1
|
Shaohui W, Xiangzhen K, Jingyi Y, Jindong T, Ye T, Xueguang L, Bo C, Yijie L, Jiucun W, Xinyu L, Jingdong T, Shuai J. STEAP3 alleviates inflammation and fibrosis via iron metabolism in ischemia/reperfusion-associated lung injury. Biochim Biophys Acta Mol Basis Dis 2025:167912. [PMID: 40412729 DOI: 10.1016/j.bbadis.2025.167912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Lower limb ischemia/reperfusion (LIRI)-associated lung injury is a common complication observed in patients with lower extremity occlusion and prolonged tourniquet exposure, leading to significant morbidity and mortality. The lung is the primary remote organ affected by LIRI, owing to its high oxygen demands. Excessive iron accumulation has been implicated in pulmonary injury pathogenesis. Although STEAP3, a key regulator of iron metabolism, has been shown to play a role in various organ injuries and inflammation, but its involvement in LIRI-associated lung injury has not been explored. In this study, we investigated the role of STEAP3 in LIRI-induced lung injury using a mouse model of tourniquet-induced LIRI. Lung injury severity was assessed by wet/dry weight ratio, pro-inflammatory cytokines (IL-1β, IL-6), and the pro-fibrotic marker TGF-β1. Bulk RNA sequencing of lung tissues identified differentially expressed genes and pathways. In vitro, a hypoxia/re‑oxygenation (H/R) model and iron treatment were employed using HUVEC cells. The results showed significant lung edema, macrophage infiltration, and elevated inflammation in LIRI mice, accompanied by iron overload in endothelial cells. Pathway analysis revealed that differentially expressed genes were enriched in inflammatory response regulation and ferroptosis. Both in vivo and in vitro models exhibited activation of the NF-κB and TGFβ1/SMAD pathways, with STEAP3 expression reduced in LIRI and H/R conditions. Overexpression of STEAP3 reversed iron accumulation and inhibited NF-κB and TGFβ1/SMAD signaling. These findings suggest that excessive iron accumulation exacerbates LIRI-associated lung injury, and STEAP3 acts as a potential therapeutic target, offering protection by modulating inflammatory and fibrotic signaling pathways.
Collapse
Affiliation(s)
- Wang Shaohui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Kong Xiangzhen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Yang Jingyi
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Tong Jindong
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tian Ye
- Department of Vascular Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Xueguang
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chen Bo
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lu Yijie
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wang Jiucun
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Ling Xinyu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Tang Jingdong
- Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Jiang Shuai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China; Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Department of Vascular Surgery, Shanghai Key Laboratory of Vascular Lesion Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
2
|
Yousefi Zardak M, Keshavarz F, Mahyaei A, Gholami M, Moosavi FS, Abbasloo E, Abdollahi F, Hossein Rezaei M, Madadizadeh E, Soltani N, Bejeshk F, Salehi N, Rostamabadi F, Bagheri F, Jafaraghae M, Ranjbar Zeydabadi M, Baghgoli M, Sepehri G, Bejeshk MA. Quercetin as a therapeutic agent activate the Nrf2/Keap1 pathway to alleviate lung ischemia-reperfusion injury. Sci Rep 2024; 14:23074. [PMID: 39367100 PMCID: PMC11452703 DOI: 10.1038/s41598-024-73075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) causes oxidative stress, inflammation, and immune system activation. The Nrf2/Keap1/HO-1 pathway is important in cellular defense against these effects. Quercetin, a flavonoid with antioxidant, anti-inflammatory, and anti-cancer properties, has been investigated. Our aim in this study was to investigate the effect of quercetin on preventing lung ischemia-reperfusion injury and the role of the Nrf2/Keap1/HO-1 pathway. Sixty-four male Wistar rats were divided into four distinct groups(n = 16). Sham, lung ischemia-reperfusion (LIR), Saline + LIR, Quercetin + LIR (30 mg/kg i.p for a week before LIR). LIR groups were subjected to 60 min of ischemia (left pulmonary artery, vein, and bronchus) and 120 min of reperfusion. Our assessment encompassed a comprehensive analysis of various factors, including the evaluation of expression Nrf2, Keap1, and Heme Oxygenase-1 (HO-1) levels and NF-κB protein. Furthermore, we examined markers related to inflammation (interleukin-1β and tumor necrosis factor alpha), oxidative stress (malondialdehyde, total oxidant status, superoxide dismutase, glutathione peroxidase, total antioxidant capacity), lung edema (Wet/dry lung weight ratio and total protein concentration), apoptosis (Bax and Bcl2 protein), and histopathological alterations (intra-alveolar edema, alveolar hemorrhage, and neutrophil infiltration). Our results show that ischemia-reperfusion results in heightened inflammation, oxidative stress, apoptosis, lung edema, and histopathological damage. Quercetin showed preventive effects by reducing these markers, acting through modulation of the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway. This anti-inflammatory effect, complementary to the antioxidant effects of quercetin, provides a multifaceted approach to cell protection that is important for developing therapeutic strategies against ischemia-reperfusion injury and could be helpful in preventive strategies against ischemia-reperfusion.
Collapse
Affiliation(s)
- Mohammad Yousefi Zardak
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Keshavarz
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mahyaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Gholami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sadat Moosavi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Abdollahi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Nasrin Soltani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Niyan Salehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research center, Bam University of Medical Sciences, Bam, Kerman, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mahla Jafaraghae
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Meraj Baghgoli
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Pulmonary Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Linardi D, Hallström S, Luciani GB, Rungatscher A. S-Nitroso Human Serum Albumin Enhances Left Ventricle Hemodynamic Performance and Reduces Myocardial Damage after Local Ischemia-Reperfusion Injury. Biomedicines 2024; 12:1434. [PMID: 39062008 PMCID: PMC11274172 DOI: 10.3390/biomedicines12071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024] Open
Abstract
Endothelial nitric oxide (NO) production is crucial in maintaining vascular homeostasis. However, in the context of ischemia-reperfusion (I/R) injury, uncoupled endothelial nitric oxide synthase (eNOS) can exacerbate reactive oxygen species (ROS) generation. Supplementation with S-nitroso human serum albumin (S-NO-HSA) offers a potential solution by mitigating eNOS uncoupling, thereby enhancing NO bioavailability. In a study conducted at the University of Verona, male rats underwent thoracotomy followed by 30 min left anterior descendant coronary (LAD) occlusion and subsequent reperfusion. Hemodynamic parameters were meticulously assessed using a conductance catheter inserted via the carotid artery. The rats were stratified into two main groups based on reperfusion duration and the timing of drug infusion, with the effects of S-NO-HSA evaluated after 2 or 24 h. Remarkably, intravenous administration of S-NO-HSA, initiated before or during ischemia, exhibited notable benefits. It significantly improved left ventricular function, safeguarded energetic substrates such as phosphocreatine and ATP, and sustained glutathione levels akin to basal conditions, indicative of diminished oxidative stress. The data from this study strongly suggest a protective role for S-NO-HSA in mitigating I/R injury induced by LAD artery occlusion, a phenomenon observed at both 2 and 24 h post-reperfusion. These findings underscore the promising therapeutic potential of NO supplementation in alleviating myocardial damage subsequent to ischemic insult.
Collapse
Affiliation(s)
- Daniele Linardi
- Cardiac Surgery Department, University of Verona, 37129 Verona, Italy; (D.L.)
| | - Seth Hallström
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Alessio Rungatscher
- Cardiac Surgery Department, University of Verona, 37129 Verona, Italy; (D.L.)
| |
Collapse
|
4
|
Bejeshk MA, Najafipour H, Khaksari M, Nematollahi MH, Rajizadeh MA, Dabiri S, Beik A, Samareh-Fekri M, Sepehri G. Preparation and Evaluation of Preventive Effects of Inhalational and Intraperitoneal Injection of Myrtenol Loaded Nano-Niosomes on Lung Ischemia-Reperfusion Injury in Rats. J Pharm Sci 2024; 113:85-94. [PMID: 37931787 DOI: 10.1016/j.xphs.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) is directly related to forming reactive oxygen species, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and cytokines. Niosomes are nanocarriers and an essential part of drug delivery systems. We aimed to investigate the effects of myrtenol's inhaled and intraperitoneal niosomal form, compared to its simple form, on lung ischemia reperfusion injury (LIRI). MATERIAL AND METHOD Wistar rats were divided into ten groups. Simple and niosomal forms of myrtenol were inhaled or intraperitoneally injected daily for one week prior to LIRI. We evaluated oxidative stress, apoptotic, and inflammatory indices, nitric oxide, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and histopathological indices. RESULTS Pretreatment with simple and niosomal forms of myrtenol significantly inhibited the indices of pulmonary edema, pro-inflammatory cytokines and proteins, oxidant agents, nitric oxide, iNOS, apoptotic proteins, congestion of capillaries, neutrophil infiltration, and bleeding in the alveoli. Furthermore, myrtenol increased anti-inflammatory cytokines, anti-oxidants agents, eNOS, anti-apoptotic proteins and the survival time of animals. The niosomal form of myrtenol showed a more ameliorative effect than its simple form. CONCLUSION The results showed the superior protective effect of the inhalation of myrtenol niosomal form against LIRI compared to its simple form and systemic use.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cells Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Beik
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Samareh-Fekri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Katami H, Suzuki S, Fujii T, Ueno M, Tanaka A, Ohta KI, Miki T, Shimono R. Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats. Pediatr Res 2023; 94:1650-1658. [PMID: 37225778 DOI: 10.1038/s41390-023-02638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.
