1
|
Costa RM, Alvarez-Acosta L, Curtis K, Kelleher J, Lamichhane BS, Valesano AL, Fitzsimmons WJ, Lauring AS, Seger J, Adler FR, Potts WK. Host genotype and sex shape influenza evolution and defective viral genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.638946. [PMID: 40060519 PMCID: PMC11888471 DOI: 10.1101/2025.02.26.638946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Viral evolution during initial pandemic waves favors mutations that enhance replication and transmission over antigenic escape. Host genotype and sex strongly shape this early adaptation, yet their individual and combined effects remain unclear. We experimentally adapted influenza A virus to male and female BALB/c and C57BL/6 mice, generating 28 independent lineages, and employed a novel 'rolling sphere' approach to identify mutational hotspots in three-dimensional protein structures. In BALB/c mice, adaptation favored nonsynonymous substitutions linked to increased virulence, including a hemagglutinin variant exclusively fixed in female lineages. It also revealed the first demonstration of sex-dependent selection shaping a viral protein interface. In female-adapted viruses, substitutions disrupting a key NS1 dimerization motif converged on a single residue, while in male-adapted viruses, they were dispersed across the same interface. Conversely, adaptation to C57BL/6 resulted in fewer substitutions but promoted defective viral genome formation, leading to reduced cytopathic effect and attenuated virulence. This provides the first in vivo evidence that host genotype alone can modulate defective viral genome formation. Our results offer critical insights into host-pathogen interactions and reveal that selective pressures imposed by specific genotype-sex combinations can increase virulence across host genotypes, enabling new epidemiological modeling and disease control strategies.
Collapse
|
2
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Rodgers ML, Roth-Monzón AJ. The Dominance of Coinfecting Parasites' Indirect Genetic Effects on Host Traits. Am Nat 2024; 204:482-500. [PMID: 39486034 DOI: 10.1086/732256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractIndirect genetic effects (IGEs) exist when there is heritable variation in one organism's ability to alter a second organism's traits. For example, parasites have antigens that can induce a host immune response, as well as disparate strategies to evade or suppress host immunity; among-parasite genetic variation in these antigens generates among-host variation in immune traits. Here, we experimentally show that the cestode parasite Schistocephalus solidus exerts an IGE on an immune trait (peritoneal fibrosis) in its threespine stickleback host: stickleback developed strong fibrosis after exposure to some parasite genotypes but not others. A complication arises during coinfection, when two or more parasite genotypes may impose conflicting IGEs on the same host trait. What parasite-controlled trait will the host express? Will the host trait reflect the more immune-stimulatory parasite genotype or the more immune-evasive genotype? These alternatives can be quantified by estimating the dominance coefficient, as if a coinfected host were a heterozygote. We experimentally estimated the dominance of S. solidus IGEs by coinjecting antigens from different parasite genotypes. Contrary to our a priori hypotheses, coinjected antigens induced an overdominant effect, stronger than either parasite's antigens alone. We present a mathematical model showing that the value of this IGE dominance is biologically important, affecting the evolutionary dynamics of parasites in a density- and frequency-dependent manner. The model indicates that overdominance would be detrimental to immigrants when resident prevalence is high. This combination of experimental data and modeling provides an example of a parasite IGE on host traits and the evolutionary significance of IGE dominance.
Collapse
|
4
|
Reis-Cunha JL, Jeffares DC. Detecting complex infections in trypanosomatids using whole genome sequencing. BMC Genomics 2024; 25:1011. [PMID: 39472783 PMCID: PMC11520695 DOI: 10.1186/s12864-024-10862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Trypanosomatid parasites are a group of protozoans that cause devastating diseases that disproportionately affect developing countries. These protozoans have developed several mechanisms for adaptation to survive in the mammalian host, such as extensive expansion of multigene families enrolled in host-parasite interaction, adaptation to invade and modulate host cells, and the presence of aneuploidy and polyploidy. Two mechanisms might result in "complex" isolates, with more than two haplotypes being present in a single sample: multiplicity of infections (MOI) and polyploidy. We have developed and validated a methodology to identify multiclonal infections and polyploidy using whole genome sequencing reads, based on fluctuations in allelic read depth in heterozygous positions, which can be easily implemented in experiments sequencing genomes from one sample to larger population surveys. RESULTS The methodology estimates the complexity index (CI) of an isolate, and compares real samples with simulated clonal infections at individual and populational level, excluding regions with somy and gene copy number variation. It was primarily validated with simulated MOI and known polyploid isolates respectively from Leishmania and Trypanosoma cruzi. Then, the approach was used to assess the complexity of infection using genome wide SNP data from 497 trypanosomatid samples from four clades, L. donovani/L. infantum, L. braziliensis, T. cruzi and T. brucei providing an overview of multiclonal infection and polyploidy in these cultured parasites. We show that our method robustly detects complex infections in samples with at least 25x coverage, 100 heterozygous SNPs and where 5-10% of the reads correspond to the secondary clone. We find that relatively small proportions (≤ 7%) of cultured trypanosomatid isolates are complex. CONCLUSIONS The method can accurately identify polyploid isolates, and can identify multiclonal infections in scenarios with sufficient genome read coverage. We pack our method in a single R script that requires only a standard variant call format (VCF) file to run ( https://github.com/jaumlrc/Complex-Infections ). Our analyses indicate that multiclonality and polyploidy do occur in all clades, but not very frequently in cultured trypanosomatids. We caution that our estimates are lower bounds due to the limitations of current laboratory and bioinformatic methods.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Daniel Charlton Jeffares
