1
|
Gao Y, Xia Y, Chen Y, Zhou S, Fang Y, Yu J, Zhang L, Sun L. Key considerations based on pharmacokinetic/pharmacodynamic in the design of antibody-drug conjugates. Front Oncol 2025; 14:1459368. [PMID: 39850824 PMCID: PMC11754052 DOI: 10.3389/fonc.2024.1459368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Background Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies. Objectives Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties. Methods From the assessment of the ADC action process based on PK/PD, we introduce the main research strategies of ADCs. In addition, we investigated the strategies to solve the prominent problems of ADC in the clinic in recent years, and summarized and evaluated the specific ways to optimize various problems of ADC based on the PK/PD model from two perspectives of optimizing the structure and properties of the drugs themselves. Through the selection of target antigen, the optimization of the linker, the optimization of novel small molecule toxins as payload, the optimization of ADC, overcoming the multi-drug resistance of ADC, improving the ADC tumor penetration of ADC, surface modification of ADC and surface bystander effect of ADC provide a more comprehensive and accurate framework for designing new ADCs. Results We've expounded comprehensively on applying pharmacokinetics or pharmacodynamics while designing ADC to obtain higher efficacy and fewer side effects. From the ADC's PK/PD property while coming into play in vivo and the PK/PD study strategy, to specific ADC optimization methods and recommendations based on PK/PD, it has been study-approved that the PK/PD properties exert a subtle role in the development of ADC, whether in preclinical trials or clinical promotion. Conclusion The study of PK/PD unfolds the detailed mechanism of ADC action, making it easier to control related parameters in the process of designing ADC, limited efficacy and inevitable off-target toxicity remain a challenging bottleneck.
Collapse
Affiliation(s)
- Yangyang Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yixin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shiqi Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yingying Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jieru Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Chinese Medicine), Hangzhou, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2025; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
3
|
Qin L, Hu N, Zhang Y, Yang J, Zhao L, Zhang X, Yang Y, Zhang J, Zou Y, Wei K, Zhao C, Li Y, Zeng H, Huang W, Zou Q. Antibody-antibiotic conjugate targeted therapy for orthopedic implant-associated intracellular S. aureus infections. J Adv Res 2024; 65:239-255. [PMID: 38048846 PMCID: PMC11519013 DOI: 10.1016/j.jare.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Treating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. OBJECTIVES Introduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. METHODS The AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. RESULTS In vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. CONCLUSIONS The application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Liqun Zhao
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yun Yang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yinshuang Zou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Keyu Wei
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yujian Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
4
|
Rudolph B, Davis JA, Hainzl D, Walles M. A general perspective for the conduct of radiolabelled distribution, metabolism, and excretion studies for antibody-drug conjugates. Xenobiotica 2024; 54:521-532. [PMID: 39329287 DOI: 10.1080/00498254.2024.2336576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 09/28/2024]
Abstract
Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that combine the specificity of monoclonal antibodies (mAbs) with the cytotoxicity of small molecule drugs. 15 ADCs have been approved by regulatory authorities up to now, mainly for indications in oncology, however, this review paper will only focus on the 13 ADCs that have been approved by either the FDA or EMA.ADME (Absorption, Distribution, Metabolism, and Excretion) studies are essential for the development of small molecule drugs to evaluate their disposition properties. These studies help to select drug candidates, determine the optimal dosing regimen and help to identify potential safety concerns for the drug of interest in human. Tissue distribution studies are also important as they facilitate the understanding of the efficacy and safety for parent drug and its metabolites in preclinical and clinical studies.For biologics, ADME studies are usually not required. In this paper, we review the existing approval packages and literature for approved ADCs to determine the extent of ADME studies performed as part of ADC registration packages.We conclude that ADME studies are recommended for the development of ADCs if new linkers and payloads are used that have never been used in humans before as these studies provide valuable information on the pharmacokinetic properties, optimal dosing regimen, and potential safety concerns. However, for the development of ADCs with established linker payload combinations, radiolabelled ADME studies may not be necessary if the distribution, metabolism and excretion properties have been described before. Clinical radiolabelled ADME studies are not recommended where patients are treated for life threating diseases like for indications in oncology.
