behavioral traits. We detected associations between 4-CS and 39 phenotypes related to blood pressure regulation, hepatic and renal functions, hematology, sleep quality, intraocular pressure, ion regulation, ketone and fatty acid metabolisms, disease history and dietary habits. Among them, 19 PheWAS significant traits, including fatty acids and 14 blood pressure indices, were correlated with MetS, suggesting that 4-CS is a potential biomarker for MetS. Consistent associations of this gut microbial-derived metabolite on multiple endophenotypes underlying distinct etiopathogenesis support its role in the overall host health, with prospects of probiotic-based therapeutic solutions in chronic diseases.
Collapse
Affiliation(s)
- Huiting Ou
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Shuji Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, 604-8511, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Seri Kitada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoshi Yoshiji
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - François Brial
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Dominique Gauguier
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- University Paris Cité, INSERM UMR1124, 45 rue des Saints Peres, 75006, Paris, France
| | - Jianguo Xia
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Institute of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
3
|
Ribeiro HC, Sen P, Dickens A, Santa Cruz EC, Orešič M, Sussulini A. Metabolomic and proteomic profiling in bipolar disorder patients revealed potential molecular signatures related to hemostasis. Metabolomics 2022; 18:65. [PMID: 35922643 DOI: 10.1007/s11306-022-01924-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a mood disorder characterized by the occurrence of depressive episodes alternating with episodes of elevated mood (known as mania). There is also an increased risk of other medical comorbidities. OBJECTIVES This work uses a systems biology approach to compare BD treated patients with healthy controls (HCs), integrating proteomics and metabolomics data using partial correlation analysis in order to observe the interactions between altered proteins and metabolites, as well as proposing a potential metabolic signature panel for the disease. METHODS Data integration between proteomics and metabolomics was performed using GC-MS data and label-free proteomics from the same individuals (N = 13; 5 BD, 8 HC) using generalized canonical correlation analysis and partial correlation analysis, and then building a correlation network between metabolites and proteins. Ridge-logistic regression models were developed to stratify between BD and HC groups using an extended metabolomics dataset (N = 28; 14 BD, 14 HC), applying a recursive feature elimination for the optimal selection of the metabolites. RESULTS Network analysis demonstrated links between proteins and metabolites, pointing to possible alterations in hemostasis of BD patients. Ridge-logistic regression model indicated a molecular signature comprising 9 metabolites, with an area under the receiver operating characteristic curve (AUROC) of 0.833 (95% CI 0.817-0.914). CONCLUSION From our results, we conclude that several metabolic processes are related to BD, which can be considered as a multi-system disorder. We also demonstrate the feasibility of partial correlation analysis for integration of proteomics and metabolomics data in a case-control study setting.
Collapse
Affiliation(s)
- Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20520, Turku, Finland
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
4
|
Blachier F, Andriamihaja M. Effects of the L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids 2021; 54:325-338. [PMID: 34468872 DOI: 10.1007/s00726-021-03064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Specific families of bacteria present within the intestinal luminal content produce p-cresol from L-tyrosine. Although the hosts do not synthesize p-cresol, they can metabolize this compound within their colonic mucosa and liver leading to the production of co-metabolites including p-cresyl sulfate (p-CS) and p-cresyl glucuronide (p-CG). p-Cresol and its co-metabolites are recovered in the circulation mainly conjugated to albumin, but also in their free forms that are excreted in the urine. An increased dietary protein intake raises the amount of p-cresol recovered in the feces and urine, while fecal excretion of p-cresol is diminished by a diet containing undigestible polysaccharides. p-Cresol in excess is genotoxic for colonocytes. In addition, in these cells, this bacterial metabolite decreases mitochondrial oxygen consumption, while increasing the anion superoxide production. In chronic kidney disease (CKD), marked accumulation of p-cresol and p-CS in plasma is measured, and in renal tubular cells, p-cresol and p-CS increase oxidative stress, affect mitochondrial function, and lead to cell death, strongly suggesting that these 2 compounds act as uremic toxins that aggravate CKD progression. p-Cresol and p-CS are also suspected to play a role in the CKD-associated adverse cardiovascular events, since they affect endothelial cell proliferation and migration, decrease the capacity of endothelial wound repair, and increase the senescence of endothelial cells. Finally, the fact that concentration of p-cresol is transiently increased in young autistic children biological fluids, and that intraperitoneal injection of p-cresol in animal models induces some behavioral characteristics observed in the autism spectrum disorders (ASD), raise the view that p-cresol may possibly represent one of the components involved in ASD etiology. Further pre-clinical and clinical studies are obviously needed to determine if the lowering of p-cresol and/or p-CS circulating concentrations, by dietary and/or pharmacological means, would allow, by itself or in combination with other interventions, to improve CKD progression and associated cardiovascular outcomes, as well as some neurological outcomes in children with an early diagnosis of autism.