- York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Cabuslay C, Wertz JT, Béchade B, Hu Y, Braganza S, Freeman D, Pradhan S, Mukhanova M, Powell S, Moreau C, Russell JA. Domestication and evolutionary histories of specialized gut symbionts across cephalotine ants. Mol Ecol 2024; 33:e17454. [PMID: 39005142 DOI: 10.1111/mec.17454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 07/16/2024]
Abstract
The evolution of animals and their gut symbionts is a complex phenomenon, obscured by lability and diversity. In social organisms, transmission of symbionts among relatives may yield systems with more stable associations. Here, we study the history of a social insect symbiosis involving cephalotine ants and their extracellular gut bacteria, which come predominantly from host-specialized lineages. We perform multi-locus phylogenetics for symbionts from nine bacterial orders, and map prior amplicon sequence data to lineage-assigned symbiont genomes, studying distributions of rigorously defined symbionts across 20 host species. Based on monophyly and additional hypothesis testing, we estimate that these specialized gut bacteria belong to 18 distinct lineages, of which 15 have been successfully isolated and cultured. Several symbiont lineages showed evidence for domestication events that occurred later in cephalotine evolutionary history, and only one lineage was ubiquitously detected in all 20 host species and 48 colonies sampled with amplicon 16S rRNA sequencing. We found evidence for phylogenetically constrained distributions in four symbionts, suggesting historical or genetic impacts on community composition. Two lineages showed evidence for frequent intra-lineage co-infections, highlighting the potential for niche divergence after initial domestication. Nearly all symbionts showed evidence for occasional host switching, but four may, more often, co-diversify with their hosts. Through our further assessment of symbiont localization and genomic functional profiles, we demonstrate distinct niches for symbionts with shared evolutionary histories, prompting further questions on the forces underlying the evolution of hosts and their gut microbiomes.
Collapse
Affiliation(s)
- Christian Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, USA
| | - Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
- State key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Sonali Braganza
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Daniel Freeman
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shreyansh Pradhan
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Maria Mukhanova
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, District of Columbia, USA
| | - Corrie Moreau
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Sallinen S, Susi H, Halliday F, Laine AL. Altered within- and between-host transmission under coinfection underpin parasite co-occurrence patterns in the wild. Evol Ecol 2022; 37:131-151. [PMID: 36785621 PMCID: PMC9911512 DOI: 10.1007/s10682-022-10182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood. Here, we test the hypothesis that the relationship between within- and between-host transmission of the fungal pathogen, Phomopsis subordinaria, is affected by co-occurring parasites infecting the host plant, Plantago lanceolata. We conducted a field experiment manipulating the parasite community of transmission source plants, then tracked P. subordinaria within-host transmission, as well as between-host transmission to naïve recipient plants. We find that coinfection with the powdery mildew pathogen, Podosphaera plantaginis, causes increased between-host transmission of P. subordinaria by affecting the number of infected flower stalks in the source plants, resulting from altered auto-infection. In contrast, coinfection with viruses did not have an effect on either within- or between-host transmission. We then analyzed data on the occurrence of P. subordinaria in 2018 and the powdery mildew in a multi-year survey data set from natural host populations to test whether the positive association predicted by our experimental results is evident in field epidemiological data. Consistent with our experimental findings, we observed a positive association in the occurrence of P. subordinaria and historical powdery mildew persistence. Jointly, our experimental and epidemiological results suggest that within- and between-host transmission of P. subordinaria depends on the identity of coinfecting parasites, with potentially far-reaching effects on disease dynamics and parasite co-occurrence patterns in wild populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10182-9.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Fletcher Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis. J Fungi (Basel) 2021; 7:jof7121007. [PMID: 34946990 PMCID: PMC8703566 DOI: 10.3390/jof7121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants' cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants' garden communities. Some Escovopsis spp. have been shown to attack the ants' cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe-microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern Escovopsis-Escovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here.
Collapse
|
8
|
Dia A, Cheeseman IH. Single-cell genome sequencing of protozoan parasites. Trends Parasitol 2021; 37:803-814. [PMID: 34172399 PMCID: PMC8364489 DOI: 10.1016/j.pt.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022]
Abstract
Despite considerable genetic variation within hosts, most parasite genome sequencing studies focus on bulk samples composed of millions of cells. Analysis of bulk samples is biased toward the dominant genotype, concealing cell-to-cell variation and rare variants. To tackle this, single-cell sequencing approaches have been developed and tailored to specific host-parasite systems. These are allowing the genetic diversity and kinship in complex parasite populations to be deciphered and for de novo genetic variation to be captured. Here, we outline the methodologies being used for single-cell sequencing of parasitic protozoans, such as Plasmodium and Leishmania spp., and how these tools are being applied to understand parasite biology.