Collapse
Affiliation(s)
- Bettina Rudolph
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Basel, Switzerland
| | - John A Davis
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Cambridge, Massachusetts, USA
| | - Dominik Hainzl
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Cambridge, Massachusetts, USA
| | - Markus Walles
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
5
|
Zarnoosheh Farahani T, Nejadmoghaddam MR, Sari S, Ghahremanzadeh R, Minai-Tehrani A. Generation of anti-SN38 antibody for loading efficacy and therapeutic monitoring of SN38-containing therapeutics. Heliyon 2024; 10:e33232. [PMID: 39021912 PMCID: PMC11253049 DOI: 10.1016/j.heliyon.2024.e33232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
SN38, one of the most potent anti-tumor analogues of the camptothecins (CPTs), has limitations in its direct formulation as an anticancer agent due to its super toxicity and poor solubility in water and pharmaceutically approved solvents. However, it has garnered significant scientific interest as a payload in conjugated nanomedicine platforms (e.g., SN-38lip, NK012, SNB-101, and ADCs) to enhance their effectiveness and safety. The development of these platforms necessitates a convenient quantitative determination of SN38 in preclinical and clinical studies, a need that our study directly addresses, offering a practical solution to a pressing problem in cancer research and drug development. This study details the meticulous process of generating poly and monoclonal antibodies (pAb and mAb) against SN38 and their application to measure the SN38 in naked and conjugated forms of SN38-conjugated ADCs. For this purpose, two haptens of SN38 were synthesized by introducing the glycine or 4-amino-4-oxobutanyol(glycine) moiety as a conjugation functional group of the SN38. IR, NMR and mass spectrometric techniques confirmed the chemical modifications of the haptens. The haptens were then conjugated to each bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH) protein. The SN38-KLH conjugates were meticulously examined for immunization and generation of pAb and mAb. The immunization efficiency, reactivity, binding affinity, specificity, and cross-reactivity of purified pAb and mAb against Irinotecan, a model for the emergence of an SN38 derivative in clinical settings, were evaluated using ELISA and western blotting (WB) techniques. Conjugation efficiency of the SN38 to the KLH was increased using 4-amino-4-oxobutanyol(glycine) moiety, as its immunization efficacy was more to generate pAb. Furthermore, only this hapten could immunized mice to generate mAb recognizing SN38 with nanomolar equilibrium affinity. Our recent findings strongly support the notion that the generated pAb employed in developing an ELISA effectively ascertains the presence of SN38 in SN38-conjugated ADC, with a test midpoint EC50 of 2.5 μg/mL. Our study's unique contribution to the field lies in the development of specific antibodies against SN38 for measuring it on ADC, a feat that has not been achieved before. These immunoassays can be readily applied to detect other SN38-conjugate therapeutic platforms, thereby enhancing their clinical knowledge translation. The affinity of both pAb and mAb also meets the acceptance criteria for quantifying SN38 in fluidic material, as well as in Therapeutic drug monitoring (TDM) studies, a crucial aspect of personalized medicine. The potential applications of the anti-SN38 antibodies extend to reducing SN38-induced systemic toxicity through an inverse targeting strategy, a novel approach that piques further interest in our findings.
Collapse
Affiliation(s)
- Tahereh Zarnoosheh Farahani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Journeaux T, Bernardes GJL. Homogeneous multi-payload antibody-drug conjugates. Nat Chem 2024; 16:854-870. [PMID: 38760431 DOI: 10.1038/s41557-024-01507-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 05/19/2024]
Abstract
Many systemic cancer chemotherapies comprise a combination of drugs, yet all clinically used antibody-drug conjugates (ADCs) contain a single-drug payload. These combination regimens improve treatment outcomes by producing synergistic anticancer effects and slowing the development of drug-resistant cell populations. In an attempt to replicate these regimens and improve the efficacy of targeted therapy, the field of ADCs has moved towards developing techniques that allow for multiple unique payloads to be attached to a single antibody molecule with high homogeneity. However, the methods for generating such constructs-homogeneous multi-payload ADCs-are both numerous and complex owing to the plethora of reactive functional groups that make up the surface of an antibody. Here, by summarizing and comparing the methods of both single- and multi-payload ADC generation and their key preclinical and clinical results, we provide a timely overview of this relatively new area of research. The methods discussed range from branched linker installation to the incorporation of unnatural amino acids, with a generalized comparison tool of the most promising modification strategies also provided. Finally, the successes and challenges of this rapidly growing field are critically evaluated, and from this, future areas of research and development are proposed.