Collapse
Affiliation(s)
- Hiroto Katami
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takayuki Fujii
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Aya Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan.
| |
Collapse
|
6
|
Holzer M, Poole JE, Lascarrou JB, Fujise K, Nichol G. A Commentary on the Effect of Targeted Temperature Management in Patients Resuscitated from Cardiac Arrest. Ther Hypothermia Temp Manag 2023; 13:102-111. [PMID: 36378270 PMCID: PMC10625468 DOI: 10.1089/ther.2022.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The members of the International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force have written a comprehensive summary of trials of the effectiveness of induced hypothermia (IH) or targeted temperature management (TTM) in comatose patients after cardiac arrest (CA). However, in-depth analysis of these studies is incomplete, especially since there was no significant difference in primary outcome between hypothermia versus normothermia in the recently reported TTM2 trial. We critically appraise trials of IH/TTM versus normothermia to characterize reasons for the lack of treatment effect, based on a previously published framework for what to consider when the primary outcome fails. We found a strong biologic rationale and external clinical evidence that IH treatment is beneficial. Recent TTM trials mainly included unselected patients with a high rate of bystander cardiopulmonary resuscitation. The treatment was not applied as intended, which led to a large delay in achievement of target temperature. While receiving intensive care, sedative drugs were likely used that might have led to increased neurologic damage as were antiplatelet drugs that could be associated with increased acute stent thrombosis in hypothermic patients. It is reasonable to still use or evaluate IH treatment in patients who are comatose after CA as there are multiple plausible reasons why IH compared to normothermia did not significantly improve neurologic outcome in the TTM trials.
Collapse
Affiliation(s)
- Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeanne E. Poole
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | | | - Ken Fujise
- Harborview Medical Center, Heart Institute, University of Washington, Seattle, Washington, USA
| | - Graham Nichol
- Departments of Medicine and Emergency Medicine, University of Washington-Harborview Center for Prehospital Emergency Care, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Cimmino G, Natale F, Alfieri R, Cante L, Covino S, Franzese R, Limatola M, Marotta L, Molinari R, Mollo N, Loffredo FS, Golino P. Non-Conventional Risk Factors: "Fact" or "Fake" in Cardiovascular Disease Prevention? Biomedicines 2023; 11:2353. [PMID: 37760794 PMCID: PMC10525401 DOI: 10.3390/biomedicines11092353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs), such as arterial hypertension, myocardial infarction, stroke, heart failure, atrial fibrillation, etc., still represent the main cause of morbidity and mortality worldwide. They significantly modify the patients' quality of life with a tremendous economic impact. It is well established that cardiovascular risk factors increase the probability of fatal and non-fatal cardiac events. These risk factors are classified into modifiable (smoking, arterial hypertension, hypercholesterolemia, low HDL cholesterol, diabetes, excessive alcohol consumption, high-fat and high-calorie diet, reduced physical activity) and non-modifiable (sex, age, family history, of previous cardiovascular disease). Hence, CVD prevention is based on early identification and management of modifiable risk factors whose impact on the CV outcome is now performed by the use of CV risk assessment models, such as the Framingham Risk Score, Pooled Cohort Equations, or the SCORE2. However, in recent years, emerging, non-traditional factors (metabolic and non-metabolic) seem to significantly affect this assessment. In this article, we aim at defining these emerging factors and describe the potential mechanisms by which they might contribute to the development of CVD.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesco Natale
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Roberta Alfieri
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Luigi Cante
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Simona Covino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Rosa Franzese
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Mirella Limatola
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Luigi Marotta
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Riccardo Molinari
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Noemi Mollo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Francesco S Loffredo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
8
|
He F, Lu Y, Mao Q, Zhou L, Chen Y, Xie Y. Effects of penehyclidine hydrochloride combined with dexmedetomidine on pulmonary function in patients undergoing heart valve surgery: a double-blind, randomized trial. BMC Anesthesiol 2023; 23:237. [PMID: 37442959 PMCID: PMC10339561 DOI: 10.1186/s12871-023-02176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
AIM To investigate the effects of penehyclidine hydrochloride combined with dexmedetomidine on pulmonary function in patients undergoing heart valve surgery with cardiopulmonary bypass (CPB). METHODS A total of 180 patients undergoing elective heart valve surgery with CPB were randomly divided into four groups: 45 in group P (intravenous penehyclidine hydrochloride 0.02 mg/kg 10 min before anesthesia induction and at the beginning of CPB, total 0.04 mg/kg); 43 in group D (dexmedetomidine 0.5 μg/kg/h after induction of anesthesia until the end of anesthesia); 44 in group PD ( penehyclidine hydrochloride 0.04 mg/kg combined with dexmedetomidine 0.5 μg/kg/h intravenously during anesthesia); and 43 in group C (same amount of normal saline 10 min before and after anesthesia induction, to the end of anesthesia, and at the beginning of CPB). The main outcomes were the incidence and severity of postoperative pulmonary complications (PPCs). The secondary outcomes were: (1) extubation time, length of stay in intensive care, and postoperative hospital stay, and adverse events; and (2) pulmonary function evaluation indices (oxygenation index and respiratory index) and plasma inflammatory factor concentrations (tumor necrosis factor-α, interleukin-6, C-reactive protein and procalcitonin) during the perioperative period. RESULTS The incidence of PPCs in groups P, D and PD after CPB was lower than that in group C (P < 0.05), and the incidence in group PD was significantly lower than that in groups P and D (P < 0.05). The scores for PPCs in groups P, D and PD were lower than those in group C (P < 0.05). CONCLUSION Combined use of penehyclidine hydrochloride and dexmedetomidine during anesthesia reduced the occurrence of postoperative pulmonary dysfunction, and improved the prognosis of patients undergoing heart valve surgery with CPB. TRIAL REGISTRATION The trial was registered in the Chinese Clinical Trial Registry on 3/11/2020 (Registration No.: ChiCTR2000039610).
Collapse
Affiliation(s)
- Fang He
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhi Lu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi Mao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanhua Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
9
|
Xu B, Wang C, Chen H, Zhang L, Gong L, Zhong L, Yang J. Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Front Physiol 2022; 13:1018971. [PMID: 36479346 PMCID: PMC9720843 DOI: 10.3389/fphys.2022.1018971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary angioplasty, cardiopulmonary resuscitation, and organ transplantation, which can lead to cell damage and death. Mitsugumin 53 (MG53), also known as Trim72, is a conservative member of the TRIM family and is highly expressed in mouse skeletal and cardiac muscle, with minimal amounts in humans. MG53 has been proven to be involved in repairing cell membrane damage. It has a protective effect on I/R injury in multiple oxygen-dependent organs, such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also plays a unique role in I/R, sepsis, and other aspects, which is expected to provide new ideas for related treatment. This article briefly reviews the pathophysiology of I/R injury and how MG53 mitigates multi-organ I/R injury.
Collapse
Affiliation(s)
- Bowen Xu
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
10
|
Ruozi G, Bortolotti F, Mura A, Tomczyk M, Falcione A, Martinelli V, Vodret S, Braga L, Dal Ferro M, Cannatà A, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Cardioprotective factors against myocardial infarction selected in vivo from an AAV secretome library. Sci Transl Med 2022; 14:eabo0699. [PMID: 36044596 DOI: 10.1126/scitranslmed.abo0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these conditions and lack of curative treatments. To systematically identify previously unidentified cardioactive biologicals in an unbiased manner in vivo, we developed cardiac FunSel, a method for the systematic, functional selection of effective factors using a library of 1198 barcoded adeno-associated virus (AAV) vectors encoding for the mouse secretome. By pooled vector injection into the heart, this library was screened to functionally select for factors that confer cardioprotection against myocardial infarction. After two rounds of iterative selection in mice, cardiac FunSel identified three proteins [chordin-like 1 (Chrdl1), family with sequence similarity 3 member C (Fam3c), and Fam3b] that preserve cardiomyocyte viability, sustain cardiac function, and prevent pathological remodeling. In particular, Chrdl1 exerted its protective activity by binding and inhibiting extracellular bone morphogenetic protein 4 (BMP4), which resulted in protection against cardiomyocyte death and induction of autophagy in cardiomyocytes after myocardial infarction. Chrdl1 also inhibited fibrosis and maladaptive cardiac remodeling by binding transforming growth factor-β (TGF-β) and preventing cardiac fibroblast differentiation into myofibroblasts. Production of secreted and circulating Chrdl1, Fam3c, and Fam3b from the liver also protected the heart from myocardial infarction, thus supporting the use of the three proteins as recombinant factors. Together, these findings disclose a powerful method for the in vivo, unbiased selection of tissue-protective factors and describe potential cardiac therapeutics.
