1
|
Zulfiqar T, Tipu MK, Khan MT, Abouzied AS, Al Kazman BSM, Alshammari SO, Alshammari QA, Alshammari A, Malik MNH, Ali A, Mazhar MU, Jabeen H. Comprehensive safety assessment and therapeutic potential of Pediococcus acidilactici NMCC-B in attenuating arthritis progression. PLoS One 2025; 20:e0324060. [PMID: 40402978 PMCID: PMC12097640 DOI: 10.1371/journal.pone.0324060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/18/2025] [Indexed: 05/24/2025] Open
Abstract
Dysbiosis of gut microbiota and loss of gut-barrier integrity contribute to the development and severity of rheumatoid arthritis (RA). The available treatments pose a burden of major adverse effects and new treatment strategies are therefore the need of time. In this study, Pediococcus acidilactici NMCC-B (Probiotic) was evaluated for its safety and efficacy in complete Freund's adjuvant (CFA)-induced mice model of RA. Mice were treated with either Escherichia coli (1 × 109 CFU/ml) or P. acidilactici NMCC-B (1 × 109 CFU/ml, 2 × 109 CFU/ml) to assess acute, sub-acute, and chronic toxicities. In RA model, mice were either pre-treated with daily dose of P. acidilactici NMCC-B or treated concurrently (day 1-day 27) or post-treated (day 28-day 42). P. acidilactici NMCC-B inhibited gut permeability, lessened joint inflammation, and ameliorated RA progression. No signs of toxicity, pathogenicity or bacterial translocation were observed in animals treated with probiotic. P. acidilactici NMCC-B also restored total body weight, attenuated inflammation, improved antioxidants, alleviated soft tissue swelling, bone damage, and the expression of IL-1β, NF-κB and TNF-α in paw tissue. Based on current findings, it is perceivable that P. acidilactici NMCC-B could be a promising candidate for the management of RA.
Collapse
Affiliation(s)
- Tayyaba Zulfiqar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tariq Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amr S. Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Bassam S. M. Al Kazman
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Saud O. Alshammari
- Department of Pharmacognosy and Alternative Medicine, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Qamar A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Abdulkarim Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | | | - Amir Ali
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hafsa Jabeen
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan.
| |
Collapse
|
2
|
Zhang T, Zhong H, Yang M, Shi X, Yang L, Yang J, Liu H, Luo Y, Xie Y, Zhong Z, Peng G, Zhang K, Zheng C, Zhang M, Zhou Z. Lactobacillus salivary LSbg3 is a Potential Food Probiotic Having Excellent Anti-pathogen Effect That Might Improve Antibiotic-Resistant Diarrhea in Dogs. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10527-0. [PMID: 40259196 DOI: 10.1007/s12602-025-10527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Antibiotics may disrupt the intestinal microbiota balance and induce antimicrobial resistance. Although probiotics should be a priority treatment for animal diarrhea, it still has chance to be used as same/or behind as antibiotics in the clinic. Among the probiotics, Lactobacillus (Lact.) was the most frequently utilized in clinical setting since its excellent ability of safety, anti-pathogen, stress resistance, and easy colonization in intestine. In this study, we screened 24 strains of Lact. in the presence of antibiotics from clinical common antibiotic-treated feces, identified L. salivarius LSbg3 exhibiting good stress resistance, potent antibacterial activity, and exceptional intestinal adhesion capability. Its genome showed a good function of regulating intestinal nutrition while lack of transmission antibiotic-resistance genes. Additionally, in a simulated canine diarrhea with failed antibiotic treatment, LSbg3 had a good efficacy in the releasing diarrhea, balancing the microbiome and suppressing typical pathogens, positioning a potential food probiotic have excellent effect on anti-pathogen that can effectively improve antibiotic-resistant diarrhea in dogs.
Collapse
Affiliation(s)
- Ting Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongyu Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu, 611130, China
| | - Xin Shi
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Liuqing Yang
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China.
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Yang Y, Zhang Y, Sun R, Du W, Liu Y, Zheng L, Ren Z, Li MD, Xu J. Preclinical Safety Assessment of the Oral Administration of Lactobacillus plantarum GUANKE in Animal Models. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10498-2. [PMID: 40032753 DOI: 10.1007/s12602-025-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Probiotics have a long history as fermented food or food supplements. The health benefits and safety profiles of probiotics are strain-specific and should be evaluated individually. The aim of this study was to assess the safety of the Lactobacillus plantarum GUANKE (GUANKE) strain by conducting pharmacological studies, oral toxicity assessments, and investigating the colonization and translocation of GUANKE in experimental animal models. Three pharmacological studies were conducted to examine the effects of oral administration of GUANKE on gastric emptying, bile secretion, and gastric juice secretion. In an acute toxicity study, rats were orally administrated with different doses of GUANKE and monitored for 14 days. In the subacute toxicity study, both rats and beagles were administrated with varying doses of GUANKE for 28 consecutive days to evaluate hematologic, biochemical, and histological effects. The results showed that GUANKE administration did not result in any adverse effect on hematological parameters, biochemical parameters, urinary parameters, and organ indices. Importantly, no translocation of GUANKE to extra-intestinal organs or blood was observed following administration of the CFDA-SE labeled strain. In summary, this study demonstrated the safety of GUANKE intake, which encourages its potential application as a probiotic in clinical trials.