Collapse
Affiliation(s)
- Toby Journeaux
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Yin L, Xu A, Zhao Y, Gu J. Bioanalytical Assays for Pharmacokinetic and Biodistribution Study of Antibody-Drug Conjugates. Drug Metab Dispos 2023; 51:1324-1331. [PMID: 37290939 DOI: 10.1124/dmd.123.001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are produced by the chemical linkage of cytotoxic agents and monoclonal antibodies. The complexity and heterogeneity of ADCs and the low concentration of cytotoxic agent released in vivo poses big challenges to their bioanalysis. Understanding the pharmacokinetic behavior, exposure-safety, and exposure-efficacy relationships of ADCs is needed for their successful development. Accurate analytical methods are required to evaluate intact ADCs, total antibody, released small molecule cytotoxins, and related metabolites. The selection of appropriate bioanalysis methods for comprehensive analysis of ADCs is mainly dependent on the properties of cytotoxic agents, the chemical linker, and the attachment sites. The quality of the information about the whole pharmacokinetic profile of ADCs has been improved due to the development and improvement of analytical strategies for detection of ADCs, such as ligand-binding assays and mass spectrometry-related techniques. In this article, we will focus on the bioanalytical assays that have been used in the pharmacokinetic study of ADCs and discuss their advantages, current limitations, and potential challenges. SIGNIFICANCE STATEMENT: This article describes bioanalysis methods which have been used in pharmacokinetic study of ADCs and discusses the advantages, disadvantages and potential challenges of these assays. This review is useful and helpful and will provide insights and reference for bioanalysis and development of ADCs.
Collapse
Affiliation(s)
- Lei Yin
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| | - Aiyun Xu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| | - Yumeng Zhao
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| |
Collapse
|
8
|
Korde A, Mikolajczak R, Kolenc P, Bouziotis P, Westin H, Lauritzen M, Koole M, Herth MM, Bardiès M, Martins AF, Paulo A, Lyashchenko SK, Todde S, Nag S, Lamprou E, Abrunhosa A, Giammarile F, Decristoforo C. Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals. EJNMMI Radiopharm Chem 2022; 7:18. [PMID: 35852679 PMCID: PMC9296747 DOI: 10.1186/s41181-022-00168-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background The development of radiopharmaceuticals requires extensive evaluation before they can be applied in a diagnostic or therapeutic setting in Nuclear Medicine. Chemical, radiochemical, and pharmaceutical parameters must be established and verified to ensure the quality of these novel products.
Main body To provide supportive evidence for the expected human in vivo behaviour, particularly related to safety and efficacy, additional tests, often referred to as “non-clinical” or “preclinical” are mandatory. This document is an outcome of a Technical Meeting of the International Atomic Energy Agency. It summarises the considerations necessary for non-clinical studies to accommodate the regulatory requirements for clinical translation of radiopharmaceuticals. These considerations include non-clinical pharmacology, radiation exposure and effects, toxicological studies, pharmacokinetic modelling, and imaging studies. Additionally, standardisation of different specific clinical applications is discussed.
Conclusion This document is intended as a guide for radiopharmaceutical scientists, Nuclear Medicine specialists, and regulatory professionals to bring innovative diagnostic and therapeutic radiopharmaceuticals into the clinical evaluation process in a safe and effective way.