Collapse
Affiliation(s)
- Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,Cardiovascular Department, ASUGI, 34149 Trieste, Italy
| | - Antonio Mura
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Mateusz Tomczyk
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | - Antonella Falcione
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Valentina Martinelli
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | | | - Antonio Cannatà
- Cardiovascular Department, ASUGI, 34149 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, ASUGI, 34149 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
11
|
Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury. Cell Death Dis 2022; 13:594. [PMID: 35821123 PMCID: PMC9276754 DOI: 10.1038/s41419-022-05051-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
Apoptosis is a critical event in the pathogenesis of lung ischemia/reperfusion (I/R) injury. Sirtuin 3 (SIRT3), an important deacetylase predominantly localized in mitochondria, regulates diverse physiological processes, including apoptosis. However, the detailed mechanisms by which SIRT3 regulates lung I/R injury remain unclear. Many polyphenols strongly regulate the sirtuin family. In this study, we found that a polyphenol compound, procyanidin B2 (PCB2), activated SIRT3 in mouse lungs. Due to this effect, PCB2 administration attenuated histological lesions, relieved pulmonary dysfunction, and improved the survival rate of the murine model of lung I/R injury. Additionally, this treatment inhibited hypoxia/reoxygenation (H/R)-induced A549 cell apoptosis and rescued Bcl-2 expression. Using Sirt3-knockout mice and specific SIRT3 knockdown in vitro, we further found that SIRT3 strongly protects against lung I/R injury. Sirt3 deficiency or enzymatic inactivation substantially aggravated lung I/R-induced pulmonary lesions, promoted apoptosis, and abolished PCB2-mediated protection. Mitochondrial pyruvate kinase M2 (PKM2) inhibits apoptosis by stabilizing Bcl-2. Here, we found that PKM2 accumulates and is hyperacetylated in mitochondria upon lung I/R injury. By screening the potential sites of PKM2 acetylation, we found that SIRT3 deacetylates the K433 residue of PKM2 in A549 cells. Transfection with a deacetylated mimic plasmid of PKM2 noticeably reduced apoptosis, while acetylated mimic transfection abolished the protective effect of PKM2. Furthermore, PKM2 knockdown or inhibition in vivo significantly abrogated the antiapoptotic effects of SIRT3 upregulation. Collectively, this study provides the first evidence that the SIRT3/PKM2 pathway is a protective target for the suppression of apoptosis in lung I/R injury. Moreover, this study identifies K433 deacetylation of PKM2 as a novel modification that regulates its anti-apoptotic activity. In addition, PCB2-mediated modulation of the SIRT3/PKM2 pathway may significantly protect against lung I/R injury, suggesting a novel prophylactic strategy for lung I/R injury.
Collapse
|
12
|
Oda H, Tanaka S, Shinohara M, Morimura Y, Yokoyama Y, Kayawake H, Yamada Y, Yutaka Y, Ohsumi A, Nakajima D, Hamaji M, Menju T, Date H. Specialized Proresolving Lipid Meditators Agonistic to Formyl Peptide Receptor Type 2 Attenuate Ischemia-reperfusion Injury in Rat Lung. Transplantation 2022; 106:1159-1169. [PMID: 34873128 DOI: 10.1097/tp.0000000000003987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (IRI) is a form of acute lung injury characterized by nonspecific alveolar damage and lung edema due to robust inflammation. Little is known about the roles of specialized proresolving lipid mediators (SPMs) in lung IRI. Therefore, we aimed to evaluate the dynamic changes in endogenous SPMs during the initiation and resolution of lung IRI and to determine the effects of SPM supplementation on lung IRI. METHODS We used a rat left hilar clamp model with 90 min of ischemia, followed by reperfusion. Dynamic changes in endogenous SPMs were evaluated using liquid chromatography-tandem mass spectrometry. RESULTS Endogenous SPMs in the left lung showed a decreasing trend after 1 h of reperfusion. Oxygenation improved between 3 and 7 d following reperfusion; however, the level of endogenous SPMs remained low compared with that in the naïve lung. Among SPM receptors, only formyl peptide receptor type 2 (ALX/FPR2) gene expression in the left lung was increased 3 h after reperfusion, and the inflammatory cells were immunohistochemically positive for ALX/FPR2. Administration of aspirin-triggered (AT) resolvin D1 (AT-RvD1) and AT lipoxin A4 (AT-LXA4), which are agonistic to ALX/FPR2, immediately after reperfusion improved lung function, reduced inflammatory cytokine levels, attenuated lung edema, and decreased neutrophil infiltration 3 h after reperfusion. The effects of AT-RvD1 and AT-LXA4 were not observed after pretreatment with the ALX/FPR2 antagonist. CONCLUSIONS The level of intrapulmonary endogenous SPMs decreased during lung IRI process and the administration of AT-RvD1 and AT-LXA4 prevented the exacerbation of lung injury via ALX/FPR2.
Collapse
Affiliation(s)
- Hiromi Oda
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Morimura
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuhei Yokoyama
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Annibali G, Scrocca I, Aranzulla TC, Meliga E, Maiellaro F, Musumeci G. "No-Reflow" Phenomenon: A Contemporary Review. J Clin Med 2022; 11:2233. [PMID: 35456326 PMCID: PMC9028464 DOI: 10.3390/jcm11082233] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Primary percutaneous angioplasty (pPCI), represents the reperfusion strategy of choice for patients with STEMI according to current international guidelines of the European Society of Cardiology. Coronary no-reflow is characterized by angiographic evidence of slow or no anterograde epicardial flow, resulting in inadequate myocardial perfusion in the absence of evidence of mechanical vessel obstruction. No reflow (NR) is related to a functional and structural alteration of the coronary microcirculation and we can list four main pathophysiological mechanisms: distal atherothrombotic embolization, ischemic damage, reperfusion injury, and individual susceptibility to microvascular damage. This review will provide a contemporary overview of the pathogenesis, diagnosis, and treatment of NR.
Collapse
Affiliation(s)
| | | | | | | | | | - Giuseppe Musumeci
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, 10128 Turin, Italy; (G.A.); (I.S.); (T.C.A.); (E.M.); (F.M.)
| |
Collapse
|
14
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022; 58. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
15
|
Huang J, Liu Y, Wang M, Wang R, Ling H, Yang Y. FoxO4 negatively modulates USP10 transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation-induced cardiomyocytes by regulating the Hippo/YAP pathway. J Bioenerg Biomembr 2021; 53:541-551. [PMID: 34251583 DOI: 10.1007/s10863-021-09910-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Acute myocardial infarction (AMI) is the main cause of death in the whole world. This study aimed to investigate whether forkhead box O4 (FoxO4) could negatively modulate ubiquitin specific peptidase 10 (USP10) transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation (H/R)-induced cardiomyocytes through Hippo/YAP pathway. mRNA expression as well as protein expressions of USP10 and FoxO4 in H9C2 cells after H/R induction or transfection were respectively detected by Reverse transcription-quantitative (RT-q) PCR analysis and Western blot. The viability and apoptosis of H9C2 cells after H/R induction or transfection were respectively detected by CCK-8 and TUNEL assays. The expressions of lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in H9C2 cells after H/R induction or transfection were analyzed using appropriate kits and intracellular reactive oxygen species (ROS) levels were detected using a ROS Assay Kit. Dual luciferase reporter assay and Chromatin Immunoprecipitation (ChIP) have adopted to confirm the combination of USP10 and FoxO4. Western blot was also used to analyze the expression of apoptosis-related proteins and Hippo/YAP pathway-related proteins. As a result, USP10 expression was decreased in H/R-induced H9C2 cells in a time-dependent manner. USP10 overexpression increased the viability and suppressed the apoptosis and oxidative stress of H/R-induced H9C2 cells. In addition, FoxO4 modulated USP10 transcription. FoxO4 expression was increased in H9C2 cells induced by H/R. FoxO4 overexpression could reverse the protective effects of USP10 overexpression on H/R-induced H9C2 cells by regulating the Hippo/YAP signaling pathway. In conclusion, FoxO4 negatively modulated USP10 transcription to aggravate the apoptosis and oxidative stress of H/R-induced H9C2 cells via blocking Hippo/YAP pathway.
Collapse
Affiliation(s)
- Jingwen Huang
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, China
| | - Mei Wang
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Rong Wang
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Huifen Ling
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
16
|
Li A, Zhang X, Luo Q. Neohesperidin alleviated pathological damage and immunological imbalance in rat myocardial ischemia-reperfusion injury via inactivation of JNK and NF-κB p65. Biosci Biotechnol Biochem 2021; 85:251-261. [PMID: 33604646 DOI: 10.1093/bbb/zbaa064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neohesperidin (NEO) exerts antiviral, antioxidant, anti-inflammation, and antitumor effects in some diseases. The purpose of this study was to investigate the effect and mechanism of NEO on myocardial ischemia-reperfusion (I/R) injury. Results indicated that NEO suppressed the levels of serum inflammatory cytokines, myocardial damage markers, and oxidative stress markers, and increased the levels of antioxidant in myocardial I/R rats. NEO also inhibited cell apoptosis. Besides, NEO also inhibited the phosphorylation of c-Jun N-terminal kinases (JNK) and nuclear factor kappa B (NF-κB) p65. Furthermore, the protective effects of NEO on myocardial tissue damage, inflammatory cytokines, myocardial injury markers, oxidative stress markers, cell apoptosis, spleen, thymus and liver indices, and phagocytic indices were reversed by JNK activator and NF-κB activator, respectively. In conclusion, NEO alleviates myocardial damage, oxidative stress, cell apoptosis, and immunological imbalance in I/R injury via the inactivation of JNK and NF-κB, making NEO a potential agent for myocardial I/R therapy.