Collapse
Affiliation(s)
- F Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| | - M Andriamihaja
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
5
|
An in vitro model to assess the peripheral vestibulotoxicity of aromatic solvents. Neurotoxicology 2021; 84:105-113. [PMID: 33722544 DOI: 10.1016/j.neuro.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Epidemiological and experimental studies indicate that a number of aromatic solvents widely used in the industry can affect hearing and balance following chronic exposure. Animal studies demonstrated that long-term exposure to aromatic solvents directly damages the auditory receptor within the inner ear: the cochlea. However, no information is available on their effect on the vestibular receptor, which shares many structural features with the cochlea and is also localized in inner ear. The aim of this study was to use an in vitro approach to assess and compare the vestibular toxicity of different aromatic solvents (toluene, ethylbenzene, styrene and ortho-, meta-, para-xylene), all of which have well known cochleotoxic properties. We used a three-dimensional culture model of rat utricles ("cysts") with preserved functional sensory and secretory epithelia, and containing a potassium-rich (K+) endolymph-like fluid for this study. Variations in K+ concentrations in this model were considered as biomarkers of toxicity of the substances tested. After 72 h exposure, o-xylene, ethylbenzene and styrene decreased the K+ concentration by 78 %, 37 % and 28 %, respectively. O- xylene and styrene both caused histopathological alterations in secretory and sensory epithelial areas after 72 h exposure, whereas no anomalies were observed in ethylbenzene-exposed samples. These in vitro results suggest that some widely used aromatic solvents might have vestibulotoxic properties (o-xylene, styrene and ethylbenzene), whereas others may not (p-xylene, m-xylene, toluene). Our results also indicate that variations in endolymphatic K+ concentration may be a more sensitive marker of vestibular toxicity than histopathological events. Finally, this study suggests that cochleotoxic solvents might not be necessarily vestibulotoxic, and vice versa.
Collapse
|
6
|
Oh D, Cheon KA. Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa Chongsonyon Chongsin Uihak 2020; 31:131-145. [PMID: 32665757 PMCID: PMC7350540 DOI: 10.5765/jkacap.190039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.
Collapse
Affiliation(s)
- Donghun Oh
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Kim M, Chung SK, Yang JC, Park JI, Nam SH, Park TW. Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa Chongsonyon Chongsin Uihak 2020; 31:146-153. [PMID: 32665758 PMCID: PMC7350545 DOI: 10.5765/jkacap.200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives This study aimed to evaluate the reliability and validity of the Korean Form of the Premonitory Urge for Tics Scale (K-PUTS). Methods Thirty-eight patients with Tourette's disorder who visited Jeonbuk National University Hospital were assessed with the K-PUTS. Together with the PUTS, the Yale Global Tic Severity Scale (YGTSS), the Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS), the attention-deficit/hyperactivity disorder (ADHD) rating scale (ARS), and the Adult ADHD Self-Report Scale (ASRS) were implemented to evaluate concurrent and discriminant validity. Results The internal consistency of items on the PUTS was high, with a Cronbach's α of 0.79. The test-retest reliability of the PUTS, which was administered at 2 weeks to 2 months intervals, showed high reliability with a Pearson correlation coefficient of 0.60. There was a significant positive correlation between the overall PUTS score and the YGTSS score, showing concurrent validity. There was no correlation between the PUTS, CY-BOCS, and ASRS scores, demonstrating the discriminant validity of the PUTS. Factor analysis for construct validity revealed three factors: "presumed functional relationship between the tic and the urge to tic," "the quality of the premonitory urge," and "just right phenomena." Conclusion The results of this study indicate that the K-PUTS is a reliable and valid scale for rating premonitory urge of tics.