Collapse
Affiliation(s)
- Aliou Dia
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ian H Cheeseman
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
9
|
Yuan F, Wang L. Genotyping atypical porcine pestivirus using NS5a. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104866. [PMID: 33872785 DOI: 10.1016/j.meegid.2021.104866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Atypical porcine pestivirus (APPV) is an emerging virus discovered in 2014 and it can cause congenital tremors in pigs. Molecular epidemiology serves as an essential tool in monitoring and controlling the disease. Virus epidemiology mainly relies on genome sequencing and phylogenetic characterization. Previous molecular epidemiology studies have been using different genes/regions for phylogeny, namely whole genome, Npro, and E2 coding sequences. However, with increasing number of APPV sequences available in GenBank, no systemic studies have been performed for detailed classification of APPV strains around the globe. The goal of this study is to propose a classification strategy or taxonomy of APPV strains at genotype, subgenotype, and isolate levels. A total of 76 whole genomes and 16 partial polyprotein coding sequences were analyzed for genetic variability and suitability of all individual genes for viral phylogenies. Our results revealed that, among all the viral genes, NS5a coding sequences were proved to be the most suitable alternative for tracing APPV strains supported by its capability of reproducing the same phylogenetic and evolutionary information as the whole viral genome did. Also, a reliable cutoff to accurately classify APPV at different levels is established. We propose a genotyping scheme with three well-defined genotypes (1-3) and 7 subgenotypes for genotype 1 (1.1-1.7). For whole genome analysis, a threshold value of 84%-91% pairwise identity allows separation of all APPV subgenotypes, whereas 80% identity clearly segregate the three major APPV genotypes. For NS5a gene analysis, 82%-91% identity allows subgenotype separation and 76% identity segregate APPV genotypes. Additionally, genetic distance of whole genome exhibits ≤8% in isolate level, 9%-14% in subgenotype level, and 17%-22% in genotype level, while for NS5a encoding sequences the genetic distance displays ≤9% in isolate level, 9.9%-19.1% in subgenotype level, and 21.6%-29.7% in genotype level. These allow a clear segregation among APPV genotypes, subgenotypes, and isolates. Therefore, the proposed strategy in this study provides a solid and improved basis for molecular phylogenetics to understand APPV genetic diversity, trace the origins and control the spread of new disease outbreaks.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
10
|
Touray AO, Mobegi VA, Wamunyokoli F, Butungi H, Herren JK. Prevalence of asymptomatic P. falciparum gametocyte carriage among school children in Mbita, Western Kenya and assessment of the association between gametocyte density, multiplicity of infection and mosquito infection prevalence. Wellcome Open Res 2021; 5:259. [PMID: 33959684 PMCID: PMC8078214 DOI: 10.12688/wellcomeopenres.16299.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Asymptomatic Plasmodium falciparum gametocyte carriers are reservoirs for sustaining transmission in malaria endemic regions. Gametocyte presence in the host peripheral blood is a predictor of capacity to transmit malaria. However, it does not always directly translate to mosquito infectivity. Factors that affect mosquito infectivity include, gametocyte sex-ratio and density, multiplicity of infection (MOI), and host and vector anti-parasite immunity. We assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and to further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: P. falciparum parasite infections were detected by RDT (Rapid Diagnostic Test) and microscopy among schoolchildren (5-15 years old). Blood from 37 microscopy positive gametocyte carriers offered to laboratory reared An. gambiae s.l. mosquitoes. A total of 3395 fully fed mosquitoes were screened for Plasmodium sporozoites by ELISA. P. falciparum was genotyped using 10 polymorphic microsatellite markers. The association between MOI and gametocyte density and mosquito infection prevalence was investigated. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) ( p-value < 0.001) compared to females 26.72% (657/2459). The microscopic gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3-3.4], P = 0.002) as compared to children aged 10-15 years. After offering gametocyte positive blood to An. gambiae s.l. by membrane feeding assay, our results indicated that 68.1% of the variation in mosquito infection prevalence was accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: We observed a higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI significantly predicted mosquito infection prevalence.