Collapse
Affiliation(s)
- Aihua Li
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Zhang
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qiuping Luo
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Sun C, Zhang X, Yu F, Liu C, Hu F, Liu L, Chen J, Wang J. Atractylenolide I alleviates ischemia/reperfusion injury by preserving mitochondrial function and inhibiting caspase-3 activity. J Int Med Res 2021; 49:300060521993315. [PMID: 33641489 PMCID: PMC7923999 DOI: 10.1177/0300060521993315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury causes various severe heart diseases, including myocardial infarction. This study aimed to determine the therapeutic effect of atractylenolide I (ATR-I), which is an active ingredient isolated from Atractylodes macrocephala, on myocardial I/R injury. METHODS Male Sprague-Dawley rats were randomly allocated to the five following groups (nine rats/group): control, I/R, and I/R + ATR-I preconditioning (10, 50, and 250 µg). The effects of ATR-I on rats with I/R injury were verified in cardiomyocytes with hypoxia/reoxygenation. Production of reactive oxygen species was determined. The proliferative ability of cardiomyocytes was detected using the bromodeoxyuridine assay. Mitochondrial membrane potential was measured using flow cytometry. Cellular apoptosis was assessed by flow cytometry and the terminal dUTP-digoxigenin nick end labeling assay. RESULTS I/R and hypoxia/reoxygenation injury increased mitochondrial dysfunction and activated caspase-3 and Bax/B cell lymphoma 2 expression in vitro and in vivo. ATR-I pretreatment dose-dependently significantly attenuated myocardial apoptosis and suppressed oxidative stress as reflected by increased mitochondrial DNA copy number and superoxide dismutase activity, and decreased reactive oxygen species and Ca2+ content. CONCLUSION ATR-I protects against I/R injury by protecting mitochondrial function and inhibiting activation of caspase-3.
Collapse
Affiliation(s)
- Caiqin Sun
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Xuesong Zhang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fei Yu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Chen Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fangbin Hu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Li Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jing Chen
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jue Wang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| |
Collapse
|
18
|
Zhuravlev AS, Azarov AV, Semitko SP, Ioseliani DG. [The no-Reflow Phenomenon During Primary Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction due to Massive Coronary Thrombosis. Pathogenesis and Predictors of no-Reflow]. ACTA ACUST UNITED AC 2021; 61:99-105. [PMID: 33715614 DOI: 10.18087/cardio.2021.2.n1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022]
Abstract
Despite successful and timely revascularization of the infarct-related artery, myocardial tissue remains underperfused in some patients. This condition is known as the no-reflow phenomenon, which is associated with a worse prognosis. The first part of the systematic review on no-reflow focuses on description of the no-reflow pathogenesis and predictors. This phenomenon has a complicated, multifactorial pathogenesis, including distal embolization, ischemic injury, reperfusion injury, and a component of individual predisposition. Meanwhile, this phenomenon undergoes spontaneous regression in some patients. Several studies have demonstrated the role of definite biomarkers and clinical indexes as risk predictors for no-reflow. The significance of each pathogenetic component of no-reflow is suggested to be different in different patients, which may warrant an individualized approach in the treatment.
Collapse
Affiliation(s)
- A S Zhuravlev
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - A V Azarov
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - S P Semitko
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - D G Ioseliani
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
| |
Collapse
|
19
|
Ciofani JL, Allahwala UK, Scarsini R, Ekmejian A, Banning AP, Bhindi R, De Maria GL. No-reflow phenomenon in ST-segment elevation myocardial infarction: still the Achilles' heel of the interventionalist. Future Cardiol 2020; 17:383-397. [PMID: 32915083 DOI: 10.2217/fca-2020-0077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Improvements in systems, technology and pharmacotherapy have significantly changed the prognosis over recent decades in patients presenting with ST-segment elevation myocardial infarction. These clinical achievements have, however, begun to plateau and it is becoming increasingly necessary to consider novel strategies to further improve outcomes. Approximately a third of patients treated by primary percutaneous coronary intervention for ST-segment elevation myocardial infarction will suffer from coronary no-reflow (NR), a condition characterized by poor myocardial perfusion despite patent epicardial arteries. The presence of NR impacts significantly on clinical outcomes including left ventricular dysfunction, heart failure and death, yet conventional management algorithms neither assess the risk of NR nor treat NR. This review will provide a contemporary overview on the pathogenesis, diagnosis and treatment of NR.
Collapse
Affiliation(s)
- Jonathan L Ciofani
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.,Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Usaid K Allahwala
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Roberto Scarsini
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK.,Division of Cardiology, University of Verona, Verona, Italy
| | - Avedis Ekmejian
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Adrian P Banning
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Ravinay Bhindi
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Giovanni Luigi De Maria
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
20
|
Xu Y, Tang C, Tan S, Duan J, Tian H, Yang Y. Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cell Mol Med 2020; 24:6253-6262. [PMID: 32307912 PMCID: PMC7294129 DOI: 10.1111/jcmm.15267] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff‐perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose‐dependent manner concomitant with decreased protein expression of Bax and cleaved‐caspase‐3, as well as increased protein expression of Bcl‐2. In addition, I/R‐induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH‐Px). These results indicated that isorhamnetin exerts a protective effect against I/R‐induced myocardial injury through the attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Yan Xu
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Chun Tang
- Department of Nephrology, Center of Nephrology and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, PR China
| | - Shengyu Tan
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Juan Duan
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Hongmei Tian
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yu Yang
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
21
|
Ju M, He H, Chen S, Liu Y, Liu Y, Pan S, Zheng Y, Xuan L, Zhu D, Luo Z. Ulinastatin ameliorates LPS‑induced pulmonary inflammation and injury by blocking the MAPK/NF‑κB signaling pathways in rats. Mol Med Rep 2019; 20:3347-3354. [PMID: 31432172 DOI: 10.3892/mmr.2019.10561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 04/17/2019] [Indexed: 11/05/2022] Open
Abstract
Ulinastatin, a urinary trypsin inhibitor (UTI) is commonly used to treat patients with acute inflammatory disease. However, the underlying mechanisms of its anti‑inflammatory effect in acute lung injury (ALI) are not fully understood. The present study aimed to investigate the protective effect of UTI and explore its potential mechanisms by using a rat model of lipopolysaccharide (LPS)‑induced ALI. Rats were treated with 5 mg/kg LPS by intratracheal instillation. The histological changes in LPS‑induced ALI was evaluated using hematoxylin and eosin staining and the myeloperoxidase (MPO) activity was determined using ELISA. The wet/dry ratio (W/D ratio) of the lungs was used to assess the severity of pulmonary edema and Evans blue dye was used to evaluate the severity of lung vascular leakage. The results demonstrated that LPS administration induced histological changes and significantly increased the lung W/D ratio, MPO activity and Evans blue dye extravasation compared with the control group. However, treatment with UTI attenuated LPS‑induced ALI in rats by modifying histological changes and reducing the lung W/D ratio, MPO activity and Evans blue dye extravasation. In addition, LPS induced the secretion of numerous pro‑inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor‑α, interleukin (IL)‑6, IL‑1β and interferon‑γ; however, these cytokines were strongly reduced following treatment with UTI. In addition, UTI was able to reduce cellular counts in BALF, including neutrophils and leukocytes. Western blotting demonstrated that UTI significantly blocked the LPS‑stimulated MAPK and NF‑κB signaling pathways. The results of the present study indicated that UTI could exert an anti‑inflammatory effect on LPS‑induced ALI by inhibiting the MAPK and NF‑κB signaling pathways, which suggested that UTI may be considered as an effective drug in the treatment of ALI.
Collapse
Affiliation(s)
- Minjie Ju
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hongyu He
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Song Chen
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yimei Liu
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yujing Liu
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Simeng Pan
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yijun Zheng
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lizhen Xuan
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Duming Zhu
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhe Luo
- Department of Critical Care, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Zhai C, Lv J, Wang K, Li Q, Qu Y. HSP70 silencing aggravates apoptosis induced by hypoxia/reoxygenation in vitro. Exp Ther Med 2019; 18:1013-1020. [PMID: 31363363 PMCID: PMC6614734 DOI: 10.3892/etm.2019.7697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
Lung ischemia-reperfusion can cause acute lung injury, which is closely associated with apoptosis. Heat shock protein 70 (HSP70) is an anti-apoptotic protein that promotes cell survival under a variety of different stress conditions. However, the role and mechanism of HSP70 in lung ischemia-reperfusion injury is yet to be fully elucidated. In the present study, an in vitro hypoxia/reoxygenation model of A549 cells was established to simulate lung ischemia-reperfusion and HSP70 was silenced by transfecting A549 cells with an shRNA sequence targeting HSP70. Western blotting, reverse transcription-quantitative polymerase chain reaction, Cell Counting kit-8 and flow cytometry were used to detect protein levels, RNA expression, cell activity and apoptosis. The results revealed that silencing HSP70 reduced cell viability, aggravated apoptosis, increased lactate dehydrogenase levels and induced a G2/M blockade in a hypoxia-reoxygenation A549 cell model. Furthermore, silencing HSP70 decreased the phosphorylation levels of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK); however, the total AKT and ERK levels did not change significantly. Pretreating A549 cells with the AKT pathway inhibitor, LY294002 and the ERK pathway inhibitor, U0216 led to a decrease in HSP70 expression. These results indicate that silencing HSP70 may aggravate apoptosis in hypoxia-reoxygenation cell models, potentially via the mitogen-activated protein kinase/ERK and phosphoinositide 3-kinase/AKT signaling pathways.