Collapse
Affiliation(s)
- Yuewen Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Yanlin Zhang
- JOINN Laboratories (China) Co. Ltd, Beijing Economic-Technological Development Area, No. 5, Rongjingdong Street, Beijing, 100176, China
| | - Ruixiang Sun
- Maiyata Research Institute for Beneficial Bacteria, Shaoxing, Zhejiang, China
| | - Wenjuan Du
- Maiyata Research Institute for Beneficial Bacteria, Shaoxing, Zhejiang, China
| | | | - Lijun Zheng
- Guangzhou Zhiyi Biotech Inc., Guangzhou, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| | - Ming Ding Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
4
|
Chen CT, Chao WY, Lin CH, Shih TW, Pan TM. Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis. Curr Issues Mol Biol 2024; 46:12354-12374. [PMID: 39590328 PMCID: PMC11593238 DOI: 10.3390/cimb46110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Probiotics, as defined by the World Health Organization, are live microorganisms that, when consumed in sufficient quantities, provide health benefits to the host. Although some countries have approved specific probiotic species for use in food, safety concerns may still arise with individual strains. Lacticaseibacillus paracasei subsp. paracasei NTU 101 (NTU 101), isolated from the gut of healthy infants, has demonstrated various probiotic effects and shown safety in a prior 28-day animal feeding study. To further verify its safety and mitigate potential risks, we performed a comprehensive genotypic and phenotypic safety evaluation in accordance with the European Food Safety Authority guidelines for safety assessment through whole genome sequencing and related literature. In this research, minimum inhibitory concentration testing identified NTU 101's resistance to chloramphenicol; however, subsequent gene analysis confirmed no associated risk of resistance. Assessments of safety, including biogenic amine content, hemolytic activity, mucin degradation, and D-lactic acid production, indicated a low level of risk. Additionally, a repeated-dose 90-day oral toxicity study in Sprague-Dawley rats revealed no toxicity at a dose of 2000 mg/kg body weight, further supporting the strain's safety for consumption. Based on these comprehensive analyses, NTU 101 is considered safe for regular consumption as a health supplement.
Collapse
Affiliation(s)
- Chieh-Ting Chen
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
| | - Wen-Yu Chao
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
| | - Chih-Hui Lin
- Department of Life Science, National Taitung University, Taitung 950309, Taiwan;
| | - Tsung-Wei Shih
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tzu-Ming Pan
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
5
|
Nataraj BH, Ranveer SA, K J, Nagpal R, Behare PV. Immune and microbiome modulatory effects of Limosilactobacillus fermentum NCDC 400 in an immunocompromised mouse model. Microb Pathog 2024; 196:106927. [PMID: 39265811 DOI: 10.1016/j.micpath.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The present study was aimed to assess and validate the safety and functional efficacy of an indigenous probiotic strain Limosilactobacillus fermentum NCDC 400 (hereafter, LFN400) in an immunocompromised murine model. The study included four groups; a normal control (NC) group without immune suppression; an experimental model control (MC) with immune suppression induced via intraperitoneal cyclophosphamide (Cy) administration; and two MC groups orally administered with either low dose (LD) or high dose (HD) of LFN400 at dose 108 and 1010 CFU/mouse/day, respectively, for 15-days. Both control groups received normal saline as placebo control. LFN400 improved specific experimental characteristics including hematological and serum biochemical markers. Compared to MC group, LFN400-fed groups showed markedly (P < 0.05) decreased arrays of detrimental caecal enzymes. We did not observe instances of bacterial translocation of LFN400 from gut to bloodstream or extra-intestinal organs. LFN400 intake significantly (P < 0.05) enhanced spleen cell differentiation, immune and oxidative stress markers, and restored Cy-induced histopathological changes in multiple tissues, including the spleen. There was no genotoxic effect of LFN400 on bone marrow cells. Although not statistically significant, LFN400 feeding moderately increased gut microbiome diversity, supporting the growth of beneficial saccharolytic microorganisms and reducing the presence of pathobionts. The findings demonstrate that the probiotic strain LFN400 possesses in vivo safety and immunomodulatory potency and thus should be considered a potential candidate for future human clinical studies.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Bacteriology Section, Southern Regional Station (SRS), ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560 030, Karnataka, India.
| | - Soniya A Ranveer
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Jeevan K
- Regional Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Aamkho, Gwalior, 474009, Madhya Pradesh, India.
