1
|
Torgersen KT, Bouton BJ, Hebert AR, Kleyla NJ, Plasencia X, Rolfe GL, Tagliacollo VA, Albert JS. Phylogenetic structure of body shape in a diverse inland ichthyofauna. Sci Rep 2023; 13:20758. [PMID: 38007528 PMCID: PMC10676429 DOI: 10.1038/s41598-023-48086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Body shape is a fundamental metric of animal diversity affecting critical behavioral and ecological dynamics and conservation status, yet previously available methods capture only a fraction of total body-shape variance. Here we use structure-from-motion (SFM) 3D photogrammetry to generate digital 3D models of adult fishes from the Lower Mississippi Basin, one of the most diverse temperate-zone freshwater faunas on Earth, and 3D geometric morphometrics to capture morphologically distinct shape variables, interpreting principal components as growth fields. The mean body shape in this fauna resembles plesiomorphic teleost fishes, and the major dimensions of body-shape disparity are similar to those of other fish faunas worldwide. Major patterns of body-shape disparity are structured by phylogeny, with nested clades occupying distinct portions of the morphospace, most of the morphospace occupied by multiple distinct clades, and one clade (Acanthomorpha) accounting for over half of the total body shape variance. In contrast to previous studies, variance in body depth (59.4%) structures overall body-shape disparity more than does length (31.1%), while width accounts for a non-trivial (9.5%) amount of the total body-shape disparity.
Collapse
Affiliation(s)
| | | | - Alyx R Hebert
- Department of Biology, University of Louisiana, Lafayette, USA
| | - Noah J Kleyla
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - Garrett L Rolfe
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, USA
| |
Collapse
|
2
|
Collar DC, Tremaine S, Harrington RC, Beckett HT, Friedman M. Mosaic adaptive peak shifts underlie body shape diversification in pelagiarian fishes (Acanthomorpha: Percomorpha). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Extreme body elongation in fishes is a major evolutionary transformation that extends the boundaries of morphological diversity and alters aspects of function, behaviour and ecology. Prior studies have identified features of the cranial and axial skeleton that characterize elongate fishes, but a lack of detailed reconstructions of anatomical evolution has limited inferences about factors that underlie major shifts in body shape. In this study, we fitted multi-peak adaptive (Ornstein–Uhlenbeck) evolutionary models to species body shape and anatomical dimensions in Pelagiaria, a radiation of open-ocean fishes whose species span a continuum from deep bodied to highly elongate. We inferred an ancestral fusiform adaptive peak that is retained by several major pelagiarian lineages (e.g. Scombridae) and found robust support for multiple transitions to deep-bodied optima (in the families Stromateidae, Bramidae and Caristiidae) and elongate-bodied optima (within Trichiuroidei), including two instances of sequential shifts towards increasingly elongate optima that followed distinct paths of anatomical evolution. Within Trichiuridae, initial increases in head length and the number of vertebrae were followed by changes in head and vertebral shape. Within an elongate-bodied subclade of taxa traditionally identified as ‘gempylids’, changes in head and vertebral shape and in the number of precaudal vertebrae preceded an increase in the number of caudal vertebrae. Altogether, this mosaic of anatomical peak shifts suggests that body shape transformations were associated with differing selective demands and developmental changes.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University , Newport News, VA , USA
| | - Samantha Tremaine
- Department of Organismal and Environmental Biology, Christopher Newport University , Newport News, VA , USA
| | - Richard C Harrington
- Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA
| | - Hermione T Beckett
- Department of Earth Sciences, University of Oxford , Oxford , UK
- Department of Biology, King’s High School for Girls , Warwick , UK
| | - Matt Friedman
- Museum of Paleontology, University of Michigan , Ann Arbor, MI , USA
- Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
3
|
Quitzau M, Frelat R, Bonhomme V, Möllmann C, Nagelkerke L, Bejarano S. Traits, landmarks and outlines: Three congruent sides of a tale on coral reef fish morphology. Ecol Evol 2022; 12:e8787. [PMID: 35475185 PMCID: PMC9021933 DOI: 10.1002/ece3.8787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marita Quitzau
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Romain Frelat
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Vincent Bonhomme
- UMR 5554 Institut des Sciences de l’Evolution, équipe Dynamique de la biodiversité Anthropo‐écologie Université de Montpellier CNRS IRD Montpellier Cedex 05 France
| | - Christian Möllmann
- Centre for Earth System Research and Sustainability (CEN) Institute of Marine Ecosystem and Fishery Science University of Hamburg Hamburg Germany
| | - Leopold Nagelkerke
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Sonia Bejarano
- Reef Systems Research Group Ecology Department Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
4
|