Collapse
Affiliation(s)
- Congying Zhai
- Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China.,Department of Respiratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Jiling Lv
- Department of Respiratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Keke Wang
- Department of Emergency, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qingshu Li
- Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yan Qu
- Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
23
|
Kaya A, Keskin M, Tatlisu MA, Uzman O, Borklu E, Cinier G, Yildirim E, Kayapinar O. Atrial Fibrillation: A Novel Risk Factor for No-Reflow Following Primary Percutaneous Coronary Intervention. Angiology 2019; 71:175-182. [DOI: 10.1177/0003319719840589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a lack of evidence regarding the association of atrial fibrillation (AF) and no-reflow (NR) phenomenon in patients with ST-segment elevation myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention (pPCI). A total of 2452 patients with STEMI who underwent pPCI were retrospectively investigated. After exclusions, 370 (14.6%) patients were in the AF group and 2095 (85.4%) were in the No-AF group. Patients with a thrombolysis in myocardial infarction flow rate <3 were defined as having NR. Patients in the AF group were older and had higher 3-vessel disease rates (24.1% vs 18.9%; P = .021) and lower left ventricular ejection fraction (45.4 [11.7] vs 48.7 [10.5%]; P < .001). No-reflow rates were higher in the AF group than in the No-AF group (29.1% vs 11.8%; P < .001). According to multivariable analysis, AF (odds ratio: 1.81, 95% confidence interval: 1.63-2.04, P < .001), age, Killip class, anterior myocardial infarction, diabetes mellitus, chronic kidney disease, stent length, and smoking were independent predictors of NR following pPCI. Atrial fibrillation is a quite common arrhythmia in patients with STEMI. Atrial fibrillation was found to be an independent predictor of NR in the current study. This effect of AF on coronary flow rate might be considered as an important risk factor in STEMI.
Collapse
Affiliation(s)
- Adnan Kaya
- Cardiology, Duzce University School of Medicine, Duzce, Turkey
| | - Muhammed Keskin
- Cardiology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | | | - Osman Uzman
- Cardiology, Dr Siyami Ersek Cardiovascular Surgery Hospital, Istanbul, Turkey
| | - Edibe Borklu
- Cardiology, Dr Siyami Ersek Cardiovascular Surgery Hospital, Istanbul, Turkey
| | - Goksel Cinier
- Cardiology, Dr Siyami Ersek Cardiovascular Surgery Hospital, Istanbul, Turkey
| | - Ersin Yildirim
- Cardiology, Dr Siyami Ersek Cardiovascular Surgery Hospital, Istanbul, Turkey
| | - Osman Kayapinar
- Cardiology, Duzce University School of Medicine, Duzce, Turkey
| |
Collapse
|
24
|
Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (Lond) 2019; 133:597-609. [PMID: 30804072 PMCID: PMC7470454 DOI: 10.1042/cs20180465] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Ischemic/reperfusion (I/R) injury causes a series of serious clinical problems associated with high morbidity and mortality in various disorders, such as acute kidney injury (AKI), myocardial infarction, ischemic stroke, circulatory arrest, and peripheral vascular disease. The pathophysiology and pathogenesis of I/R injury is complex and multifactorial. Recent studies have revealed that epigenetic regulation is critically involved in the pathogenesis of I/R-induced tissue injury. In this review, we will sum up recent advances on the modification, regulation, and implication of histone modifications and DNA methylation in I/R injury-induced organ dysfunction. Understandings of I/R-induced epigenetic alterations and regulations will aid in the development of potential therapeutics.
Collapse
Affiliation(s)
- Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, U.S.A
| |
Collapse
|
25
|
Hao J, Du H, Liu F, Lu JC, Yang XC, Cui W. Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) alleviates myocardial hypoxia-reoxygenation injury by inhibiting oxidative stress and ameliorating mitochondrial dysfunction. Exp Ther Med 2019; 17:2143-2151. [PMID: 30867702 PMCID: PMC6395998 DOI: 10.3892/etm.2019.7212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/16/2018] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are considered to be activators of apoptosis and serve a pivotal role in the pathogenesis of myocardial ischemia-reperfusion (MI/R) injury. Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) is a multifunctional protein that processes the cellular response to DNA damage and oxidative stress. Little is known about the role of APE1 in the pathogenesis of MI/R injury. The aim of the present study was to investigate the effects of APE1 on hypoxia-reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and the underlying mechanism responsible. It was demonstrated that H/R decreased cell viability and increased lactic dehydrogenase (LDH) release, as well as reducing APE1 expression in H9c2 cells. However, APE1 overexpression induced by transfection with APE1-expressing lentivirus significantly increased H9c2 cell viability, decreased LDH release, decreased apoptosis and reduced caspase-3 activity in H/R-treated H9c2 cells. APE1 overexpression ameliorated the H/R-induced increases in reactive oxygen species and NAPDH oxidase expression, as well as the decreases in superoxide dismutase activity and glutathione expression. Furthermore, APE1 overexpression increased mitochondrial membrane potential and ATP production, stabilized electron transport chain activity (as illustrated by increased NADH-ubiquinone oxidoreductase, succinate dehydrogenase, coenzyme Q-cytochrome c oxidoreductase and cytochrome c oxidase activities) and decreased the ratio of B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 in H/R, improving mitochondrial dysfunction. In conclusion, the results of the present study suggest that APE1 alleviates H/R-induced injury in H9c2 cells by attenuating oxidative stress and ameliorating mitochondrial dysfunction. APE1 may therefore be used as an effective treatment for MI/R injury.
Collapse
Affiliation(s)
- Jie Hao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hong Du
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing-Chao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiu-Chun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
26
|
van der Weg K, Prinzen FW, Gorgels AP. Editor's Choice- Reperfusion cardiac arrhythmias and their relation to reperfusion-induced cell death. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2018; 8:142-152. [PMID: 30421619 DOI: 10.1177/2048872618812148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reperfusion does not only salvage ischaemic myocardium but can also cause additional cell death which is called lethal reperfusion injury. The time of reperfusion is often accompanied by ventricular arrhythmias, i.e. reperfusion arrhythmias. While both conditions are seen as separate processes, recent research has shown that reperfusion arrhythmias are related to larger infarct size. The pathophysiology of fatal reperfusion injury revolves around intracellular calcium overload and reactive oxidative species inducing apoptosis by opening of the mitochondrial protein transition pore. The pathophysiological basis for reperfusion arrhythmias is the same intracellular calcium overload as that causing fatal reperfusion injury. Therefore both conditions should not be seen as separate entities but as one and the same process resulting in two different visible effects. Reperfusion arrhythmias could therefore be seen as a potential marker for fatal reperfusion injury.
Collapse
Affiliation(s)
- Kirian van der Weg
- 1 Department of Cardiology, Maastricht University Medical Center, The Netherlands
| | - Frits W Prinzen
- 2 Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Anton Pm Gorgels
- 1 Department of Cardiology, Maastricht University Medical Center, The Netherlands.,2 Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| |
Collapse
|
27
|
Hauer BE, Negash B, Chan K, Vuong W, Colbourne F, Pagliardini S, Dickson CT. Hyperoxia enhances slow-wave forebrain states in urethane-anesthetized and naturally sleeping rats. J Neurophysiol 2018; 120:1505-1515. [PMID: 29947598 DOI: 10.1152/jn.00373.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oxygen (O2) is a crucial element for physiological functioning in mammals. In particular, brain function is critically dependent on a minimum amount of circulating blood levels of O2 and both immediate and lasting neural dysfunction can result following anoxic or hypoxic episodes. Although the effects of deficiencies in O2 levels on the brain have been reasonably well studied, less is known about the influence of elevated levels of O2 (hyperoxia) in inspired gas under atmospheric pressure. This is of importance due to its typical use in surgical anesthesia, in the treatment of stroke and traumatic brain injury, and even in its recreational or alternative therapeutic use. Using local field potential (EEG) recordings in spontaneously breathing urethane-anesthetized and naturally sleeping rats, we characterized the influence of different levels of O2 in inspired gases on brain states. While rats were under urethane anesthesia, administration of 100% O2 elicited a significant and reversible increase in time spent in the deactivated (i.e., slow-wave) state, with concomitant decreases in both heartbeat and respiration rates. Increasing the concentration of carbon dioxide (to 5%) in inspired gas produced the opposite result on EEG states, mainly a decrease in the time spent in the deactivated state. Consistent with this, decreasing concentrations of O2 (to 15%) in inspired gases decreased time spent in the deactivated state. Further confirmation of the hyperoxic effect was found in naturally sleeping animals where it similarly increased time spent in slow-wave (nonrapid eye movement) states. Thus alterations of O2 in inspired air appear to directly affect forebrain EEG states, which has implications for brain function, as well as for the regulation of brain states and levels of forebrain arousal during sleep in both normal and pathological conditions. NEW & NOTEWORTHY We show that alterations of oxygen concentration in inspired air biases forebrain EEG state. Hyperoxia increases the prevalence of slow-wave states. Hypoxia and hypercapnia appear to do the opposite. This suggests that oxidative metabolism is an important stimulant for brain state.