Collapse
Affiliation(s)
- Abdoulie O. Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
11
|
Gwarinda HB, Tessema SK, Raman J, Greenhouse B, Birkholtz LM. Parasite genetic diversity reflects continued residual malaria transmission in Vhembe District, a hotspot in the Limpopo Province of South Africa. Malar J 2021; 20:96. [PMID: 33593382 PMCID: PMC7885214 DOI: 10.1186/s12936-021-03635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND South Africa aims to eliminate malaria transmission by 2023. However, despite sustained vector control efforts and case management interventions, the Vhembe District remains a malaria transmission hotspot. To better understand Plasmodium falciparum transmission dynamics in the area, this study characterized the genetic diversity of parasites circulating within the Vhembe District. METHODS A total of 1153 falciparum-positive rapid diagnostic tests (RDTs) were randomly collected from seven clinics within the district, over three consecutive years (2016, 2017 and 2018) during the wet and dry malaria transmission seasons. Using 26 neutral microsatellite markers, differences in genetic diversity were described using a multiparameter scale of multiplicity of infection (MOI), inbreeding metric (Fws), number of unique alleles (A), expected heterozygosity (He), multilocus linkage disequilibrium (LD) and genetic differentiation, and were associated with temporal and geospatial variances. RESULTS A total of 747 (65%) samples were successfully genotyped. Moderate to high genetic diversity (mean He = 0.74 ± 0.03) was observed in the parasite population. This was ascribed to high allelic richness (mean A = 12.2 ± 1.2). The majority of samples (99%) had unique multi-locus genotypes, indicating high genetic diversity in the sample set. Complex infections were observed in 66% of samples (mean MOI = 2.13 ± 0.04), with 33% of infections showing high within-host diversity as described by the Fws metric. Low, but significant LD (standardised index of association, ISA = 0.08, P < 0.001) was observed that indicates recombination of distinct clones. Limited impact of temporal (FST range - 0.00005 to 0.0003) and spatial (FST = - 0.028 to 0.023) variation on genetic diversity existed during the sampling timeframe and study sites respectively. CONCLUSIONS Consistent with the Vhembe District's classification as a 'high' transmission setting within South Africa, P. falciparum diversity in the area was moderate to high and complex. This study showed that genetic diversity within the parasite population reflects the continued residual transmission observed in the Vhembe District. This data can be used as a reference point for the assessment of the effectiveness of on-going interventions over time, the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance.
Collapse
Affiliation(s)
- Hazel B Gwarinda
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Sofonias K Tessema
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Gauteng, South Africa.,Wits Research Institute for Malaria, Faculty of Health Sciences,, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
12
|
Touray AO, Mobegi VA, Wamunyokoli F, Butungi H, Herren JK. Prevalence of asymptomatic P. falciparum gametocyte carriage in schoolchildren and assessment of the association between gametocyte density, multiplicity of infection and mosquito infection prevalence. Wellcome Open Res 2020; 5:259. [PMID: 33959684 PMCID: PMC8078214 DOI: 10.12688/wellcomeopenres.16299.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 07/22/2023] Open
Abstract
Background: Malaria is a major public health threat in sub-Saharan Africa. Asymptomatic Plasmodium falciparum gametocyte carriers are potential infectious reservoirs for sustaining transmission in many malaria endemic regions. The aim of the study was to assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: Rapid diagnostic tests were used to screen for P. falciparum parasite infection among schoolchildren (5-15 years old) and the results were verified using microscopy. Microscopy positive gametocyte carriers were selected to feed laboratory reared An. gambiae s.l. mosquitoes using membrane feeding method. Genomic DNA was extracted from dry blood spot samples and P. falciparum populations were genotyped using 10 polymorphic microsatellite markers. Assessment of the association between MOI and gametocyte density and mosquito infection prevalence was conducted. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) ( p-value < 0.001) compared to females 26.72% (657/2459). The microscopy gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3-3.4], P = 0.002) as compared to children aged 10-15 years. After challenging An. gambiae s.l. by membrane feeding assay on gametocyte positive patient blood, our results indicate that 68.1% of the variation in mosquito infection prevalence is accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: Age was a significant risk factor for gametocyte carriage, as indicated by the higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI statistically significantly predicted mosquito infection prevalence. Both of the variables added significantly to the prediction ( p < 0.05).
Collapse
Affiliation(s)
- Abdoulie O. Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
13
|
Upmanyu K, Matlani M, Yadav P, Rathi U, Mallick PK, Singh R. Allelic variation of msp-3α gene in Plasmodium vivax isolates and its correlation with the severity of disease in vivax malaria. INFECTION GENETICS AND EVOLUTION 2020; 85:104530. [PMID: 32896637 DOI: 10.1016/j.meegid.2020.104530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022]
Abstract
Malaria is a global socio-economic burden of which Plasmodium vivax contributes for about 70-80 million cases on an annual basis worldwide and 60-65% cases in India. Diversity observed in highly polymorphic Merozoite Surface Protein-3α (msp-3α) encoded by MSP-3 gene family, has been used efficiently for genotyping of P. vivax infection. This study aims to correlate the severity of clinical symptoms with parasite load, genotype of P. vivax and multiplicity of infection. Based on clinical symptoms classification, 31 (67.9%) out of 46 cases were found to be severe while 15 (32.6%) were non-severe and correlation of the severity of vivax infection with parasite load was not observed. Analysis of msp3-α allele genotype showed that out of 31 severe cases, 19 (61.2%) were single-clone infection cases whereas 12 (38.7%) were multi-clone infections. Similarly, out of 15 non-severe cases, 9 (60%) were single clone and 6 (40%) were multi-clone infections indicating the absence of a correlation between the multiplicity of infection and disease severity. Allele frequency observed was 65.9%, 23.4%, 23.4%, and 28.2% for allele A, B, C and D, respectively. An important finding was the greater distribution of allele D than alleles B and C, which has been reported as a rare allele otherwise. Further, of 13 cases with allele D, 76.9% (10/13) cases were severe. This study showed the absence of a correlation between the severity of clinical symptoms with parasite load and multiplicity of infection but at the same time drives a possibility of severe vivax malarial symptoms to have an association with the persistence of allele D in the population. This upon exploration can lead to the development of a target in detection of severe cases of malaria.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Monika Matlani
- Department of Microbiology, VMMC, Safdarjung Hospital Campus, New Delhi, India
| | - Priya Yadav
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Utkarsh Rathi
- Department of Microbiology, VMMC, Safdarjung Hospital Campus, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.