Law CJ. Different evolutionary pathways lead to incomplete convergence of elongate body shapes in carnivoran mammals. Syst Biol 2021; 71:788-796. [PMID: 34791502 DOI: 10.1093/sysbio/syab091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although convergence is often recognized as a ubiquitous feature across the Tree of Life, whether the underlying traits also exhibit similar evolutionary pathways towards convergent forms puzzles biologists. In carnivoran mammals, "elongate," "slender," and "long" are often used to describe and even to categorize mustelids (martens, polecats, and weasels), herpestids (mongooses), viverrids (civets and genets), and other carnivorans together. But just how similar these carnivorans are and whether there is convergence in the morphological component that contribute to elongation has never been assessed. Here, I found that these qualitatively-described elongate carnivorans exhibited incomplete convergence towards elongate bodies compared to other terrestrial carnivorans. In contrast, the morphological components underlying body shape variation do not exhibit convergence despite evidence that these components are more elongate in elongate carnivorans compared to non-elongate carnivorans. Furthermore, these components also exhibited shorter but different phylogenetic half-lives towards more elongate adaptive peaks, indicating that different selective pressures can create multiple pathways to elongation. Incorporating the fossil record will facilitate further investigation of whether body elongation evolved adaptively or if it is simply a retained ancestral trait.
Collapse
Affiliation(s)
- Chris J Law
- Department of Biology, University of Washington, Seattle, WA, 98105; Richard Gilder Graduate School, Department of Mammalogy, and Division of Paleontology, American Museum of Natural History, New York, NY, USA 10024
| |
Collapse
|
5
|
Friedman ST, Price SA, Wainwright PC. The Effect of Locomotion Mode on Body Shape Evolution in Teleost Fishes. Integr Org Biol 2021; 3:obab016. [PMID: 34377942 PMCID: PMC8341890 DOI: 10.1093/iob/obab016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Teleost fishes vary in their reliance on median and paired fins (MPF) or undulation of the body (BCF) to generate thrust during straight-line, steady swimming. Previous work indicates that swimming mode is associated with different body shapes, though this has never been empirically demonstrated across the diversity of fishes. As the body does not play as active a mechanical role in steady swimming by MPF swimmers, this may relax constraints and spur higher rates of body shape diversification. We test these predictions by measuring the impact of the dominant steady swimming mode on the evolution of body shape across 2295 marine teleost fishes. Aligning with historical expectations, BCF swimmers exhibit a more elongate, slender body shape, while MPF propulsion is associated with deeper and wider body shapes. However, in contrast to expectations, we find that BCF propulsion is associated with higher morphological diversity and greater variance around trait optima. This surprising result is consistent with the interpretation that stronger functional trade-offs stimulate phenotypic evolution, rather than constrain it.
Collapse
Affiliation(s)
- Sarah T Friedman
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616-5270, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616-5270, USA
| |
Collapse
|
6
|
Collar DC, DiPaolo ECC, Mai SL, Mehta RS. Body shape transformations by alternate anatomical adaptive peak shifts in blenniiform fishes. Evolution 2021; 75:1552-1566. [PMID: 33890296 DOI: 10.1111/evo.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Extreme body elongation has occurred repeatedly in the evolutionary history of ray-finned fishes. Lengthening of the anterior-posterior body axis relative to depth and width can involve changes in the cranial skeleton and vertebral column, but to what extent is anatomical evolution determined by selective factors and intrinsic constraints that are shared broadly among closely related lineages? In this study, we fit adaptive (Ornstein-Uhlenbeck) evolutionary models to body shape and its anatomical determinants and identified two instances of extreme elongation by divergent anatomical peak shifts in the Blenniiformes, a radiation of small-bodied substrate-associated marine teleost fishes. Species in the genus Xiphasia (hairtail blennies) evolved toward a peak defined by a highly elongated caudal vertebral region but ancestral cranial and precaudal vertebral morphology. In contrast, a clade that includes the genera Chaenopsis and Lucayablennius (pike and arrow blennies) evolved toward a peak with a long slender skull but ancestral axial skeletal anatomy. Neither set of anatomical peak shifts aligns closely with the major axis of anatomical diversification in other blenniiform fishes. These results provide little evidence that ancestral constraints have affected body shape transformation, and instead suggest that extreme elongation arose with distinct shifts in selective factors and development.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Emma C C DiPaolo
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Sienna L Mai
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060
| |
Collapse
|
7
|
Law CJ. Evolutionary and morphological patterns underlying carnivoran body shape diversity. Evolution 2020; 75:365-375. [PMID: 33314085 DOI: 10.1111/evo.14143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The diversity of body shapes is one of the most prominent features of phenotypic variation in vertebrates. Biologists, however, still lack a full understanding of the underlying morphological components that contribute to its diversity, particularly in endothermic vertebrates such as mammals. In this study, hypotheses pertaining to the evolution of the cranial and axial components that contribute to the diversity of carnivoran body shapes were tested. Three trends were found in the evolution of carnivoran body shapes: (1) carnivorans exhibit diverse body shapes with intrafamilial variation predicted best by family clade age, (2) body shape is driven by strong allometric effects of body size where species become more elongate with decreasing size, and (3) the thoracic and lumbar regions and rib length contribute the most to body shape variation, albeit pathways differ between different families. These results reveal the morphological patterns that led to increased diversity in carnivoran body shapes and elucidate the similarities and dissimilarities that govern body shape diversity across vertebrates.