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| | - Pradip V Behare
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
6
|
Varada VV, Kumar S, Balaga S, Thanippilly AJ, Pushpadass HA, M RH, Jangir BL, Tyagi N, Samanta AK. Oral delivery of electrohydrodynamically encapsulated Lactiplantibacillus plantarum CRD7 modulates gut health, antioxidant activity, and cytokines-related inflammation and immunity in mice. Food Funct 2024; 15:10761-10781. [PMID: 39390885 DOI: 10.1039/d4fo02732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The current study aimed to evaluate the effects of L. plantarum CRD7 on performance and gut health biomarkers in a Swiss albino mouse model. The results showed that supplementation with non-encapsulated (NLP) and electrohydrodyanamically encapsulated L. plantarum CRD7 (ELP) for four weeks significantly increased (P < 0.05) body weight and weekly feed intake of mice. Specifically, these interventions strengthened the gut barrier functions, as evidenced by the increased expression of tight junction proteins (claudin-1, ZO-1, and occludin), inhibiting pro-inflammatory factors (TNF-α, MCP-1, and IL-6), and promoting short-chain fatty acid production. Histopathological examination revealed no probiotic-related adverse effects in liver and intestinal tissues. Furthermore, ELP and NLP possess the ability to regulate immunity and antioxidant capacity in mice. Notably, the supplementation of ELP modified the gut microbiota by promoting beneficial bacteria (Lactobacillus and Bifibacterium) and suppressing pathogenic bacteria (E. coli and C. perfringens), thereby restoring a balanced gut microbiota. Taken together, oral delivery of encapsulated L. plantarum CRD7 can modify the composition of the gut microbiota, fortify the intestinal barrier functions, maintain the gastrointestinal equilibrium, and augment the immune and antioxidant capacity. This comprehensive study provides valuable insights for the potential application of encapsulated probiotic products in food and feed formulations aimed at alleviating gut diseases.
Collapse
Affiliation(s)
- Vinay Venkatesh Varada
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Sachin Kumar
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Sravani Balaga
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Antony Johnson Thanippilly
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Heartwin A Pushpadass
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru, India.
| | - Rashmi H M
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Babu Lal Jangir
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India.
| | - Nitin Tyagi
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Ashish Kumar Samanta
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| |
Collapse
|
7
|
Mazhar MU, Naz S, Khan JZ, Khalid S, Ghazanfar S, Selim S, Tipu MK, Ashique S, Yasmin S, Almuhayawi MS, Alshahrani A, Ansari MY. Safety Evaluation and antioxidant potential of new probiotic strain Bacillus subtilis (NMCC-path-14) in Balb/c mice by sub-acute repeated dose toxicity. Heliyon 2024; 10:e38581. [PMID: 39403501 PMCID: PMC11471459 DOI: 10.1016/j.heliyon.2024.e38581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 03/06/2025] Open
Abstract
Probiotics have recently gained significant interest for their possible therapeutic effects in treating numerous health conditions. Probiotics containing Bacillus subtilis have been shown to have several health benefits, most notably in preventing diarrhea and gastrointestinal problems. A novel probiotic strain, Bacillus subtilis (NMCC-path-14), isolated from the rumen of a Nilli Ravi Buffalo, was evaluated for 28-day repeated dose toxicity in Balb/c mice. The NMCC-path-14 in low dose (1 × 108 CFU/ml) and high dose (1 × 1010 CFU/ml) was administered to the mice through gavage regularly. After 28 days of treatment, it was discovered that the no-observed-adverse-effect level (NOAEL) for NMCC-path-14 wasgreater than 1 × 1010 CFU/animal/day. This study also revealed no treatment-related changes in clinical parameters, body weight, gross pathology, or histology. Food consumption, hemoglobin, hematocrit, red blood cell counts, and colon length increased, while total/differential leukocyte count and platelets remained unchanged. The administration of NMCC-path-14 also resulted in decreased bilirubin and creatinine levels. Furthermore, NMCC-path-14 also displayed a promising antioxidant potential by increasing the antioxidant enzymes (GST, GSH, and CAT) and decreasing oxidant enzyme (MDA and NO) levels in vital organs like the liver, kidneys, spleen, and colon. TheNMCC-path-14also decreased the pathogenic bacterial population while increasing the beneficial population. Given the lack of adverse effects observed after NMCC-path-14 treatment, this strain is safe and must be considered as a potential probiotic in humans.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sharjeel Khalid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
8
|
Kim YH, Lee DH, Seo HS, Eun SH, Lee DS, Choi YK, Lee SH, Kim TY. Genome-based taxonomic identification and safety assessment of an Enterococcus strain isolated from a homemade dairy product. Int Microbiol 2024; 27:1513-1525. [PMID: 38466360 DOI: 10.1007/s10123-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and β-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Han Sol Seo
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Do Sup Lee
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
9
|
Cruz Neto JPR, de Oliveira AM, de Oliveira KÁR, Sampaio KB, da Veiga Dutra ML, de Luna Freire MO, de Souza EL, de Brito Alves JL. Safety Evaluation of a Novel Potentially Probiotic Limosilactobacillus fermentum in Rats. Probiotics Antimicrob Proteins 2024; 16:752-762. [PMID: 37119497 DOI: 10.1007/s12602-023-10077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Limosilactobacillus (L) fermentum (strains 139, 263, 296) is a novel probiotic mixture isolated from fruit processing by-products. The use of this formulation has been associated with improvements in cardiometabolic, inflammatory, and oxidative stress parameters. The present study evaluated the safety of a potential multi-strain probiotic by genotoxicity (micronucleus assay) and subchronic toxicity study (13-week repeated dose). In the genotoxicity evaluation, L. fermentum 139, 263, 296 did not increase the frequency of micronuclei in erythrocytes of rats of both sexes at doses up to 1010 CFU/mL. In the subchronic toxicity study, the administration of L. fermentum did not promote adverse health effects, such as behavioral changes, appearance of tumors, changes in hematological and biochemical parameters. In addition, higher doses of L. fermentum 139, 263, 296 have been shown to reduce the levels of pro-inflammatory cytokines. Administration of potentially probiotic L. fermentum did not promote adverse health effects in rats and could be evaluated as a potential probiotic for humans.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Alison Macário de Oliveira
- Department of Biochemistry, Biological Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Maria Letícia da Veiga Dutra
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
10
|
Nataraj BH, Jeevan K, Dang AK, Nagpal R, Ali SA, Behare PV. Pre-clinical safety and toxicity assessment of Limosilactobacillus fermentum NCDC 400 in murine model. Microb Pathog 2024; 189:106589. [PMID: 38382627 DOI: 10.1016/j.micpath.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Chemistry and Bacteriology Section, Southern Regional Station (SRS), ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, Karnataka, India.