Collapse
Affiliation(s)
- Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - Petra Kolenc
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Penelope Bouziotis
- National Centre for Scientific Research "Demokritos", Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, 15341, Athens, Greece
| | - Hadis Westin
- Department of Immunology, Genetics and Pathology, Ridgeview Instruments AB, Uppsala Universitet, Dag Hammarskjölds Väg 36A, 752 37, Uppsala, Sweden
| | - Mette Lauritzen
- Bruker BioSpin MRI GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34298, Montpellier, France
| | - Andre F Martins
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Antonio Paulo
- Centro de Ciências E Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela Lrs, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066, Lisbon, Portugal
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergio Todde
- Department of Medicine and Surgery, University of Milano-Bicocca, Tecnomed Foundation, Milan, Italy
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76, Stockholm, Sweden
| | - Efthimis Lamprou
- Bioemtech, Lefkippos Attica Technology Park-N.C.S.R Demokritos, Athens, Greece
| | - Antero Abrunhosa
- ICNAS/CIBIT, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Francesco Giammarile
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Pryyma A, Matinkhoo K, Bu YJ, Merkens H, Zhang Z, Bénard F, Perrin DM. Synthesis and preliminary evaluation of octreotate conjugates of bioactive synthetic amatoxins for targeting somatostatin receptor (sstr2) expressing cells. RSC Chem Biol 2022; 3:69-78. [PMID: 35128410 PMCID: PMC8729174 DOI: 10.1039/d1cb00036e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Targeted cancer therapy represents a paradigm-shifting approach that aims to deliver a toxic payload selectively to target-expressing cells thereby sparing normal tissues the off-target effects associated with traditional chemotherapeutics. Since most targeted constructs rely on standard microtubule inhibitors or DNA-reactive molecules as payloads, new toxins that inhibit other intracellular targets are needed to realize the full potential of targeted therapy. Among these new payloads, α-amanitin has gained attraction as a payload in targeted therapy. Here, we conjugate two synthetic amanitins at different sites to demonstrate their utility as payloads in peptide drug conjugates (PDCs). As an exemplary targeting agent, we chose octreotate, a well-studied somatostatin receptor (sstr2) peptide agonist for the conjugation to synthetic amatoxins via three tailor-built linkers. The linker chemistry permitted the evaluation of one non-cleavable and two cleavable self-immolative conjugates. The immolating linkers were chosen to take advantage of either the reducing potential of the intracellular environment or the high levels of lysosomal proteases in tumor cells to trigger toxin release. Cell-based assays on target-positive Ar42J cells revealed target-specific reduction in viability with up to 1000-fold enhancement in bioactivity compared to the untargeted amatoxins. Altogether, this preliminary study enabled the development of a highly modular synthetic platform for the construction of amanitin-based conjugates that can be readily extended to various targeting moieties.
Collapse
Affiliation(s)
- Alla Pryyma
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Kaveh Matinkhoo
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yong Jia Bu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
10
|
Fatima SW, Khare SK. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J Control Release 2021; 341:555-565. [PMID: 34906604 DOI: 10.1016/j.jconrel.2021.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging therapeutic modality for targeted cancer treatment. They represent the unique amalgamation of chemotherapy and immunotherapy. ADCs comprise of monoclonal antibodies linked with drugs (payloads) through a chemical linker designed to deliver the cytotoxic moiety to the cancer cells. The present paper is a review of recent clinical advances of each component of ADCs (antibody/linker/payload) and how the individual component influences the activity of ADCs. The review discusses opportunities for improving ADCs efficiency and ways to have a better antibody-based molecular platform, which could substantially increase chemotherapy outcomes. This review casts an outlook on how ADCs enhancement in terms of their pharmacokinetics, therapeutic indexes and safety profiles can overcome the prevailing challenges like drug resistance in cancer treatment. A novel strategy of augmenting antibodies with nanoparticles anticipates a huge success in terms of targeted delivery of drugs in several diseases. Antibody conjugated nanoparticles (ACNPs) are a very promising strategy for the cutting-edge development of chemo/immunotherapies for efficient delivery of payloads at the targeted cancer cells. The avenues of a high drug to antibody ratio (DAR) owing to the selection of broad chemotherapy payloads, regulating drug release eliciting higher avidity of ACNPs over ADCs will be the modern immunotherapeutics. ACNPs carry immense potential to mark a paradigm shift in cancer chemotherapy that may be a substitute for ADCs.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Dal Corso A, Arosio S, Arrighetti N, Perego P, Belvisi L, Pignataro L, Gennari C. A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chem Commun (Camb) 2021; 57:7778-7781. [PMID: 34263896 DOI: 10.1039/d1cc02895b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cyclative cleavage of an amine-carbamate self-immolative spacer to deliver a hydroxyl cargo was inhibited by spacer derivatisation with a phosphate monoester handle. This trifunctional spacer was installed in a model anticancer prodrug that showed fast drug release only when incubated with both a protease and a phosphatase enzyme.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Simone Arosio
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Noemi Arrighetti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| |
Collapse
|