Collapse
Affiliation(s)
- Mira Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Sang-Keun Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Il Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Seok Hyun Nam
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
8
|
Tallandier V, Merlen L, Boucard S, Thomas A, Venet T, Chalansonnet M, Gauchard G, Campo P, Pouyatos B. Styrene alters potassium endolymphatic concentration in a model of cultured utricle explants. Toxicol In Vitro 2020; 67:104915. [PMID: 32540163 DOI: 10.1016/j.tiv.2020.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Despite well-documented neurotoxic and ototoxic properties, styrene remains commonly used in industry. Its effects on the cochlea have been extensively studied in animals, and epidemiological and animal evidence indicates an impact on balance. However, its influence on the peripheral vestibular receptor has yet to be investigated. Here, we assessed the vestibulotoxicity of styrene using an in vitro model, consisting of three-dimensional cultured newborn rat utricles filled with a high‑potassium (K+) endolymph-like fluid, called "cysts". K+ entry in the cyst ("influx") and its exit ("efflux") are controlled by secretory cells and hair cells, respectively. The vestibular epithelium's functionality is thus linked to K+ concentration, measured using a microelectrode. Known inhibitors of K+ efflux and influx validated the model. Cysts were subsequently exposed to styrene (0.25; 0.5; 0.75 and 1 mM) for 2 h or 72 h. The decrease in K+ concentration measured after both exposure durations was dose-dependent, and significant from 0.75 mM styrene. Vacuoles were visible in the cytoplasm of epithelial cells from 0.5 mM after 2 h and from 0.25 mM after 72 h. The results presented here are the first evidence that styrene may deregulate K+ homeostasis in the endolymphatic space, thereby altering the functionality of the vestibular receptor.
Collapse
Affiliation(s)
- V Tallandier
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France; DevAH EA 3450 - Développement, Adaptation et Handicap, Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - L Merlen
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France
| | - S Boucard
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France
| | - A Thomas
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France
| | - T Venet
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France; DevAH EA 3450 - Développement, Adaptation et Handicap, Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - M Chalansonnet
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France.
| | - G Gauchard
- DevAH EA 3450 - Développement, Adaptation et Handicap, Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - P Campo
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France; DevAH EA 3450 - Développement, Adaptation et Handicap, Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - B Pouyatos
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, F-54519 Vandœuvre, Cedex, France
| |
Collapse
|
9
|
Pascucci T, Colamartino M, Fiori E, Sacco R, Coviello A, Ventura R, Puglisi-Allegra S, Turriziani L, Persico AM. P-cresol Alters Brain Dopamine Metabolism and Exacerbates Autism-Like Behaviors in the BTBR Mouse. Brain Sci 2020; 10:E233. [PMID: 32294927 PMCID: PMC7226382 DOI: 10.3390/brainsci10040233] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction/communication, stereotypic behaviors, restricted interests, and abnormal sensory-processing. Several studies have reported significantly elevated urinary and foecal levels of p-cresol in ASD children, an aromatic compound either of environmental origin or produced by specific gut bacterial strains. Methods: Since p-cresol is a known uremic toxin, able to negatively affect multiple brain functions, the present study was undertaken to assess the effects of a single acute injection of low- or high-dose (1 or 10 mg/kg i.v. respectively) of p-cresol in behavioral and neurochemical phenotypes of BTBR mice, a reliable animal model of human ASD. Results: P-cresol significantly increased anxiety-like behaviors and hyperactivity in the open field, in addition to producing stereotypic behaviors and loss of social preference in BTBR mice. Tissue levels of monoaminergic neurotransmitters and their metabolites unveiled significantly activated dopamine turnover in amygdala as well as in dorsal and ventral striatum after p-cresol administration; no effect was recorded in medial-prefrontal cortex and hippocampus. Conclusion: Our study supports a gene x environment interaction model, whereby p-cresol, acting upon a susceptible genetic background, can acutely induce autism-like behaviors and produce abnormal dopamine metabolism in the reward circuitry.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
| | - Marco Colamartino
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
| | - Elena Fiori
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
- European Brain Research Institute EBRI, I-00161 Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University “Campus Bio-Medico”, I-00128 Rome, Italy;
| | - Annalisa Coviello
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
| | - Rossella Ventura
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
| | | | - Laura Turriziani
- Interdepartmental Program “Autism 0-90”, “Gaetano Martino” University Hospital, University of Messina, I-98125 Messina, Italy;
| | - Antonio M. Persico
- Interdepartmental Program “Autism 0-90”, “Gaetano Martino” University Hospital, University of Messina, I-98125 Messina, Italy;
| |
Collapse
|
10
|
Paiva TO, Bastos AEP, Marquês JT, Viana AS, Lima PA, de Almeida RFM. m-Cresol affects the lipid bilayer in membrane models and living neurons. RSC Adv 2016. [DOI: 10.1039/c6ra20337j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A preferential interaction of m-cresol with high dipole-potential cholesterol/sphingomyelin-enriched lipid domains jeopardizes membrane integrity, explaining the toxicity of m-cresol-containing insulin formulations.