| | - K Jeevan
- Regional Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Aamkho, Gwalior, 474009, Madhya Pradesh, India.
| | - Ajay Kumar Dang
- Animal Physiology Division, ICAR-NDRI, Karnal, 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, 32306, USA
| | - Syed Azmal Ali
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69121, Germany.
| | - Pradip V Behare
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
11
|
Yoon KN, Lee SJ, Keum GB, Song KY, Park JH, Song BS, Yu SY, Cho JH, Kim ES, Doo H, Kwak J, Kim S, Eun JB, Lee JH, Kim HB, Lee JH, Kim JK. Characteristics of Lactococcus petauri GB97 lysate isolated from porcine feces and its in vitro and in vivo effects on inflammation, intestinal barrier function, and gut microbiota composition in mice. Microbiol Spectr 2024; 12:e0133423. [PMID: 38019021 PMCID: PMC10782967 DOI: 10.1128/spectrum.01334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Soo-Jeong Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Ki-Young Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Seung Yeob Yu
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| |
Collapse
|
12
|
Varada VV, Panneerselvam D, Pushpadass HA, Mallapa RH, Ram C, Kumar S. In vitro safety assessment of electrohydrodynamically encapsulated Lactiplantibacillus plantarum CRD7 and Lacticaseibacillus rhamnosus CRD11 for probiotics use. Curr Res Food Sci 2023; 6:100507. [PMID: 37215740 PMCID: PMC10196993 DOI: 10.1016/j.crfs.2023.100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The current study aimed to validate the safety of electrohydrodynamically encapsulated Lactiplantibacillus plantarum CRD7 and Lacticaseibacillus rhamnosus CRD11 in accordance with guidelines of FAO/WHO and ICMR/DBT. In vitro assays such as mucin degradation, hemolysis of blood cells, antimicrobial susceptibility pattern, possession of virulence factors, biogenic amine, and ammonia production were assessed. In results, the cross-streak and co-culture techniques revealed that CRD7 and CRD11 were compatible in vitro. Upon visual inspection through scanning electron and fluorescence microscopy, the integrity of bacterial cell membrane was confirmed even after the encapsulation process. CRD7 and CRD11 were non-hemolytic and showed negative responses to gelatinase, urease, and DNase activities. Non-mucinolytic activity of CRD7 and CRD11 was verified by measuring cell growth rate (p < 0.05) in different modified media followed by SDS-PAGE. High-performance liquid chromatography analysis revealed that both the strains did not produce biogenic amines (putrescine, cadaverine, histamine, and tyramine). Neither of the Lactobacillus strains produced ammonia after growing in BHI broth for 5 days at 37 °C. L-lactate production was highest (p < 0.05) in CRD11 (8.83 g/L), followed by CRD7 (8.16 g/L), whereas the lowest (p < 0.05) D-lactate was registered for encapsulated CRD11 (0.33 g/L) and CRD7 (0.49 g/L). The antibiogram profile determined through minimum inhibitory concentration showed that CRD7 and CRD11 were sensitive to key antibiotics suggested by EFSA except for gentamycin and kanamycin. PCR data on virulence genes demonstrated that both strains were safe for probiotic use. Moreover, CRD7 and CRD11 strains caused insignificant (p > 0.05) changes in the cell viability of Caco-2 cells as estimated by MTT (98.94-99.50%) and NR uptake (95.42-97.03%) assays and showed sensitivity to human serum. According to the results of these evaluated attributes, it is concluded that L. plantarum CRD7 and L. rhamnosus CRD11 are safe, non-toxic to human epithelial cells, and thus may be potentially suitable for various food/feed applications.