| |
Collapse
|
14
|
Coexistence of Multiple Theileria annulata Genotypes Circulating in Neonatal Calves in Semi-arid India. Acta Parasitol 2020; 65:679-685. [PMID: 32319037 DOI: 10.2478/s11686-020-00196-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Knowledge of local isolates and strains is a prerequisite for the development of either effective mass vaccination strategy or a suitable molecular marker-based diagnostic tool. PURPOSE The pathogenesis of Bovine tropical theileriosis (BTT), caused by Theileria annulata in susceptible ruminants, is known to vary depending upon the nature of isolate and strain involved. Therefore, RFLP and sequencing-based characterization of Indian isolates of T. annulata were attempted using TAMS gene. METHOD In the present study, TAMS 1 gene of T. annulata was amplified from 25 naturally infected calves from the BTT endemic semi-arid zone of Northern India. The amplified products were then digested with three restrictions enzymes viz., Taq I, Rsa I, and Alu I to find out the variations in pattern of restriction digests, so as to have an idea about the various isolates of T. annulata present in the studied area. Around 14 samples covering all the variants (from the PCR-RFLP patterns) were sequenced and submitted in NCBI (MH277607-MH277620). RESULT Coexistence of 4 variant genotypes was detected upon in-silico analysis of RFLP and sequence variations. CONCLUSION The nucleotide variations alongside the chromatogram analysis revealed point mutations leading to presence of noticeable genetic diversity among the isolates.
Collapse
|
15
|
Cupolillo E, Cavalcanti AS, Ferreira GEM, Boité MC, Morgado FN, Porrozzi R. Occurrence of multiple genotype infection caused by Leishmania infantum in naturally infected dogs. PLoS Negl Trop Dis 2020; 14:e0007986. [PMID: 32716941 PMCID: PMC7410330 DOI: 10.1371/journal.pntd.0007986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/06/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Genetic polymorphisms in natural Leishmania populations have been reported in endemic areas. Microsatellite typing is a useful tool to elucidate the genetic variability of parasite strains, due to its capability for high-resolution mapping of genomic targets. The present study employed multilocus microsatellite typing (MLMT) to explore the genotypic composition of Leishmania infantum in naturally infected dogs by genotyping parasites infecting different tissues with or without in vitro expansion. Eighty-six samples were collected from 46 animals in an endemic region of visceral leishmaniasis (VL). MLMT was performed for 38 spleen samples and 48 L. infantum cultures isolated from different tissues. Of the 86 samples, 23 were effectively genotyped by MLMT, identifying nine multilocus genotypes (MLG; referred to as MLG A–I). MLGs A, B and C were detected in more than one type of tissue and in more than one sample. Conversely, MLG D-I were uniquely detected in one sample each. The results showed that multiple genotype infections occur within a single host and tissue. Paired sample analysis revealed the presence of different MLMT alleles in 14 dogs, while the same MLG allele was present in 15 animals. STRUCTURE analysis demonstrated the presence of two populations; 13 samples displayed a similar admixture of both ancestral populations, and these were not assigned to any population. Only samples for which Q ≥ 0.70 after CLUMPP alignment were considered to be part of Population 1 (POP1) or Population 2 (POP2). POP2 comprised the majority of samples (n = 54) compared to POP1 (n = 19). This study presents evidence of multiple genotype infections (caused by L. infantum) in dogs in an area with high VL transmission. Further investigations must be undertaken to determine the effects of multiple infection on the host immune response and disease dynamics and treatment. American visceral leishmaniasis (VL) is a parasitic disease caused by the protozoan Leishmania infantum. This parasite can infect humans and animals and is transmitted by sand flies. Domestic dogs are considered an important host, and like humans, they can manifest the disease or present asymptomatic infections. Studies have identified genetic variations among L. infantum parasites from different endemic regions in the American continent. For other parasitic diseases (e.g., malaria), studies have suggested that multigenetic infection predicts the development of symptoms and can lead to a high level of transmission. However, the effects of the genetic composition of Leishmania parasites on VL need to be ascertained. This study used highly variable microsatellite markers to investigate multigenotype L. infantum populations among naturally infected dogs living in an area in which VL is highly prevalent. Samples obtained from different tissues were examined to identify the occurrence of multiple genotypes in the same animal and even within the same tissue.
