1
|
Roberts-Hugghis AS, Martinez CM, Corn KA, Wainwright PC. A classic key innovation constrains oral jaw functional diversification in fishes. Evol Lett 2025; 9:24-40. [PMID: 39906576 PMCID: PMC11790220 DOI: 10.1093/evlett/qrae046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 02/06/2025] Open
Abstract
Modifications to the pharyngeal jaws-a prey processing system located posterior to the mouth cavity-are widely considered a key innovation that enhanced diversification within several prominent fish clades. Seen in cichlids, damselfishes, wrasses, and a few other lineages, these musculoskeletal alterations are believed to increase the evolutionary independence and, thus, the diversification of the oral and pharyngeal jaw systems. To test this classic hypothesis, we conducted comparative phylogenetic analyses to assess the effect of the pharyngeal novelty on the diversification of feeding morphology and kinematics across a taxonomically diverse sample of spiny-rayed fishes. We quantified movements of the oral jaws and other craniofacial structures from 689 suction-feeding strikes using high-speed videos collected from 228 species with and without the pharyngeal jaw novelty. Contradicting long-held predictions, we find significantly greater disparity across all traits and faster rates of oral jaw functional evolution in fishes without the specialized prey processing system. The modified pharyngeal jaw is undoubtedly a functional innovation as it enhances the strength of the prey processing system, facilitating exceptional transition rates to feeding on hard and tough prey. However, it also restricts the diversification of the feeding system, revealing that the impact of pharyngognathy is more nuanced than previously thought. In light of these and other recent findings, a reinterpretation of the macroevolutionary consequences of the pharyngeal jaw novelty is needed.
Collapse
Affiliation(s)
- Alexus S Roberts-Hugghis
- Department of Evolution and Ecology, University of California Davis, Davis, CA, United States
- Aquatic Ecology and Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - Christopher M Martinez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Katherine A Corn
- Department of Evolution and Ecology, University of California Davis, Davis, CA, United States
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, CA, United States
| |
Collapse
|
2
|
Jónsdóttir GÓ, von Elm LM, Ingimarsson F, Tersigni S, Snorrason SS, Pálsson A, Steele SE. Diversity in the internal functional feeding elements of sympatric morphs of Arctic charr (Salvelinus alpinus). PLoS One 2024; 19:e0300359. [PMID: 38771821 PMCID: PMC11108142 DOI: 10.1371/journal.pone.0300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
The diversity of functional feeding anatomy is particularly impressive in fishes and correlates with various interspecific ecological specializations. Intraspecific polymorphism can manifest in divergent feeding morphology and ecology, often along a benthic-pelagic axis. Arctic charr (Salvelinus alpinus) is a freshwater salmonid known for morphological variation and sympatric polymorphism and in Lake Þingvallavatn, Iceland, four morphs of charr coexist that differ in preferred prey, behaviour, habitat use, and external feeding morphology. We studied variation in six upper and lower jaw bones in adults of these four morphs using geometric morphometrics and univariate statistics. We tested for allometric differences in bone size and shape among morphs, morph effects on bone size and shape, and divergence along the benthic-pelagic axis. We also examined the degree of integration between bone pairs. We found differences in bone size between pelagic and benthic morphs for two bones (dentary and premaxilla). There was clear bone shape divergence along a benthic-pelagic axis in four bones (dentary, articular-angular, premaxilla and maxilla), as well as allometric shape differences between morphs in the dentary. Notably for the dentary, morph explained more shape variation than bone size. Comparatively, benthic morphs possess a compact and taller dentary, with shorter dentary palate, consistent with visible (but less prominent) differences in external morphology. As these morphs emerged in the last 10,000 years, these results indicate rapid functional evolution of specific feeding structures in arctic charr. This sets the stage for studies of the genetics and development of rapid and parallel craniofacial evolution.
Collapse
Affiliation(s)
| | - Laura-Marie von Elm
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Samuel Tersigni
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Arnar Pálsson
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | - Sarah Elizabeth Steele
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| |
Collapse
|
3
|
Roberts-Hugghis AS, Burress ED, Lam B, Wainwright PC. The cichlid pharyngeal jaw novelty enhances evolutionary integration in the feeding apparatus. Evolution 2023; 77:1917-1929. [PMID: 37326103 DOI: 10.1093/evolut/qpad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The modified pharyngeal jaw system of cichlid fishes is widely viewed as a key innovation that substantially facilitated the evolutionary exuberance of this iconic evolutionary radiation. We conduct comparative phylogenetic analyses of integration, disparity, and rate of evolution among feeding-related, skeletal structures in Neotropical cichlids and North American centrarchids, which lack the specialized pharyngeal jaw. Contrasting evolutionary patterns in these two continental radiations, we test a classic decoupling hypothesis. Specifically, we ask whether the modified pharyngeal jaw in cichlids resulted in enhanced evolutionary independence of the oral and pharyngeal jaws, leading to increased diversity of trophic structures. Contrary to this prediction, we find significantly stronger evolutionary integration between the oral and pharyngeal jaws in cichlids compared to centrarchids, although the two groups do not differ in patterns of integration within each jaw system. Further, though we find no significant differences in disparity, centrarchids show faster rates of morphological evolution. Our results suggest that the modified pharyngeal jaw resulted in less evolutionary independence and slower rates of evolution within the feeding system. Thus, we raise the possibility that the cichlid novelty enhances feeding performance, but does not prompt increased morphological diversification within the feeding apparatus, as has long been thought.