Collapse
Affiliation(s)
- Vinay Venkatesh Varada
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Divya Panneerselvam
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru, India
| | - Heartwin A. Pushpadass
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru, India
| | | | - Chand Ram
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sachin Kumar
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| |
Collapse
|
13
|
Haranahalli Nataraj B, Behare PV, Yadav H, Srivastava AK. Emerging pre-clinical safety assessments for potential probiotic strains: a review. Crit Rev Food Sci Nutr 2023; 64:8155-8183. [PMID: 37039078 DOI: 10.1080/10408398.2023.2197066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anil Kumar Srivastava
- U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University, Mathura, India
- Probiotic Association of India, Karnal, India
| |
Collapse
|
14
|
Topical Administration of Lactiplantibacillus plantarum (SkinDuo TM) Serum Improves Anti-Acne Properties. Microorganisms 2023; 11:microorganisms11020417. [PMID: 36838382 PMCID: PMC9967017 DOI: 10.3390/microorganisms11020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The tailoring of the skin microbiome is challenging and is a research hotspot in the pathogenesis of immune-mediated inflammatory skin diseases such as acne. Commonly encountered preservatives used as functional ingredients have an impact on the skin microbiota and are known to inhibit the survival of skin commensal bacteria. The selected species is Lactiplantibacillus plantarum, formulated with natural enhancers for topical use (SkinDuoTM). Ex vivo human skin models were used as a test system to assess the strain viability which was then validated on healthy volunteers. SkinDuoTM showed increased viability over time for in vitro skin models and a stable viability of over 50% on healthy skin. The strain was tested on human primary sebocytes obtained from sebaceous gland rich areas of facial skin and inoculated with the most abundant bacteria from the skin microbiota. Results on human ex vivo sebaceous gland models with the virulent phylotype of Cutibacterium acnes and Staphylococcus epidermidis present a significant reduction in viability, lipid production, and anti-inflammatory markers. We have developed an innovative anti-acne serum with L. plantarum that mimics the over-production of lipids, anti-inflammatory properties, and improves acne-disease skin models. Based on these results, we suggest that SkinDuoTM may be introduced as an acne-mitigating agent.
Collapse
|
15
|
Zhou H, Wang S, Liu W, Chang L, Zhu X, Mu G, Qian F. Probiotic properties of Lactobacillus paraplantarum LS-5 and its effect on antioxidant activity of fermented sauerkraut. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
16
|
Youn HY, Kim DH, Kim HJ, Jang YS, Song KY, Bae D, Kim H, Seo KH. A Combined In Vitro and In Vivo Assessment of the Safety of the Yeast Strains Kluyveromyces marxianus A4 and A5 Isolated from Korean Kefir. Probiotics Antimicrob Proteins 2023; 15:129-138. [PMID: 35034322 DOI: 10.1007/s12602-021-09872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Kefir is a traditional fermented milk containing beneficial bacteria and yeasts. Despite Kluyveromyces marxianus, isolated from kefir, gaining increasing attention as a potential probiotic yeast owing to its biological function, Saccharomyces boulardii is the only species considered as a probiotic yeast. We evaluated the safety of K. marxianus strains A4 and A5, isolated from Korean kefir, in comparison with that of S. boulardii. Virulence attributes were preliminarily assessed in vitro including their ability of gelatin hydrolysis, pseudohyphae formation, and hemolysis. To evaluate in vivo safety, the strains were challenged in a healthy animal model, four-week-old female BALB/c mice. Mice were orally administered 0.2 mL of 0.9% sterilized saline (NC_S; n = 6), S. boulardii ATCC MYA-796 (high concentration, S.b_H; low concentration, S.b_L; n = 6 for each), K. marxianus A4 (high concentration, A4_H; low concentration, A4_L; n = 6 for each), or K. marxianus A5 (high concentration, A5_H; low concentration, A5_L; n = 6 for each) for 2 weeks. At study end, body weight, spleen and liver weights, and blood parameters were assessed. K. marxianus A4 and A5 were tested negative for gelatinase and hemolysis. Overall, hematological, plasma biochemical, and cytokine (interleukin-1β and tumor necrosis factor-α) parameters were comparable between the experimental and negative control (NC) groups. Notably, the interleukin-6 level of the A5_H group was significantly lower than that of the NC group (p < 0.05), suggesting anti-inflammatory potential of K. marxianus A5.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyeon-Jin Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yong-Seok Jang
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Kwang-Young Song
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Dongryeoul Bae
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
17
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Coêlho ML, Islam MT, Laylson da Silva Oliveira G, Oliveira Barros de Alencar MV, Victor de Oliveira Santos J, Campinho dos Reis A, Oliveira Ferreira da Mata AM, Correia Jardim Paz MF, Docea AO, Calina D, Sharifi-Rad J, Amélia de Carvalho Melo-Cavalcante A. Cytotoxic and Antioxidant Properties of Natural Bioactive Monoterpenes Nerol, Estragole, and 3,7-Dimethyl-1-Octanol. Adv Pharmacol Pharm Sci 2022; 2022:8002766. [PMID: 36465700 PMCID: PMC9712021 DOI: 10.1155/2022/8002766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 01/27/2024] Open
Abstract
The therapeutic potential of medicinal plants is noted because of the presence of varieties of biochemicals. The monoterpenes, like nerol, estragole, and 3,7-dimethyl-1-octanol, have been reported for antimicrobial, antifungal, anthelmintic, and antioxidant activities. This study evaluated the toxic, cytotoxic, and oxidant/antioxidant effects of these compounds by several in vitro (DPPH and ABTS radical scavenging, and ferric reducing potential), ex vivo (hemolysis), and in vivo (Artemia Salina and Saccharomyces cerevisiae) assays. Results suggest that estragole and 3,7-dimethyl-1-octanol at 31.25-500 μg/mL did not exhibit significant cytotoxic effects in the A. Salina and hemolysis tests. Nerol showed significant cytotoxic effects on these test systems at all test concentrations. The monoterpenes showed radical (ABTS•+ and DPPH•) scavenging capacities in a concentration-dependent manner in vitro tests. However, they did not oxidize the genetic material of S. cerevisiae (SODWT, Sod1Δ, Sod2Δ, Sod1/Sod2Δ, Cat1Δ, and Cat1Δ/Sod1Δ) lines. Among the three monoterpenes, nerol may be a good candidate for antioxidant and anti-tumor therapies.