Collapse
Affiliation(s)
- T. O. Paiva
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - A. E. P. Bastos
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - J. T. Marquês
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - A. S. Viana
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - P. A. Lima
- NOVA Medical School
- Faculdade de Ciências Médicas da Universidade Nova de Lisboa
- 1169-056 Lisboa
- Portugal
| | - R. F. M. de Almeida
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| |
Collapse
|
11
|
Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol 2013; 36:82-90. [DOI: 10.1016/j.ntt.2012.09.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023]
|
12
|
Kinawy AA. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats. BMC PHYSIOLOGY 2009; 9:21. [PMID: 19930677 PMCID: PMC2788517 DOI: 10.1186/1472-6793-9-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. RESULTS The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. CONCLUSION It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.
Collapse
Affiliation(s)
- Amal A Kinawy
- Psychology department, Faculty of Arts, Cairo University, Egypt.
| |
Collapse
|
13
|
Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 2009; 106:14728-33. [PMID: 19667173 DOI: 10.1073/pnas.0904489106] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We provide a demonstration in humans of the principle of pharmacometabonomics by showing a clear connection between an individual's metabolic phenotype, in the form of a predose urinary metabolite profile, and the metabolic fate of a standard dose of the widely used analgesic acetaminophen. Predose and postdose urinary metabolite profiles were determined by (1)H NMR spectroscopy. The predose spectra were statistically analyzed in relation to drug metabolite excretion to detect predose biomarkers of drug fate and a human-gut microbiome cometabolite predictor was identified. Thus, we found that individuals having high predose urinary levels of p-cresol sulfate had low postdose urinary ratios of acetaminophen sulfate to acetaminophen glucuronide. We conclude that, in individuals with high bacterially mediated p-cresol generation, competitive O-sulfonation of p-cresol reduces the effective systemic capacity to sulfonate acetaminophen. Given that acetaminophen is such a widely used and seemingly well-understood drug, this finding provides a clear demonstration of the immense potential and power of the pharmacometabonomic approach. However, we expect many other sulfonation reactions to be similarly affected by competition with p-cresol and our finding also has important implications for certain diseases as well as for the variable responses induced by many different drugs and xenobiotics. We propose that assessing the effects of microbiome activity should be an integral part of pharmaceutical development and of personalized health care. Furthermore, we envisage that gut bacterial populations might be deliberately manipulated to improve drug efficacy and to reduce adverse drug reactions.