Collapse
Affiliation(s)
- Chris J Law
- Department of Mammalogy and Division of Paleontology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024.,Department of Biology, University of Washington, Seattle, WA, 98105
| |
Collapse
|
8
|
Edgington HA, Taylor DR. Ecological contributions to body shape evolution in salamanders of the genus Eurycea (Plethodontidae). PLoS One 2019; 14:e0216754. [PMID: 31091252 PMCID: PMC6519905 DOI: 10.1371/journal.pone.0216754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Body shape can be both a consequence and cause of a species' evolution and ecology. There are many examples of phenotypes associated with specific ecological niches, likely as a result of specific selective regimes. A classic example of this is the phenotypic change associated with colonization of caves, including body and limb elongation. However, studies explicitly testing for differences in body shape between cave-dwelling and non-cave-dwelling lineages have been limited and so the role of the cave environment in determining morphological characteristics is still not completely understood. Here we examine variation in body shape among 405 individuals representing 20 species in the salamander genus Eurycea (Plethodontidae) and select outgroups exhibiting great diversity in morphology, ecological niche, and life history. RESULTS After analyzing morphometric data in a phylogenetic context using phylogenetic MANOVA and examination of the phylomorphospace, we found significant differences in body shape among cave-dwelling and non-cave-dwelling species and between aquatic and terrestrial species. Notably, limb elongation and reduced body and tail size characterized cave-dwelling species. Terrestrial species also exhibited elongation of the limbs and digits. We also observed differences in shape variance among paedomorphic and biphasic species. Our results suggest that the functional limitations imposed by habitat and life history played a key role in the evolution of body shape in this group in the context of their phylogenetic history.
Collapse
Affiliation(s)
- Hilary A. Edgington
- Department of Entomology, The Ohio State University, Wooster, OH, United States of America
- * E-mail:
| | - Douglas R. Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
9
|
Law CJ, Slater GJ, Mehta RS. Shared extremes by ectotherms and endotherms: Body elongation in mustelids is associated with small size and reduced limbs. Evolution 2019; 73:735-749. [PMID: 30793764 DOI: 10.1111/evo.13702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/08/2023]
Abstract
An elongate body with reduced or absent limbs has evolved independently in many ectothermic vertebrate lineages. While much effort has been spent examining the morphological pathways to elongation in these clades, quantitative investigations into the evolution of elongation in endothermic clades are lacking. We quantified body shape in 61 musteloid mammals (red panda, skunks, raccoons, and weasels) using the head-body elongation ratio. We also examined the morphological changes that may underlie the evolution toward more extreme body plans. We found that a mustelid clade comprised of the subfamilies Helictidinae, Guloninae, Ictonychinae, Mustelinae, and Lutrinae exhibited an evolutionary transition toward more elongate bodies. Furthermore, we discovered that elongation of the body is associated with the evolution of other key traits such as a reduction in body size and a reduction in forelimb length but not hindlimb length. This relationship between body elongation and forelimb length has not previously been quantitatively established for mammals but is consistent with trends exhibited by ectothermic vertebrates and suggests a common pattern of trait covariance associated with body shape evolution. This study provides the framework for documenting body shapes across a wider range of mammalian clades to better understand the morphological changes influencing shape disparity across all vertebrates.