Collapse
Affiliation(s)
- Mayara Ladeira Coêlho
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - George Laylson da Silva Oliveira
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | - Marcus Vinicius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | | | | | | | - Márcia Fernanda Correia Jardim Paz
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
19
|
Oba S, Yildirim T, Karataş ŞM. Probiotics Safety Aspect of Functional Foods. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sirin Oba
- Department of Food Processing, Suluova Vocational School, Amasya University, Amasya, Turkey
| | - Tugce Yildirim
- Department of Biotechnology, Institution of Science, Amasya University, Amasya, Turkey
| | | |
Collapse
|
20
|
Chaudhari K, Mohan M, Saudagar P, Sable C, Shinde S, Bedade D. In vitro and in vivo evaluation of probiotic potential and safety assessment of Bacillus coagulans SKB LAB-19 (MCC 0554) in humans and animal healthcare. Regul Toxicol Pharmacol 2022; 133:105218. [PMID: 35793725 DOI: 10.1016/j.yrtph.2022.105218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Bacillus coagulans is Gram positive, spore forming and high lactic acid producing bacteria; however, probiotic and safety assessment of the isolated strain need to be investigated for commercial applications. Current study aimed to screen SKB LAB-19 for potential probiotic characteristics viz. enzyme production, antimicrobial properties, pH/bile salt tolerance, temperature stability, antidiarrheal activity in Swiss albino mice and Wistar rats; and acute oral toxicity in mice. The results showed that, SKB LAB-19 produces eight potential enzymes, effective against E. coli and C. perfringensis, tolerant to bile salt (0.3%)/gastric pH (2.5), stable at 40-90 °C and nontoxic to cells. SKB LAB-19 was found to be safe and displayed promising results to reverse E. coli and castor oil induced diarrhoea. Histopathological studies showed repair to damaged mucosal epithelium cells and improves integrity of the goblet cells of colon. SKB LAB-19 showed immunomodulatory effects with increased immunoglobulins in blood and augmented weight of spleen and thymus. In addition, SKB LAB-19 showed significant in-vitro antioxidant activity (82.93%), reducing capacity and ascorbate auto-oxidation inhibition effect (94.62%). These preliminary results suggested that, SKB LAB-19 was found to be safe and has the potential to be used as effective probiotic and anti-diarrhoeal agent in humans and animal healthcare.
Collapse
Affiliation(s)
- Khushal Chaudhari
- Department of Pharmacology, MGV's Pharmacy College, Panchavati, Nasik, 422003, Maharashtra, India
| | - Mahalaxmi Mohan
- Department of Pharmacology, MGV's Pharmacy College, Panchavati, Nasik, 422003, Maharashtra, India
| | - Parag Saudagar
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India
| | - Chetna Sable
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India
| | - Sominath Shinde
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India
| | - Dattatray Bedade
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India.