Collapse
|
14
|
Lubman DI, Yücel M, Lawrence AJ. Inhalant abuse among adolescents: neurobiological considerations. Br J Pharmacol 2008; 154:316-26. [PMID: 18332858 PMCID: PMC2442441 DOI: 10.1038/bjp.2008.76] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/31/2008] [Accepted: 02/12/2008] [Indexed: 12/15/2022] Open
Abstract
Experimentation with volatile substances (inhalants) is common during early adolescence, yet limited work has been conducted examining the neurobiological impact of regular binge use during this key stage of development. Human studies consistently demonstrate that chronic use is associated with significant toxic effects, including neurological and neuropsychological impairment, as well as diffuse and subtle changes in white matter. However, most preclinical research has tended to focus on acute exposure, with limited work examining the neuropharmacological or toxicological mechanisms underpinning these changes or their potential reversibility with abstinence. Nevertheless, there is growing evidence that commonly abused inhalants share common cellular mechanisms, and have similar actions to other drugs of abuse. Indeed, the majority of acute behavioural effects appear to be underpinned by changes in receptor and/or ion channel activity (for example, GABA(A), glycine and 5HT(3) receptor activation, NMDA receptor inhibition), although nonspecific interactions can also arise at high concentrations. Recent studies examining the effects of toluene exposure during the early postnatal period are suggestive of long-term alterations in the function of NMDA and GABA(A) receptors, although limited work has been conducted investigating exposure during adolescence. Given the critical role of neurotransmitter systems in cognitive, emotional and brain development, future studies will need to take account of the substantial neuromaturational changes that are known to occur in the brain during childhood and adolescence, and to specifically investigate the neuropharmacological and toxicological profile of inhalant exposure during this period of development.
Collapse
Affiliation(s)
- D I Lubman
- ORYGEN Research Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
15
|
Riegel AC, Zapata A, Shippenberg TS, French ED. The abused inhalant toluene increases dopamine release in the nucleus accumbens by directly stimulating ventral tegmental area neurons. Neuropsychopharmacology 2007; 32:1558-69. [PMID: 17213847 DOI: 10.1038/sj.npp.1301273] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recreational abuse of toluene-containing volatile inhalants by adolescents is a significant public health problem. The mechanisms underlying the abuse potential of such substances remain unclear, but could involve increased activity in mesoaccumbal dopamine (DA) afferents innervating the nucleus accumbens (ACB). Here, using in vitro electrophysiology, we show that application of behaviorally relevant concentrations of toluene directly stimulates DA neurons in the ventral tegmental area (VTA), but not surrounding midbrain regions. Toluene stimulation of VTA neurons persists when synaptic transmission is reduced. Moreover, unlike non-DA neurons, the magnitude of VTA DA neuron firing does not decline during longer exposures designed to emulate 'huffing'. Using dual-probe in vivo microdialysis, we show that perfusion of toluene directly into the VTA increases DA concentrations in the VTA (somatodendritic release) and its terminal projection site, the ACB. These results provide the first demonstration that even brief exposure to toluene increases action potential drive onto mesoaccumbal VTA DA neurons, thereby enhancing DA release in the ACB. The finding that toluene stimulates mesoaccumbal neurotransmission by activating VTA DA neurons directly (independently of transynaptic inputs) provide insights into the neural substrates that may contribute to the initiation and pathophysiology of toluene abuse.
Collapse
Affiliation(s)
- Arthur C Riegel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | | |
Collapse
|
16
|
Calderón-Guzmán D, Espitia-Vázquez I, López-Domínguez A, Hernández-García E, Huerta-Gertrudis B, Coballase-Urritia E, Juárez-Olguín H, García-Fernández B. Effect of Toluene and Nutritional Status on Serotonin, Lipid Peroxidation Levels and NA+/K+-ATPase in Adult Rat Brain. Neurochem Res 2005; 30:619-24. [PMID: 16176065 DOI: 10.1007/s11064-005-2749-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim was to evaluate the effect of toluene and nutritional status on levels of serotonin (5-HT), 5-hydroxytryptophan (5-HTP), Na+/K+-ATPase, total ATPase and lipid peroxidation (TBARS) in rat brain. Study was conducted with malnourished (MN), well-nourished (WN) and normal Wistar rats. Three groups were formed for each nutritional status: control group I received 0.9% NaCl; toluene (1 g/kg) was administered to group II, and 1.5 g/kg to group III. Levels of 5-HT decreased (P < 0.05) in WN toluene groups, and 5-HTP decreased (P < 0.05) in the WN 1 g toluene and MN 1.5 g toluene groups. TBARS decreased (P < 0.05) in WN toluene groups. A trend to increase in Na+/K+-ATPase was found in WN and MN toluene groups, while total ATPase increased (P < 0.05) in the WN 1.5 g toluene group. The results suggest that high concentrations of toluene in single doses induce significant changes in the serotonergic system and alter membrane fluidity more perceptibly in the brain of adult animals with regular diet than in malnourished animals.
Collapse
|