Collapse
Affiliation(s)
- Chris J Law
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, University of California, Santa Cruz, California, 95060
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, 60637
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, University of California, Santa Cruz, California, 95060
| |
Collapse
|
10
|
Zhu Y, Lin D, Yang D, Jia Y, Liu C. Environmentally relevant concentrations of the flame retardant tris(1,3-dichloro-2-propyl) phosphate change morphology of female zebrafish. CHEMOSPHERE 2018; 212:358-364. [PMID: 30145427 DOI: 10.1016/j.chemosphere.2018.08.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was considered as a re-emerging environmental pollutant, and accumulated evidences suggested that it was global distributed in various environmental media. However, effect of TDCIPP on fish morphology remained largely unknown. In this study, one-month old zebrafish (Danio rerio) were exposed to 0, 0.05, 0.5 or 5 μg/L TDCIPP for 120 days, and effects on fish morphology and expressions of genes included in the development of muscle and bone were examined. Using landmark-based geometric morphometrics, we found that environmentally relevant concentrations of TDCIPP altered morphology of female zebrafish. Furthermore, TDCIPP decreased the ratio of caudal fin area to whole body area and muscle density. These effects were possibly resulted from the alteration in the expression of genes included in the development of muscle (myf5 and myog) and bone (bmp2b and bmp4).
Collapse
Affiliation(s)
- Ya Zhu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Dandong Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yali Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
11
|
Caillon F, Bonhomme V, Möllmann C, Frelat R. A morphometric dive into fish diversity. Ecosphere 2018. [DOI: 10.1002/ecs2.2220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Florian Caillon
- Institute for Marine Ecosystem and Fisheries Science Center for Earth System Research and Sustainability (CEN) University of Hamburg Große Elbstraße 133 22767 Hamburg Germany
| | - Vincent Bonhomme
- UMR 5554 Institut des Sciences de l'Evolution, Équipe Dynamique de la Biodiversité, Anthropo‐Écologie CNRS IRD EPHE Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Christian Möllmann
- Institute for Marine Ecosystem and Fisheries Science Center for Earth System Research and Sustainability (CEN) University of Hamburg Große Elbstraße 133 22767 Hamburg Germany
| | - Romain Frelat
- Institute for Marine Ecosystem and Fisheries Science Center for Earth System Research and Sustainability (CEN) University of Hamburg Große Elbstraße 133 22767 Hamburg Germany
| |
Collapse
|
12
|
Law CJ, Slater GJ, Mehta RS. Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil-Based Methods. Syst Biol 2018; 67:127-144. [PMID: 28472434 DOI: 10.1093/sysbio/syx047] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/28/2017] [Indexed: 11/12/2022] Open
Abstract
Adaptive radiation is hypothesized to be a primary mechanism that drives the remarkable species diversity and morphological disparity across the Tree of Life. Tests for adaptive radiation in extant taxa are traditionally estimated from calibrated molecular phylogenies with little input from extinct taxa. With 85 putative species in 33 genera and over 400 described extinct species, the carnivoran superfamily Musteloidea is a prime candidate to investigate patterns of adaptive radiation using both extant- and fossil-based macroevolutionary methods. The species diversity and equally impressive ecological and phenotypic diversity found across Musteloidea is often attributed to two adaptive radiations coinciding with two major climate events, the Eocene-Oligocene transition and the Mid-Miocene Climate Transition. Here, we compiled a novel time-scaled phylogeny for 88% of extant musteloids and used it as a framework for testing the predictions of adaptive radiation hypotheses with respect to rates of lineage diversification and phenotypic evolution. Contrary to expectations, we found no evidence for rapid bursts of lineage diversification at the origin of Musteloidea, and further analyses of lineage diversification rates using molecular and fossil-based methods did not find associations between rates of lineage diversification and the Eocene-Oligocene transition or Mid-Miocene Climate Transition as previously hypothesized. Rather, we found support for decoupled diversification dynamics driven by increased clade carrying capacity in the branches leading to a subclade of elongate mustelids. Supporting decoupled diversification dynamics between the subclade of elongate mustelids and the ancestral musteloid regime is our finding of increased rates of body length evolution, but not body mass evolution, within the decoupled mustelid subclade. The lack of correspondence in rates of body mass and length evolution suggest that phenotypic evolutionary rates under a single morphological metric, even one as influential as mass, may not capture the evolution of diversity in clades that exhibit elongate body shapes. The discordance in evolutionary rates between body length and body mass along with evidence of decoupled diversification dynamics suggests that body elongation might be an innovation for the exploitation of novel Mid-Miocene resources, resulting in the radiation of some musteloids.