| |
Collapse
|
21
|
Bhatia R, Sharma S, Bhadada SK, Bishnoi M, Kondepudi KK. Lactic Acid Bacterial Supplementation Ameliorated the Lipopolysaccharide-Induced Gut Inflammation and Dysbiosis in Mice. Front Microbiol 2022; 13:930928. [PMID: 35770157 PMCID: PMC9235405 DOI: 10.3389/fmicb.2022.930928] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Lipopolysaccharide (LPS), a gut-transmitted endotoxin from Gram-negative bacteria, causes inflammatory diseases leading to the loss of gut barrier integrity and has been identified as a major pathogenic stimulator in many dysfunctions. Hence, supplementation with probiotics is believed to be one of the most effective strategies for treating many inflammatory gut disorders. Although probiotics are known to have a variety of therapeutic characteristics and to play a beneficial role in host defense responses, the molecular mechanisms by which they achieve these beneficial effects are unknown due to species- and strain-specific behaviors. Therefore, in this study, the protective role of five indigenous lactic acid bacterial strains in ameliorating LPS-induced gut barrier impairment in the C57BL/6 mice model was elucidated. Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, and Lactiplantibacillus plantarum LAB31 were isolated from infant feces; Pediococcus acidilactici LAB8 from fermented food (Bekang); and Lactiplantibacillus plantarum LAB39 from beetroot. Intraperitoneal injection of LPS (10 mg/kg of body weight) increased the levels of lipocalin and serum markers TNF-α, IL-6, and IL-1β, and the overall disease activity index in the treated group. Furthermore, gene expression of NF-kB, IL-12, and Cox-2; mucin-producing genes Muc-2 and Muc-4; and intestinal alkaline phosphatase (IAP) was deleteriously altered in the ileum of LPS-treated mice. Furthermore, LPS also induced dysbiosis in gut microbiota where higher abundances of Klebsiella, Enterobacter, and Salmonella and decreased abundances of Lactobacillus, Bifidobacteria, Roseburia, and Akkermansia were observed. Western blotting results also suggested that LPS treatment causes the loss of gut barrier integrity relative to the pre-supplementation with LAB strains, which enhanced the expression of tight junction proteins and ameliorated the LPS-induced changes and inflammation. Taken together, the study suggested that LAB3 and LAB39 were more potent in ameliorating LPS-induced gut inflammation and dysbiosis.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
- *Correspondence: Kanthi Kiran Kondepudi, ; orcid.org/0000-0001-8036-7555
| |
Collapse
|
22
|
Yilmaz B, Bangar SP, Echegaray N, Suri S, Tomasevic I, Manuel Lorenzo J, Melekoglu E, Rocha JM, Ozogul F. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022; 10:826. [PMID: 35456875 PMCID: PMC9026118 DOI: 10.3390/microorganisms10040826] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.
Collapse
Affiliation(s)
- Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Noemi Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (J.M.L.)
| | - Shweta Suri
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India;
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey;
| | - João Miguel Rocha
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330 Adana, Turkey;
| |
Collapse
|
23
|
Patra F, Duary RK. Determination and Safety Aspects of Probiotic Cultures. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:122-160. [DOI: 10.1002/9781119702160.ch6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
Chandhni PR, Pradhan D, Sowmya K, Gupta S, Kadyan S, Choudhary R, Gupta A, Gulati G, Mallappa RH, Kaushik JK, Grover S. Ameliorative Effect of Surface Proteins of Probiotic Lactobacilli in Colitis Mouse Models. Front Microbiol 2021; 12:679773. [PMID: 34539597 PMCID: PMC8447872 DOI: 10.3389/fmicb.2021.679773] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
The increase in concern from viable cells of probiotics specifically in acute inflammatory conditions has led to the emergence of the concept of postbiotics as a safer alternative therapy in the field of health and wellness. The aim of the present study was to evaluate the efficacy of surface proteins from three probiotic strains in dextran sodium sulfate and trinitrobenzenesulphonic acid = induced colitis mouse models. The molecular weight of total surface proteins extracted from the three probiotic strains ranged from ∼25 to ∼250 kDa with the presence of negligible levels of endotoxins. Surface layer proteins (SLPs) (∼45 kDa) were found to be present only in the Lactobacillus acidophilus NCFM strain. In the in vivo study, significant differences were not observed in the weight loss and general appetite, however, the decrease in colon length was apparent in TNBS colitis control mice. Further, the administration of these surface proteins significantly reversed the histopathological damages induced by the colitogens and improved the overall histological score. The oral ingestion of these surface proteins also led to a decrease in myeloperoxidase activity and TNF-α expression while the IL-10 levels significantly increased for the strain NCFM followed by MTCC 5690 and MTCC 5689. Overall, the present study signifies the ameliorative role of probiotic surface proteins in colitis mice, thereby, offering a potential and safer alternative for the management of inflammatory bowel disorders.