Collapse
Affiliation(s)
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Brian Lam
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
4
|
Olivier D, Van Wassenbergh S, Parmentier E, Frédérich B. Unprecedented Biting Performance in Herbivorous Fish: How the Complex Biting System of Pomacentridae Circumvents Performance Trade-Offs. Am Nat 2021; 197:E156-E172. [DOI: 10.1086/713498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Kaczmarek EB, Gidmark NJ. The bite force-gape relationship as an avenue of biomechanical adaptation to trophic niche in two salmonid fishes. J Exp Biol 2020; 223:jeb223180. [PMID: 32943579 DOI: 10.1242/jeb.223180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022]
Abstract
All skeletal muscles produce their largest forces at a single optimal length, losing force when stretched or shortened. In vertebrate feeding systems, this fundamental force-length relationship translates to variation in bite force across gape, which affects the food types that can be eaten effectively. We measured the bite force-gape curves of two sympatric species: king salmon (Oncorhynchus tshawytscha) and pink salmon (Oncorhynchusgorbuscha). Cranial anatomical measurements were not significantly different between species; however, peak bite forces were produced at significantly different gapes. Maximum bite force was achieved at 67% of maximum gape for king salmon and 43% of maximum gape for pink salmon. This may allow king salmon to use greater force when eating large or elusive prey. In contrast, pink salmon do not require high forces at extreme gapes for filter feeding. Our results illustrate that the bite force-gape relationship is an important ecophysiological axis of variation.
Collapse
Affiliation(s)
- Elska B Kaczmarek
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Nicholas J Gidmark
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Biology Department, Knox College, Galesburg, IL 61401, USA
| |
Collapse
|
6
|
Pos KM, Farina SC, Kolmann MA, Gidmark NJ. Pharyngeal Jaws Converge by Similar Means, Not to Similar Ends, When Minnows (Cypriniformes: Leuciscidae) Adapt to New Dietary Niches. Integr Comp Biol 2019; 59:432-442. [DOI: 10.1093/icb/icz090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other and negative evolutionary correlation with measurements of the inter-ceratobranchial ligament (ICB ligament). Using diet data from published literature, we found extensive dietary convergence within Leuciscidae. The most common transitions we found were between herbivorous and invertivorous taxa and between insectivore types (aquatic vs. terrestrial). We document a trade-off in which herbivorous leuciscids have large teeth, short ICB ligaments, and large muscle attachment areas, whereas insectivorous leuciscids showed the opposite pattern. Inverse patterns of morphological integration between the ICB ligament the rest of the pharyngeal jaw correspond this dietary trade-off, which indicates that coordinated evolution of morphological traits contributes to functional diversity in this clade. However, these patterns only emerge in the context of phylogeny, meaning that the pharyngeal jaws of North American leuciscids converge by similar means (structural changes in response to dietary demands), but not necessarily to similar ends (absolute phenotype).
Collapse
Affiliation(s)
- Kelsie M Pos
- Department of Biology, Knox College, Galesburg, IL, USA
| | - Stacy C Farina
- Department of Biology, Howard University, Washington, DC, USA
| | - Matthew A Kolmann
- Department of Biology, George Washington University, Washington, DC, USA
| | | |
Collapse
|
7
|
Farina SC, Knope ML, Corn KA, Summers AP, Bemis WE. Functional coupling in the evolution of suction feeding and gill ventilation of sculpins (Perciformes: Cottoidei). Integr Comp Biol 2019; 59:394-409. [DOI: 10.1093/icb/icz022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolutionary integration (a tendency of structures to covary in size or shape across evolutionary history). Functional coupling, functional coordination, and evolutionary integration have each been proposed to limit morphological diversification to some extent. Yet teleosts show extraordinary cranial diversity, suggesting that there are mechanisms within some teleost clades that promote morphological diversification, even within the highly integrated suction feeding and gill ventilatory systems. To investigate this, we quantified evolutionary integration among four mechanical units associated with suction feeding and gill ventilation in a diverse clade of benthic, primarily suction-feeding fishes (Cottoidei; sculpins and relatives). We reconstructed cottoid phylogeny using molecular data from 108 species, and obtained 24 linear measurements of four mechanical units (jaws, hyoid, opercular bones, and branchiostegal rays) from micro-CT reconstructions of 44 cottoids and 1 outgroup taxon. We tested for evolutionary correlation and covariation among the four mechanical units using phylogenetically corrected principal component analysis to reduce the dimensionality of measurements for each unit, followed by correlating phylogenetically independent contrasts and computing phylogenetic generalized least squares models from the first principle component axis of each of the four mechanical units. The jaws, opercular bones, and branchiostegal rays show evolutionary integration, but the hyoid is not positively integrated with these units. To examine these results in an ecomorphological context, we used published ecological data in phylogenetic ANOVA models to demonstrate that the jaw is larger in fishes that eat elusive or grasping prey (e.g., prey that can easily escape or cling to the substrate) and that the hyoid is smaller in intertidal and hypoxia-tolerant sculpins. Within Cottoidei, the relatively independent evolution of the hyoid likely has reduced limitations on morphological evolution within the highly morphologically integrated suction feeding and gill ventilatory systems.
Collapse
Affiliation(s)
- S C Farina
- Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - M L Knope
- Department of Biology, University of Hawaii, Hilo, 200 West Kawili Street, Hilo, HI 96720, USA
| | - K A Corn
- Department of Evolution and Ecology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - A P Summers
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - W E Bemis
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|