Collapse
Affiliation(s)
- Brandon E Hauer
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Biruk Negash
- Department of Psychology, University of Alberta , Edmonton, Alberta , Canada
| | - Kingsley Chan
- Department of Psychology, University of Alberta , Edmonton, Alberta , Canada
| | - Wesley Vuong
- Department of Psychology, University of Alberta , Edmonton, Alberta , Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada.,Department of Psychology, University of Alberta , Edmonton, Alberta , Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada.,Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Clayton T Dickson
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada.,Department of Psychology, University of Alberta , Edmonton, Alberta , Canada.,Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
28
|
Chen K, Xu Z, Liu Y, Wang Z, Li Y, Xu X, Chen C, Xia T, Liao Q, Yao Y, Zeng C, He D, Yang Y, Tan T, Yi J, Zhou J, Zhu H, Ma J, Zeng C. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med 2018; 9:9/418/eaao6298. [PMID: 29187642 DOI: 10.1126/scitranslmed.aao6298] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/10/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Limb remote ischemic preconditioning (RIPC) is an effective means of protection against ischemia/reperfusion (IR)-induced injury to multiple organs. Many studies are focused on identifying endocrine mechanisms that underlie the cross-talk between muscle and RIPC-mediated organ protection. We report that RIPC releases irisin, a myokine derived from the extracellular portion of fibronectin domain-containing 5 protein (FNDC5) in skeletal muscle, to protect against injury to the lung. Human patients with neonatal respiratory distress syndrome show reduced concentrations of irisin in the serum and increased irisin concentrations in the bronchoalveolar lavage fluid, suggesting transfer of irisin from circulation to the lung under physiologic stress. In mice, application of brief periods of ischemia preconditioning stimulates release of irisin into circulation and transfer of irisin to the lung subjected to IR injury. Irisin, via lipid raft-mediated endocytosis, enters alveolar cells and targets mitochondria. Interaction between irisin and mitochondrial uncoupling protein 2 (UCP2) allows for prevention of IR-induced oxidative stress and preservation of mitochondrial function. Animal model studies show that intravenous administration of exogenous irisin protects against IR-induced injury to the lung via improvement of mitochondrial function, whereas in UCP2-deficient mice or in the presence of a UCP2 inhibitor, the protective effect of irisin is compromised. These results demonstrate that irisin is a myokine that facilitates RIPC-mediated lung protection. Targeting the action of irisin in mitochondria presents a potential therapeutic intervention for pulmonary IR injury.
Collapse
Affiliation(s)
- Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China.,Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yu Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Xuefei Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yonggang Yao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Cindy Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianxun Yi
- Department of Physiology, Kansas City University, Kansas City, MO 64106, USA
| | - Jingsong Zhou
- Department of Physiology, Kansas City University, Kansas City, MO 64106, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China. .,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| |
Collapse
|
29
|
Li X, Xu Y, Cheng Y, Wang R. α7 Nicotinic acetylcholine receptor contributes to the alleviation of lung ischemia-reperfusion injury by transient receptor potential vanilloid type 1 stimulation. J Surg Res 2018; 230:164-174. [PMID: 30100034 DOI: 10.1016/j.jss.2018.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/06/2018] [Accepted: 05/23/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Activation of transient receptor potential vanilloid type 1 (TRPV1) decreases lung ischemia-reperfusion injury (LIRI) in rabbits and rats. Stimulation of α7 nicotinic acetylcholine receptors (α7nAChRs) protects against lung injury. Here we examined whether α7nAChRs contribute to TRPV1-mediated protection against LIRI. METHODS Wild-type (WT) and TRPV1-knockout (KO) mice were subjected to 1-h lung ischemia by clamping left hilum, followed by 2-h reperfusion. WT or KO mice were pretreated with vehicle, TRPV1 agonist capsaicin, TRPV1 antagonist capsazepine, α7nAChR antagonist methyllycaconitine, or α7nAChR agonist PNU-282987. Arterial blood and lung tissues were obtained for blood gas, lung wet-to-dry weight ratio, interleukin (IL)1β, IL6, tumor necrosis factor-α (TNF-α), apoptosis-related proteins (caspases, Bax, Fas), and pathologic scoring. RESULTS Capsaicin pretreatment reduced wet-to-dry ratio, pathologic score, alveolar-arterial oxygen gradient (A-aDO2), and IL1β, IL6, and TNFα levels in WT mice, with no effects in KO mice. This reduction was reversed by TRPV1 blockade. Furthermore, α7nAChR blockade before capsaicin exacerbated LIRI as evidenced by enhanced alveolar-arterial oxygen gradient, pathologic score, and IL1β, IL6, and TNFα levels, while α7nAChR agonist pretreatment under TRPV1 blockade showed opposite changes. Capsaicin also decreased cleaved caspase-3, caspase-3/9, and Bax protein expression, effects abolished by TRPV1 blockade. Similarly, α7nAChR blockade diminished capsaicin-induced downregulation of apoptotic proteins, and α7nAChR activation decreased expression levels even under TRPV1 blockade. CONCLUSIONS TRPV1 activation alleviates LIRI, partially dependent on α7nAChR activity. The α7nAChR stimulation with or without existence of TRPV1 alleviates LIRI. Thus, α7nAChR is involved in the pathway of TRPV1-mediated protection against LIRI and the specific mechanism remains to be revealed.
Collapse
Affiliation(s)
- Xuehan Li
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yi Xu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Cheng
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rurong Wang
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
30
|
Salie R, Lochner A, Loubser DJ. The significance of the washout period in preconditioning. Cardiovasc Ther 2018; 35. [PMID: 28118517 DOI: 10.1111/1755-5922.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
AIMS Exposure of the heart to 5 min global ischaemia (I) followed by 5 min reperfusion (R) (ischaemic preconditioning, IPC) or transient Beta 2-adrenergic receptor (B2-AR) stimulation with formoterol (B2PC), followed by 5 min washout before index ischaemia, elicits cardioprotection against subsequent sustained ischaemia. As the washout period during preconditioning is essential for subsequent cardioprotection, the aim of this study was to investigate the involvement of protein kinase A (PKA), reactive oxygen species (ROS), extracellular signal-regulated kinase (ERK), PKB/Akt, p38 MAPK and c-jun N-terminal kinase (JNK) during this period. METHODS Isolated perfused rat hearts were exposed to IPC (1x5min I / 5min R) or B2PC (1x5min Formoterol / 5min R) followed by 35 min regional ischaemia and reperfusion. Inhibitors for PKA (Rp-8CPT-cAMP)(16μM), ROS (NAC)(300μM), PKB (A-6730)(2.5μM), ERKp44/p42 (PD98,059)(10μM), p38MAPK (SB239063)(1μM) or JNK (SP600125)(10μM) were administered for 5 minutes before 5 minutes global ischaemia / 5 min reperfusion (IPC) or for 5 minutes before and during administration of formoterol (B2PC) prior to regional ischaemia, reperfusion and infarct size (IS) determination. Hearts exposed to B2PC or IPC were freeze-clamped during the washout period for Western blots analysis of PKB, ERKp44/p42, p38MAPK and JNK. RESULTS The PKA blocker abolished both B2PC and IPC, while NAC significantly increased IS of IPC but not of B2PC. Western blot analysis showed that ERKp44/p42 and PKB activation during washout after B2PC compared to IPC was significantly increased. IPC compared to B2PC showed significant p38MAPK and JNKp54/p46 activation. PKB and ERK inhibition or p38MAPK and JNK inhibition during the washout period of B2PC and IPC respectively, significantly increased IS. CONCLUSION PKA activation before regional ischaemia is a prerequisite for cardioprotection in both B2PC and IPC. However, ROS was crucial only in IPC. Kinase activation during the washout phase of IPC and B2PC, albeit different, affords the same cardioprotective response.
Collapse
Affiliation(s)
- Ruduwaan Salie
- Biomedical Research and Innovation Platform, South African Medical Research Council, Parow Valley, Cape Town, South Africa.,Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, Cape Town, South Africa
| | - Amanda Lochner
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, Cape Town, South Africa
| | - Dirk J Loubser
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, Cape Town, South Africa
| |
Collapse
|
31
|
Bubb KJ, Kok C, Tang O, Rasko NB, Birgisdottir AB, Hansen T, Ritchie R, Bhindi R, Reisman SA, Meyer C, Ward K, Karimi Galougahi K, Figtree GA. The NRF2 activator DH404 attenuates adverse ventricular remodeling post-myocardial infarction by modifying redox signalling. Free Radic Biol Med 2017; 108:585-594. [PMID: 28438659 DOI: 10.1016/j.freeradbiomed.2017.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The novel synthetic triterpenoid, bardoxolone methyl, has the ability to upregulate cytoprotective proteins via induction of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. This makes it a promising therapeutic agent in disease states characterized by dysregulated oxidative signalling. We have examined the effect of a Nrf2 activator, dihydro-CDDO-trifluoroethyl amide (DH404), a derivative of bardoxolone methyl, on post-infarct cardiac remodeling in rats. METHODS/RESULTS DH404, administered from day 2 post myocardial infarction (MI: 30min transient ischemia followed by reperfusion) resulted in almost complete protection against adverse ventricular remodeling as assessed at day 28 (left ventricular end-systolic area: sham 0.14±0.01cm2, MI vehicle 0.29±0.04cm2 vs. MI DH404 0.18±0.02cm2, P<0.05); infarct size (21.3±3.4% MI vehicle vs. 10.9±2.3% MI DH404, P<0.05) with associated benefits on systolic function (fractional shortening: sham 71.9±2.6%, MI vehicle 36.2±1.9% vs. MI DH404 58.6±4.0%, P<0.05). These structural and functional benefits were associated with lower myocardial expression of atrial natriuretic peptide (ANP, P<0.01 vs. MI vehicle), and decreased fibronectin (P<0.01 vs. MI vehicle) in DH404-treated MI rats at 28 days. MI increased glutathionylation of endothelial nitric oxide synthase (eNOS) in vitro - a molecular switch that uncouples the enzyme, increasing superoxide production and decreasing nitric oxide (NO) bioavailability. MI-induced eNOS glutathionylation was substantially ameliorated by DH404. An associated increase in glutaredoxin 1 (Grx1) co-immunoprecipitation with eNOS without a change in expression was mechanistically intriguing. Indeed, in parallel in vitro experiments, silencing of Grx1 abolished the protective effect of DH404 against Angiotensin II-induced eNOS uncoupling. CONCLUSION The bardoxolone derivative DH404 significantly attenuated cardiac remodeling post MI, at least in part, by re-coupling of eNOS and increasing the functional interaction of Grx1 with eNOS. This agent may have clinical benefits protecting against post MI cardiomyopathy.