Collapse
Affiliation(s)
- Elisa Cupolillo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
- * E-mail:
| | - Amanda S. Cavalcanti
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Mariana Côrtes Boité
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
16
|
Touray AO, Mobegi VA, Wamunyokoli F, Herren JK. Diversity and Multiplicity of P. falciparum infections among asymptomatic school children in Mbita, Western Kenya. Sci Rep 2020; 10:5924. [PMID: 32246127 PMCID: PMC7125209 DOI: 10.1038/s41598-020-62819-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Multiplicity of infection (MOI) and genetic diversity of P. falciparum infections are important surrogate indicators for assessing malaria transmission intensity in different regions of endemicity. Determination of MOI and diversity of P. falciparum among asymptomatic carriers will enhance our understanding of parasite biology and transmission to mosquito vectors. This study examined the MOI and genetic diversity of P. falciparum parasite populations circulating in Mbita, a region characterized as one of the malaria hotspots in Kenya. The genetic diversity and multiplicity of P. falciparum infections in 95 asymptomatic school children (age 5–15 yrs.) residing in Mbita, western Kenya were assessed using 10 polymorphic microsatellite markers. An average of 79.69% (Range: 54.84–95.74%) of the isolates analysed in this study were polyclonal infections as detected in at least one locus. A high mean MOI of 3.39 (Range: 2.24–4.72) and expected heterozygosity (He) of 0.81 (Range: 0.57–0.95) was reported in the study population. The analysed samples were extensively polyclonal infections leading to circulation of highly genetically diverse parasite populations in the study area. These findings correlated with the expectations of high malaria transmission intensity despite scaling up malaria interventions in the area thereby indicating the need for a robust malaria interventions particularly against asymptomatic carriers in order to attain elimination in the region.
Collapse
Affiliation(s)
- Abdoulie O Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya. .,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| | - Victor A Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya.
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
17
|
Milutinović B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. Ecol Lett 2020; 23:565-574. [PMID: 31950595 DOI: 10.1111/ele.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants - their social immunity - influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
Collapse
Affiliation(s)
- Barbara Milutinović
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Miriam Stock
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Anna V Grasse
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Elisabeth Naderlinger
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Christian Hilbe
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
18
|
Molecular Testing of Serial Blood Specimens from Patients with Early Lyme Disease during Treatment Reveals Changing Coinfection with Mixtures of Borrelia burgdorferi Genotypes. Antimicrob Agents Chemother 2019; 63:AAC.00237-19. [PMID: 31036693 DOI: 10.1128/aac.00237-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Borrelia burgdorferi is the etiological agent of Lyme disease. In the current study, we used direct-detection PCR and electrospray ionization mass spectrometry to monitor and genotype B. burgdorferi isolates from serially collected whole-blood specimens from patients clinically diagnosed with early Lyme disease before and during 21 days of antibiotic therapy. B. burgdorferi isolates were detected up to 3 weeks after the initiation of antibiotic treatment, with ratios of coinfecting B. burgdorferi genotypes changing over time.
Collapse
|
19
|
Klemme I, Karvonen A. Within-host interactions shape virulence-related traits of trematode genotypes. J Evol Biol 2019; 32:572-579. [PMID: 30851229 DOI: 10.1111/jeb.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 11/27/2022]
Abstract
Within-host interactions between co-infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co-infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host-parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co-infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co-infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co-infections and with the genetic identity of the co-infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host-parasite interactions.
Collapse
Affiliation(s)
- Ines Klemme
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
20
|
Karvonen A, Jokela J, Laine AL. Importance of Sequence and Timing in Parasite Coinfections. Trends Parasitol 2018; 35:109-118. [PMID: 30578150 DOI: 10.1016/j.pt.2018.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022]
Abstract
Coinfections by multiple parasites predominate in the wild. Interactions between parasites can be antagonistic, neutral, or facilitative, and they can have significant implications for epidemiology, disease dynamics, and evolution of virulence. Coinfections commonly result from sequential exposure of hosts to different parasites. We argue that the sequential nature of coinfections is important for the consequences of infection in both natural and man-made environments. Coinfections accumulate during host lifespan, determining the structure of the parasite infracommunity. Interactions within the parasite community and their joint effect on the host individual potentially shape evolution of parasite life-history traits and transmission biology. Overall, sequential coinfections have the potential to change evolutionary and epidemiological outcomes of host-parasite interactions widely across plant and animal systems.
Collapse
Affiliation(s)
- Anssi Karvonen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Integrative Biology (IBZ), 8092 Zürich, Switzerland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal & Evolutionary Biology, P.O. Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland
| |
Collapse
|
21
|
Pigeault R, Cozzarolo CS, Choquet R, Strehler M, Jenkins T, Delhaye J, Bovet L, Wassef J, Glaizot O, Christe P. Haemosporidian infection and co-infection affect host survival and reproduction in wild populations of great tits. Int J Parasitol 2018; 48:1079-1087. [PMID: 30391229 DOI: 10.1016/j.ijpara.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Theoretical studies predict that parasitic infection may impact host longevity and ultimately modify the trade-off between reproduction and survival. Indeed, a host may adjust its energy allocation in current reproduction to balance the negative effects of parasitism on its survival prospects. However, very few empirical studies tested this prediction. Avian haemosporidian parasites provide an excellent opportunity to assess the influence of parasitic infection on both host survival and reproduction. They are represented by three main genera (Plasmodium, Haemoproteus and Leucocytozoon) and are highly prevalent in many bird populations. Here we provide the first known long-term field study (12 years) to explore the effects of haemosporidian parasite infection and co-infection on fitness in two populations of great tits (Parus major), using a multistate modeling framework. We found that while co-infection decreased survival probability, both infection and co-infection increased reproductive success. This study provides evidence that co-infections can be more virulent than single infections. It also provides support for the life-history theory which predicts that reproductive effort can be adjusted to balance one's fitness when survival prospects are challenged.