Collapse
Affiliation(s)
- P R Chandhni
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Diwas Pradhan
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Kandukuri Sowmya
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sunny Gupta
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Saurabh Kadyan
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ritu Choudhary
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Archita Gupta
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ganga Gulati
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Jai K Kaushik
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Sunita Grover
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
25
|
Lu H, Zhao W, Liu WH, Sun T, Lou H, Wei T, Hung WL, Chen Q. Safety Evaluation of Bifidobacterium lactis BL-99 and Lacticaseibacillus paracasei K56 and ET-22 in vitro and in vivo. Front Microbiol 2021; 12:686541. [PMID: 34394030 PMCID: PMC8358461 DOI: 10.3389/fmicb.2021.686541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been reported to play a major role in maintaining the balance of microbiota in host. Consumption of food with probiotics has increased with consumer concerns regarding healthy diets and wellness. Correspondingly, safety evaluation of probiotics for human consumption has become increasingly important in food industry. Herein, we aimed to test the safety of Bifidobacterium lactis BL-99 and Lacticaseibacillus paracasei K56 and ET-22 strains in vitro and in vivo. In results, these strains were found to be negative for mucin degradation and platelet aggregation test. Additionally, the three strains were susceptible to eight antibiotics. In accordance with bacterial reversion mutation (Ames) assay, the tested strains had no genetic mutagenicity. Finally, it was confirmed that there were no dose-dependent mortality and toxicity throughout multidose oral toxicity tests in rats. Our findings demonstrated that B. lactis BL-99 and L. paracasei K56 and ET-22 can achieve the generally recognized as safe (GRAS) status as probiotics in the future.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ting Sun
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Tang Q, Hao Y, Wang L, Lu C, Li M, Si Z, Wu X, Lu Z. Characterization of a bacterial strain Lactobacillus paracasei LP10266 recovered from an endocarditis patient in Shandong, China. BMC Microbiol 2021; 21:183. [PMID: 34134621 PMCID: PMC8210379 DOI: 10.1186/s12866-021-02253-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Background Lactobacilli are often recognized as beneficial partners in human microbial environments. However, lactobacilli also cause diseases in human, e.g. infective endocarditis (IE), septicaemia, rheumatic vascular disease, and dental caries. Therefore, the identification of potential pathogenic traits associated with lactobacilli will facilitate the prevention and treatment of the diseases caused by lactobacilli. Herein, we investigated the genomic traits and pathogenic potential of a novel bacterial strain Lactobacillus paracasei LP10266 which has caused a case of IE. We isolated L. paracasei LP10266 from an IE patient’s blood to perform high-throughput sequencing and compared the genome of strain LP10266 with those of closely related lactobacilli to determine genes associated with its infectivity. We performed the antimicrobial susceptibility testing on strain LP10266. We assessed its virulence by mouse lethality and serum bactericidal assays as well as its serum complement- and platelet-activating ability. The biofilm formation and adherence of strain LP10266 were also studied. Results Phylogenetic analysis revealed that strain LP10266 was allied with L. casei and L. paracasei. Genomic studies revealed two spaCBA pilus clusters and one novel exopolysaccharides (EPS) cluster in strain LP10266, which was sensitive to ampicillin, penicillin, levofloxacin, and imipenem, but resistant to cefuroxime, cefazolin, cefotaxime, meropenem, and vancomycin. Strain LP10266 was nonfatal and sensitive to serum, capable of activating complement 3a and terminal complement complex C5b-9 (TCC). Strain LP10266 could not induce platelet aggregation but displayed a stronger biofilm formation ability and adherence to human vascular endothelial cells (HUVECs) compared to the standard control strain L. paracasei ATCC25302. Conclusion The genome of a novel bacterial strain L. paracasei LP10266 was sequenced. Our results based on various types of assays consistently revealed that L. paracasei LP10266 was a potential pathogen to patients with a history of cardiac disease and inguinal hernia repair. Strain LP10266 showed strong biofilm formation ability and adherence, enhancing the awareness of L. paracasei infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02253-8.
Collapse
Affiliation(s)
- Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Lu Wang
- Department of Dermatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Chao Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zaifeng Si
- Department of Clinical Laboratory, Dezhou Traditional Chinese Medicine Hospital, Dezhou, 253000, Shandong, China
| | - Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
27
|
Pradhan D, Singh R, Tyagi A, H M R, Batish VK, Grover S. Assessing the Safety and Efficacy of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 in Colitis Mouse Model. Probiotics Antimicrob Proteins 2020; 11:910-920. [PMID: 30484143 DOI: 10.1007/s12602-018-9489-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Probiotic lactobacilli have an unprecedented history of safe use, although some cases of infections have raised concerns about their safety, and hence, a rigorous screening of any new strain even of Lactobacillus is a must in order to study possible adverse interactions with the host, particularly under unhealthy conditions. The present study was, therefore, undertaken to investigate the safety as well as therapeutic efficacy of probiotic Lactobacillus plantarum MTCC 5690 and L. fermentum MTCC 5689 strains in dextran sodium sulfate (DSS)-induced colitis mouse model. Both MTCC 5690 and MTCC 5689 did not induce any detrimental effect on the colitic mice, as was reflected by normal colon and caecum length, blood biochemistry, hematology, and absence of inflammation. Although translocation of both the strains was observed in extraintestinal organs, probiotic-fed mice had significantly improved intestinal permeability and decreased myeloperoxidase (MPO) activity. Probiotic interventions also led to an improved health index and better growth of colitis mice compared to colitis animals with no probiotic intervention. These results point towards the safe use of L. plantarum MTCC 5690 and L. fermentum MTCC 5689 as biotherapeutics for amelioration of inflammatory conditions after establishing their efficacy in human clinical trials.
Collapse
Affiliation(s)
- Diwas Pradhan
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajbir Singh
- University of Louisville, 505 South Hancock Street # 323, Clinical Translational Research Bldg, Louisville, KY, 40202, USA
| | - Ashish Tyagi
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.,University of Louisville, 505 South Hancock Street # 323, Clinical Translational Research Bldg, Louisville, KY, 40202, USA
| | - Rashmi H M
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Virender K Batish
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sunita Grover
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
28
|
Pradhan D, Mallappa RH, Grover S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106872] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|