Collapse
Affiliation(s)
- Kristen J Bubb
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Cindy Kok
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Owen Tang
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Nathalie B Rasko
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Asa B Birgisdottir
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Hansen
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Rebecca Ritchie
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Ravinay Bhindi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia
| | | | | | - Keith Ward
- Reata Pharmaceuticals, Inc. Irving, TX, USA
| | - Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia.
| |
Collapse
|
32
|
Zhang W, Zhang J. Dexmedetomidine preconditioning protects against lung injury induced by ischemia-reperfusion through inhibition of autophagy. Exp Ther Med 2017; 14:973-980. [PMID: 28810549 PMCID: PMC5526121 DOI: 10.3892/etm.2017.4623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/24/2017] [Indexed: 01/31/2023] Open
Abstract
The present study aimed to evaluate the role of autophagy in the protective effect of dexmedetomidine in lung injury caused by ischemia-reperfusion (IR) in rats. In total 48 adult male Sprague-Dawley rats were randomly divided into 6 groups (n=8) as follows: i) Sham group; ii) the IR group; iii) IR + 1 µg/kg dexmedetomidine preconditioning group (pre-LD); iv) IR + 10 µg/kg dexmedetomidine preconditioning group (pre-HD); v) IR + 1 µg/kg dexmedetomidine postconditioning group (post-LD); and vi) IR + 10 µg/kg dexmedetomidine postconditioning group (post-HD). After the rats were anesthetized, the hilum of the left lung was occluded with a non-invasive microvascular clip for 30 min to induce ischemia. The clip was then removed and the left lung was allowed to regain ventilation and blood for 2 h. The rats were then sacrificed, the left lung removed and the wet/dry (W/D) lung weight ratio was determined. Pathological changes to the lungs were evaluated by light and transmission electron microscopy. Furthermore, the rate of lung cell apoptosis was determined by the TUNEL assay. The expression of hypoxia-inducible factor 1α (HIF-1α), Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3), BNIP3 like (BNIP3 L) and microtubule-associated protein 1A/1B light chain 3B (LC3II) was determined by western blotting. Compared with the sham group, a significant increase in the W/D lung weight ratio, and malondialdehyde (MDA), BNIP3, BNIP3 L and LC3II levels were observed in the IR group, and HIF-1α levels and superoxide dismutase (SOD) activity were decreased. Furthermore, the W/D ratio was lower in the pre-LD and pre-HD groups than in the IR group. Additionally, SOD activity was significantly higher and MDA expression was significantly lower in the pre-LD and pre-HD groups compared with the IR group. BNIP3, BNIP3 L and LC3II protein levels were significantly lower in the pre-LD and pre-HD groups compared with the IR group, while HIF-1α was notably upregulated in the pre-LD and pre-HD groups compared with the IR group. In conclusion, the results of the present study indicate that dexmedetomidine preconditioning protects against lung injury induced by IR through inhibition of autophagy and apoptosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiaqiang Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
33
|
Ghaffari S, Pourafkari L, Manzouri S, Nader ND. Effect of remote ischemic postconditioning during thrombolysis in STEMI. Herz 2017; 43:161-168. [DOI: 10.1007/s00059-017-4550-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/08/2017] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
|
34
|
García-de-la-Asunción J, García-del-Olmo E, Galan G, Guijarro R, Martí F, Badenes R, Perez-Griera J, Duca A, Delgado C, Carbonell J, Belda J. Glutathione oxidation correlates with one-lung ventilation time and PO2/FiO2 ratio during pulmonary lobectomy. Redox Rep 2016; 21:219-26. [PMID: 26795138 PMCID: PMC6837706 DOI: 10.1080/13510002.2015.1101890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES During lung lobectomy, the operated lung completely collapses with simultaneous hypoxic pulmonary vasoconstriction, followed by expansion and reperfusion. Here, we investigated glutathione oxidation and lipoperoxidation in patients undergoing lung lobectomy, during one-lung ventilation (OLV) and after resuming two-lung ventilation (TLV), and examined the relationship with OLV duration. METHODS We performed a single-centre, observational, prospective study in 32 patients undergoing lung lobectomy. Blood samples were collected at five time-points: T0, pre-operatively; T1, during OLV, 5 minutes before resuming TLV; and T2, T3, and T4, respectively, 5, 60, and 180 minutes after resuming TLV. Samples were tested for reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione redox potential, and malondialdehyde (MDA). RESULTS GSSG and MDA blood levels increased at T1, and increased further at T2. OLV duration directly correlated with marker levels at T1 and T2. Blood levels of GSH and glutathione redox potential decreased at T1-T3. GSSG, oxidized glutathione/total glutathione ratio, and MDA levels were inversely correlated with arterial blood PO2/FiO2 at T1 and T2. DISCUSSION During lung lobectomy and OLV, glutathione oxidation, and lipoperoxidation marker blood levels increase, with further increases after resuming TLV. Oxidative stress degree was directly correlated with OLV duration, and inversely correlated with arterial blood PO2/FiO2.
Collapse
Affiliation(s)
- José García-de-la-Asunción
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Eva García-del-Olmo
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Spain
| | - Genaro Galan
- Department of Thoracic Surgery, Hospital Clínico Universitario de Valencia, Spain
| | - Ricardo Guijarro
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Spain
| | - Francisco Martí
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Rafael Badenes
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Jaume Perez-Griera
- Laboratory of Biochemistry, Hospital Clínico Universitario de Valencia, Spain
| | - Alejandro Duca
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Carlos Delgado
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Jose Carbonell
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Javier Belda
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| |
Collapse
|
35
|
Freitas CRDC, Malbouisson LMS, Benicio A, Negri EM, Bini FM, Massoco CO, Otsuki DA, Melo MFV, Carmona MJC. Lung Perfusion and Ventilation During Cardiopulmonary Bypass Reduces Early Structural Damage to Pulmonary Parenchyma. Anesth Analg 2016; 122:943-52. [PMID: 26991612 DOI: 10.1213/ane.0000000000001118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND It is unclear whether maintaining pulmonary perfusion and ventilation during cardiopulmonary bypass (CPB) reduces pulmonary inflammatory tissue injury compared with standard CPB where the lungs are not ventilated and are minimally perfused. In this study, we tested the hypothesis that maintenance of lung perfusion and ventilation during CPB decreases regional lung inflammation, which may result in less pulmonary structural damage. METHODS Twenty-seven pigs were randomly allocated into a control group only submitted to sternotomy (n = 8), a standard CPB group (n = 9), or a lung perfusion group (n = 10), in which lung perfusion and ventilation were maintained during CPB. Hemodynamics, gas exchanges, respiratory mechanics, and systemic interleukins (ILs) were determined at baseline (T0), at the end of 90 minutes of CPB (T90), and 180 minutes after CPB (T180). Bronchoalveolar lavage (BAL) ILs were obtained at T0 and T180. Dorsal and ventral left lung tissue samples were examined for optical and electron microscopy. RESULTS At T90, there was a transient reduction in PaO2/FIO2 in CPB (126 ± 64 mm Hg) compared with the control and lung perfusion groups (296 ± 46 and 244 ± 57 mm Hg; P < 0.001), returning to baseline at T180. Serum ILs were not different among the groups throughout the study, whereas there were significant increases in BAL IL-6 (P < 0.001), IL-8 (P < 0.001), and IL-10 (P < 0.001) in both CPB and lung perfusion groups compared with the control group. Polymorphonuclear counts within the lung tissue were smaller in the lung perfusion group than in the CPB group (P = 0.006). Electron microscopy demonstrated extrusion of surfactant vesicles into the alveolar spaces and thickening of the alveolar septa in the CPB group, whereas alveolar and capillary histoarchitecture was better preserved in the lung perfusion group. CONCLUSIONS Maintenance of lung perfusion and ventilation during CPB attenuated early histologic signs of pulmonary inflammation and injury compared with standard CPB. Although increased compared with control animals, there were no differences in serum or BAL IL in animals receiving lung ventilation and perfusion during CPB compared with standard CPB.