Collapse
Affiliation(s)
- R Pigeault
- Département d'Ecologie & Evolution, Lausanne, Switzerland.
| | - C-S Cozzarolo
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - R Choquet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, Montpellier, France
| | - M Strehler
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - T Jenkins
- Département d'Ecologie & Evolution, Lausanne, Switzerland; Musée cantonal de zoologie, Lausanne, Switzerland
| | - J Delhaye
- Département d'Ecologie & Evolution, Lausanne, Switzerland; Evolution et Diversité Biologique, Université Toulouse 3, France
| | - L Bovet
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - J Wassef
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - O Glaizot
- Musée cantonal de zoologie, Lausanne, Switzerland
| | - P Christe
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| |
Collapse
|
22
|
Laenen L, Vergote V, Kafetzopoulou LE, Wawina TB, Vassou D, Cook JA, Hugot JP, Deboutte W, Kang HJ, Witkowski PT, Köppen-Rung P, Krüger DH, Licková M, Stang A, Striešková L, Szemeš T, Markowski J, Hejduk J, Kafetzopoulos D, Van Ranst M, Yanagihara R, Klempa B, Maes P. A Novel Hantavirus of the European Mole, Bruges Virus, Is Involved in Frequent Nova Virus Coinfections. Genome Biol Evol 2018; 10:45-55. [PMID: 29272370 PMCID: PMC5758900 DOI: 10.1093/gbe/evx268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Hantaviruses are zoonotic viruses with a complex evolutionary history of virus–host coevolution and cross-species transmission. Although hantaviruses have a broad reservoir host range, virus–host relationships were previously thought to be strict, with a single virus species infecting a single host species. Here, we describe Bruges virus, a novel hantavirus harbored by the European mole (Talpa europaea), which is the well-known host of Nova virus. Phylogenetic analyses of all three genomic segments showed tree topology inconsistencies, suggesting that Bruges virus has emerged from cross-species transmission and ancient reassortment events. A high number of coinfections with Bruges and Nova viruses was detected, but no evidence was found for reassortment between these two hantaviruses. These findings highlight the complexity of hantavirus evolution and the importance of further investigation of hantavirus–reservoir relationships.
Collapse
Affiliation(s)
- Lies Laenen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Valentijn Vergote
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Liana Eleni Kafetzopoulou
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Tony Bokalanga Wawina
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Joseph A Cook
- Department of Biology, Museum of Southwestern Biology, University of New Mexico
| | - Jean-Pierre Hugot
- Department of Systematics and Evolution, L'Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Ward Deboutte
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Hae Ji Kang
- Department of Pediatrics, and Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa
| | - Peter T Witkowski
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany
| | - Panja Köppen-Rung
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany
| | - Detlev H Krüger
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany
| | - Martina Licková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Lucia Striešková
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Tomáš Szemeš
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Janusz Markowski
- Department of Teacher Training and Biodiversity Studies, Faculty of Biology and Environmental Protection, University of Lódz, Poland
| | - Janusz Hejduk
- Department of Teacher Training and Biodiversity Studies, Faculty of Biology and Environmental Protection, University of Lódz, Poland
| | - Dimitris Kafetzopoulos
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Richard Yanagihara
- Department of Pediatrics, and Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa
| | - Boris Klempa
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany.,Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
23
|
Feldmeyer B, Elsner D, Alleman A, Foitzik S. Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles. BMC Evol Biol 2017; 17:237. [PMID: 29202686 PMCID: PMC5715652 DOI: 10.1186/s12862-017-1078-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition to a parasitic lifestyle entails comprehensive changes to the selective regime. In parasites, genes encoding for traits that facilitate host detection, exploitation and transmission should be under selection. Slavemaking ants are social parasites that exploit the altruistic behaviour of their hosts by stealing heterospecific host brood during raids, which afterwards serve as slaves in slavemaker nests. Here we search for evidence of selection in the transcriptomes of three slavemaker species and three closely related hosts. We expected selection on genes underlying recognition and raiding or defense behaviour. Analyses of selective forces in species with a slavemaker or host lifestyle allowed investigation into whether or not repeated instances of slavemaker evolution share the same genetic basis. To investigate the genetic basis of host-slavemaker co-evolution, we created orthologous clusters from transcriptome sequences of six Temnothorax ant species - three slavemakers and three hosts - to identify genes with signatures of selection. We further tested for functional enrichment in selected genes from slavemakers and hosts respectively and investigated which pathways the according genes belong to. RESULTS Our phylogenetic analysis, based on more than 5000 ortholog sequences, revealed sister species status for two slavemakers as well as two hosts, contradicting a previous phylogeny based on mtDNA. We identified 309 genes with signs of positive selection on branches leading to slavemakers and 161 leading to hosts. Among these were genes potentially involved in cuticular hydrocarbon synthesis, thus species recognition, and circadian clock functionality possibly explaining the different activity patterns of slavemakers and hosts. There was little overlap of genes with signatures of positive selection among species, which are involved in numerous different functions and different pathways. CONCLUSIONS We identified different genes, functions and pathways under positive selection in each species. These results point to species-specific adaptations rather than convergent trajectories during the evolution of the slavemaker and host lifestyles suggesting that the evolution of parasitism, even in closely related species, may be achieved in diverse ways.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - D Elsner
- Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - A Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - S Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
24
|
Kloesener MH, Bose J, Schulte RD. Experimental evolution with a multicellular host causes diversification within and between microbial parasite populations-Differences in emerging phenotypes of two different parasite strains. Evolution 2017; 71:2194-2205. [PMID: 28714591 DOI: 10.1111/evo.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Host-parasite coevolution is predicted to have complex evolutionary consequences, potentially leading to the emergence of genetic and phenotypic diversity for both antagonists. However, little is known about variation in phenotypic responses to coevolution between different parasite strains exposed to the same experimental conditions. We infected Caenorhabditis elegans with one of two strains of Bacillus thuringiensis and either allowed the host and the parasite to experimentally coevolve (coevolution treatment) or allowed only the parasite to adapt to the host (one-sided parasite adaptation). By isolating single parasite clones from evolved populations, we found phenotypic diversification of the ancestral strain into distinct clones, which varied in virulence toward ancestral hosts and competitive ability against other parasite genotypes. Parasite phenotypes differed remarkably not only between the two strains, but also between and within different replicate populations, indicating diversification of the clonal population caused by selection. This study highlights that the evolutionary selection pressure mediated by a multicellular host causes phenotypic diversification, but not necessarily with the same phenotypic outcome for different parasite strains.
Collapse
Affiliation(s)
- Michaela H Kloesener
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| | - Joy Bose
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany.,Evolutionary Biology Laboratory, Evolutionary and Integrative Biology Unit (EIBU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | - Rebecca D Schulte
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| |
Collapse
|
25
|
Greenwood JM, Ezquerra AL, Behrens S, Branca A, Mallet L. Current analysis of host–parasite interactions with a focus on next generation sequencing data. ZOOLOGY 2016; 119:298-306. [DOI: 10.1016/j.zool.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/21/2023]
|
26
|
Joop G, Vilcinskas A. Coevolution of parasitic fungi and insect hosts. ZOOLOGY 2016; 119:350-8. [PMID: 27448694 DOI: 10.1016/j.zool.2016.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/26/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
Parasitic fungi and their insect hosts provide an intriguing model system for dissecting the complex co-evolutionary processes, which result in Red Queen dynamics. To explore the genetic basis behind host-parasite coevolution we chose two parasitic fungi (Beauveria bassiana and Metarhizium anisopliae, representing the most important entomopathogenic fungi used in the biological control of pest or vector insects) and two established insect model hosts (the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum) for which sequenced genomes or comprehensive transcriptomes are available. Focusing on these model organisms, we review the knowledge about the interactions between fungal molecules operating as virulence factors and insect host-derived defense molecules mediating antifungal immunity. Particularly the study of the intimate interactions between fungal proteinases and corresponding host-derived proteinase inhibitors elucidated novel coevolutionary mechanisms such as functional shifts or diversification of involved effector molecules. Complementarily, we compared the outcome of coevolution experiments using the parasitic fungus B. bassiana and two different insect hosts which were initially either susceptible (Galleria mellonella) or resistant (Tribolium castaneum). Taking a snapshot of host-parasite coevolution, we show that parasitic fungi can overcome host barriers such as external antimicrobial secretions just as hosts can build new barriers, both within a relatively short time of coevolution.
Collapse
Affiliation(s)
- Gerrit Joop
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, D-35394 Giessen, Germany
| |
Collapse
|
27
|
Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host-parasite coevolution: why changing population size matters. ZOOLOGY 2016; 119:330-8. [PMID: 27161157 DOI: 10.1016/j.zool.2016.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 02/10/2016] [Indexed: 01/08/2023]
Abstract
Host-parasite coevolution is widely assumed to have a major influence on biological evolution, especially as these interactions impose high selective pressure on the reciprocally interacting antagonists. The exact nature of the underlying dynamics is yet under debate and may be determined by recurrent selective sweeps (i.e., arms race dynamics), negative frequency-dependent selection (i.e., Red Queen dynamics), or a combination thereof. These interactions are often associated with reciprocally induced changes in population size, which, in turn, should have a strong impact on co-adaptation processes, yet are neglected in most current work on the topic. Here, we discuss potential consequences of temporal variations in population size on host-parasite coevolution. The limited empirical data available and the current theoretical literature in this field highlight that the consideration of such interaction-dependent population size changes is likely key for the full understanding of the coevolutionary dynamics, and, thus, a more realistic view on the complex nature of species interactions.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany
| | - Chaitanya S Gokhale
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, Auckland 0745, New Zealand
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|