Collapse
Affiliation(s)
- Chris J Law
- Department of Ecology and Evolutionary Biology, Long Marine Lab, University of California, Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637 USA
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, Long Marine Lab, University of California, Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
13
|
Marramà G, Carnevale G. Morphology, relationships and palaeobiology of the Eocene barracudina †Holosteus esocinus (Aulopiformes: Paralepididae) from Monte Bolca, Italy. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlw029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Pfaff C, Zorzin R, Kriwet J. Evolution of the locomotory system in eels (Teleostei: Elopomorpha). BMC Evol Biol 2016; 16:159. [PMID: 27514517 PMCID: PMC4981956 DOI: 10.1186/s12862-016-0728-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022] Open
Abstract
Background Living anguilliform eels represent a distinct clade of elongated teleostean fishes inhabiting a wide range of habitats. Locomotion of these fishes is highly influenced by the elongated body shape, the anatomy of the vertebral column, and the corresponding soft tissues represented by the musculotendinous system. Up to now, the evolution of axial elongation in eels has been inferred from living taxa only, whereas the reconstruction of evolutionary patterns and functional ecology in extinct eels still is scarce. Rare but excellently preserved fossil eels from the Late Cretaceous and Cenozoic were investigated here to gain a better understanding of locomotory system evolution in anguilliforms and, consequently, their habitat occupations in deep time. Results The number of vertebrae in correlation with the body length separates extinct and extant anguilliforms. Even if the phylogenetic signal cannot entirely be excluded, the analyses performed here reveal a continuous shortening of the vertebral column with a simultaneous increase in vertebral numbers in conjunction with short lateral tendons throughout the order. These anatomical changes contradict previous hypotheses based on extant eels solely. Conclusions The body curvatures of extant anguilliforms are highly flexible and can be clearly distinguished from extinct species. Anatomical changes of the vertebral column and musculotendinous system through time and between extinct and extant anguilliforms correlate with changes of the body plan and swimming performance and reveal significant shifts in habitat adaptation and thus behaviour. Evolutionary changes in the skeletal system of eels established here also imply that environmental shifts were triggered by abiotic rather than biotic factors (e.g., K/P boundary mass extinction event). Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0728-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Faculty of Earth Sciences, Geozentrum, UZA II, Althanstraße 14, 1090, Vienna, Austria.
| | - Roberto Zorzin
- Museo civico di Storia Naturale, Palazzo Pompei, Lungadige Porta Vittoria 9, 37129, Verona, Italy
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Faculty of Earth Sciences, Geozentrum, UZA II, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
15
|
Baliga VB, Mehta RS. Ontogenetic Allometry in Shape and Flexibility Underlies Life History Patterns of Labrid Cleaning Behavior. Integr Comp Biol 2016; 56:416-27. [PMID: 27252204 DOI: 10.1093/icb/icw028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Body shape plays a crucial role in the movement of organisms. In the aquatic environment, the shape of the body, fins, and the underlying axial skeleton reflect the ability of organisms to propel and maneuver through water. Ontogenetic changes in body shape and flexibility of the axial skeleton may coincide with shifts in ecology (e.g., changes in habitat or feeding mode). We use the evolution of cleaning behavior in the Labridae (wrasses and parrotfishes) as a case study. Cleaner fishes are species that remove and consume ectoparasites from other organisms. In many cases, cleaning involves a high degree of maneuverability, as cleaners on the hunt for parasites may continuously dart around the body of their clients. In labrids, at least 58 species are known to clean. Over two-thirds of these species, however, clean predominately as juveniles, exhibiting an ontogenetic shift away from cleaning as they enter adulthood. Using a phylogenetic comparative framework, we examined features of the axial skeleton, overall body shape, and pectoral fin shape in 31 species of labrids spread across four major clades to assess how scaling patterns in these systems are associated with the ontogeny of cleaning behavior. We find that across wrasses, the ontogeny of body shape shows evolutionary concordance with the degree of flexibility across the vertebral column. A key driver of this relationship is that species that shift away from cleaning over ontogeny show stronger positive allometry for body depth and vertebral moment of inertia than other taxa. Species that clean throughout their life histories show a more elongate body and vertebral column, and tend to maintain the combination of these characteristics over ontogeny. Cleaning behavior in labrid fishes is thus an excellent model with which to investigate morphological patterns as they relate to evolution, development, and ecology.
Collapse
Affiliation(s)
- Vikram B Baliga
- *Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Rita S Mehta
- *Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| |
Collapse
|
16
|
Collar DC, Quintero M, Buttler B, Ward AB, Mehta RS. Body shape transformation along a shared axis of anatomical evolution in labyrinth fishes (Anabantoidei). Evolution 2016; 70:555-67. [DOI: 10.1111/evo.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- David C. Collar
- Department of Organismal and Environmental Biology; Christopher Newport University; Newport News Virginia 23606
| | - Michelle Quintero
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz California 95060
| | - Bernardo Buttler
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz California 95060
| | - Andrea B. Ward
- Department of Biology; Adelphi University; Garden City New York 11530
| | - Rita S. Mehta
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz California 95060
| |
Collapse
|
17
|
Ackerly KL, Ward AB. Linking vertebral number to performance of aquatic escape responses in the axolotl ( Ambystoma mexicanum ). ZOOLOGY 2015; 118:394-402. [DOI: 10.1016/j.zool.2015.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/27/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
|
18
|
Ackerly KL, Ward AB. How temperature-induced variation in musculoskeletal anatomy affects escape performance and survival of zebrafish (Danio rerio). ACTA ACUST UNITED AC 2015; 325:25-40. [DOI: 10.1002/jez.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/23/2015] [Accepted: 10/10/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Kerri L. Ackerly
- Department of Biology; Adelphi University; Garden City New York
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Andrea B. Ward
- Department of Biology; Adelphi University; Garden City New York
| |
Collapse
|
19
|
Maxwell EE, Romano C, Wu F, Furrer H. Two new species ofSaurichthys(Actinopterygii: Saurichthyidae) from the Middle Triassic of Monte San Giorgio, Switzerland, with implications for character evolution in the genus. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erin E. Maxwell
- Staatliches Museum für Naturkunde Stuttgart; Rosenstein 1 70191 Stuttgart Germany
- Paläontologisches Institut und Museum; Universität Zürich; Zürich Switzerland
| | - Carlo Romano
- Paläontologisches Institut und Museum; Universität Zürich; Zürich Switzerland
| | - Feixiang Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences; Institute of Vertebrate Paleontology and Paleoanthropology; Chinese Academy of Sciences; Beijing 100044 China
| | - Heinz Furrer
- Paläontologisches Institut und Museum; Universität Zürich; Zürich Switzerland
| |
Collapse
|
20
|
Claverie T, Wainwright PC. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS One 2014; 9:e112732. [PMID: 25409027 PMCID: PMC4237352 DOI: 10.1371/journal.pone.0112732] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022] Open
Abstract
Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes and functional consequences.
Collapse
Affiliation(s)
- Thomas Claverie
- CUFR de Mayotte, Route nationale 3, 97660 Dembeni, France
- * E-mail:
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
21
|
Differential occupation of axial morphospace. ZOOLOGY 2014; 117:70-6. [DOI: 10.1016/j.zool.2013.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/12/2023]
|
22
|
Maxwell EE, Wilson LAB. Regionalization of the axial skeleton in the 'ambush predator' guild--are there developmental rules underlying body shape evolution in ray-finned fishes? BMC Evol Biol 2013; 13:265. [PMID: 24314064 PMCID: PMC3867419 DOI: 10.1186/1471-2148-13-265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 11/28/2022] Open
Abstract
Background A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae. Conclusions The preferential addition of abdominal vertebrae in fishes with an elongate body shape is consistent with the existence of a conservative positioning module formed by the boundary between the abdominal and caudal vertebral regions and the anterior insertion of the anal fin. Dissociation of this module is possible, although less probable than changes in the independently evolving abdominal region. Dissociation of the axial skeleton-median fin module leads to increased regionalization within the caudal vertebral column, something that has evolved several times in bony fishes, and may be homologous with the sacral region of tetrapods. These results suggest that modularity of the axial skeleton may result in somewhat predictable evolutionary outcomes in bony fishes.
Collapse
Affiliation(s)
- Erin E Maxwell
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland.
| | | |
Collapse
|