Collapse
Affiliation(s)
- Claudia Regina da Costa Freitas
- From the *Discipline of Anesthesiology, LIM 8 - Laboratory of Anesthesiology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; †Department of Cardiothoracic Surgery, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; ‡Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; §Department of Veterinary Pathology, Faculdade de Medicina Veterinária da Universidade de Sao Paulo, São Paulo, Brazil; and ‖Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dexmedetomidine protects against lung ischemia-reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway. J Anesth 2016; 30:826-33. [PMID: 27412350 DOI: 10.1007/s00540-016-2214-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the role of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/hypoxia-inducible factor 1α (HIF-1α) signaling pathway in the protection by dexmedetomidine against lung ischemia-reperfusion injury (IRI) in rats. METHODS Forty-eight male Sprague-Dawley rats weighing 250-350 g were randomly divided into six groups (n = 8 each group): sham group, IRI group, low-dose dexmedetomidine group (LD group), high-dose dexmedetomidine group (HD group), combined low-dose dexmedetomidine and LY294002 group (LDL group), and combined high-dose dexmedetomidine and LY294002 group (HDL group). A 30-min ischemia was induced by occluding the hilum of the left lung, followed by a 120-min reperfusion by removing occlusion of the hilum. After the left lung was removed, the wet/dry weight ratio (W/D) of the lung tissues was determined. Pathological changes of lung tissues were evaluated by light and electron microscopes and the expression of p-Akt and HIF-1α in the lung tissues was determined by western blotting. RESULTS Compared with the sham group, both the W/D ratio and lung injury were significantly increased, the p-Akt expression was down-regulated and HIF-1α expression was up-regulated in the five experimental groups. Compared with the LD and LDL groups, both the W/D ratio and lung injury were decreased, but the expression of p-Akt and HIF-1α was increased in the HD and HDL groups. CONCLUSIONS Administration of dexmedetomidine before ischemia can provide a protection against lung IRI by re-installing the PI3K/Akt/HIF-1α signaling pathway.
Collapse
|
37
|
Belguith-Hadriche O, Ammar S, Contreras MDM, Turki M, Segura-Carretero A, El Feki A, Makni-Ayedi F, Bouaziz M. Antihyperlipidemic and Antioxidant Activities of Edible Tunisian Ficus carica L. Fruits in High Fat Diet-Induced Hyperlipidemic Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:183-189. [PMID: 27086310 DOI: 10.1007/s11130-016-0541-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The phenolic constituents of the aqueous-ethanolic extract of Tunisian Ficus carica (F. carica) fruit (FE) and its antihyperlipidemic and antioxidant activities in high-fat diet-induced hyperlipidemic rats (HFD) were evaluated. The obtained results demonstrated that the FE improved the lipid profile by decreasing the total cholesterol, triglyceride, low-density lipoprotein cholesterol and increasing high-density lipoprotein cholesterol levels. It also reduced the content of thiobarbituric acid-reactive substances and increased the antioxidant enzymes in liver, heart and kidney in HFD-fed rats. These antihyperlipidemic effects and in vivo antioxidative effects correlated with the in vitro phenolic content scavenging ability. Thus, the major phenolic compounds were identified using reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled with two detection systems: diode-array detection (DAD) and quadrupole time-of-flight (QTOF) mass spectrometry (MS). Therefore, in the negative ionization mode, 28 phenolic compounds, including hydroxybenzoic acids, hydroxycinnamic acids, flavanoids and hydroxycoumarins were characterized. Dihydroxybenzoic acid di-pentoside, the flavonol quercetin 3-O-rutinoside and the flavone assigned as apigenin 8-C-glucoside were the main representative compounds in 'Tounsi' fruits. This work was complemented by the detection of seven other phenolic compounds in the positive ionization mode, including anthocyanins and furanocoumarins. Overall, these results have shown that the FE has a significant hypocholesterolemic effect and antioxidant activity in HFD-fed rats. This beneficial effect may be partly due to these phenolic constituents, especially vitexin, dihydroxybenzoic acid di-pentoside as well as rutin.
Collapse
Affiliation(s)
- Olfa Belguith-Hadriche
- Unité de recherche DGRST 12-ES/17, Laboratoire de Biochimie, Faculté de Médecine de Sfax, Sfax, Tunisie.
- Laboratoire d'Ecophysiologie Animale Faculté des Sciences de Sfax, Sfax, Tunisie.
| | - Sonda Ammar
- Laboratoire d'Electrochimie et Environnement, Ecole national d'ingénieur de Sfax, Université de Sfax, BP 1177, Sfax, Tunisie
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Maria Del Mar Contreras
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Mouna Turki
- Unité de recherche DGRST 12-ES/17, Laboratoire de Biochimie, Faculté de Médecine de Sfax, Sfax, Tunisie
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Abdelfattah El Feki
- Laboratoire d'Ecophysiologie Animale Faculté des Sciences de Sfax, Sfax, Tunisie
| | - Fatma Makni-Ayedi
- Unité de recherche DGRST 12-ES/17, Laboratoire de Biochimie, Faculté de Médecine de Sfax, Sfax, Tunisie
| | - Mohamed Bouaziz
- Laboratoire d'Electrochimie et Environnement, Ecole national d'ingénieur de Sfax, Université de Sfax, BP 1177, Sfax, Tunisie.
| |
Collapse
|
38
|
Yu H, Guan Q, Guo L, Zhang H, Pang X, Cheng Y, Zhang X, Sun Y. Gypenosides alleviate myocardial ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function in rat heart. Cell Stress Chaperones 2016; 21:429-37. [PMID: 26800973 PMCID: PMC4837178 DOI: 10.1007/s12192-016-0669-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/29/2022] Open
Abstract
Gypenosides (GP) are the predominant components of Gynostemma pentaphyllum, a Chinese herb medicine that has been widely used for the treatment of chronic inflammation, hyperlipidemia, and cardiovascular disease. GP has been demonstrated to exert protective effects on the liver and brain against ischemia-reperfusion (I/R) injury, yet whether it is beneficial to the heart during myocardial I/R is unclear. In this study, we demonstrate that pre-treatment with GP dose-dependently limits infarct size, alleviates I/R-induced pathological changes in the myocardium, and preserves left ventricular function in a rat model of cardiac I/R injury. In addition, GP pre-treatment reduces oxidative stress and protects the intracellular antioxidant machinery in the myocardium. Further, we show that the cardioprotective effect of GP is associated with the preservation of mitochondrial function in the cardiomyocytes, as indicated by ATP level, enzymatic activities of complex I, II, and IV on the mitochondrial respiration chain, and the activity of citrate synthase in the citric acid cycle for energy generation. Moreover, GP maintains mitochondrial membrane integrity and inhibits the release of cytochrome c from the mitochondria to the cytosol. The cytoprotective effect of GP is further confirmed in vitro in H9c2 cardiomyoblast cell line with oxygen-glucose deprivation and reperfusion (OGD/R), and the results indicate that GP protects cell viability, reduces oxidative stress, and preserves mitochondrial function. In conclusion, our study suggests that GP may be of clinical value in cytoprotection during acute myocardial infarction and reperfusion.
Collapse
Affiliation(s)
- Haijie Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Qigang Guan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Liang Guo
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Haishan Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xuefeng Pang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Ying Cheng
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xingang Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yingxian Sun
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
39
|
Ktari N, Belguith-Hadriche O, Ben Amara I, Ben Hadj A, Turki M, Makni-Ayedi F, Boudaouara T, El Feki A, Boualga A, Ben Salah R, Nasri M. Cholesterol regulatory effects and antioxidant activities of protein hydrolysates from zebra blenny (Salaria basilisca) in cholesterol-fed rats. Food Funct 2016; 6:2273-82. [PMID: 26065510 DOI: 10.1039/c5fo00492f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aims to explore the hypocholesterolemic effects and antioxidative activities of zebra blenny protein hydrolysates (ZBPHs) in rats fed with a hypercholesterolemic diet. The rats were fed during eight weeks a standard laboratory diet (normal rats), a high-cholesterol diet (HCD) (1%) or a HCD and orally treated with ZBPHs or undigested zebra blenny proteins (UZBPs) (400 mg per kg per day). Results showed that a hypercholesterolemic diet induced the increase of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Treatment with ZBPHs increased the level of high-density lipoprotein cholesterol (HDL-C) and decreased significantly the levels of TC, TG, and LDL-C. In addition, ZBPH treatment showed significant normalization of thiobarbituric acid-reactive substance (TBARS) levels as well as catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in renal and hepatic tissues. Furthermore, ZBPHs may also exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in the level of serum urea, uric acid, creatinine, alkaline phosphatase (ALP), and alanine aminotransferase (ALAT). Histological studies confirmed that ZBPHs effectively protected the livers and kidneys against hypercholesterolemia-mediated oxidative damage. Therefore, the study strengthens the hypothesis that ZBPHs can be used as novel antioxidants and hypocholesterolemic compounds against hyperlipidemia induced atherosclerosis.
Collapse
Affiliation(s)
- Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, P.O. 1173-3038, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Inagaki T, Akiyama T, Du CK, Zhan DY, Yoshimoto M, Shirai M. Monoamine oxidase-induced hydroxyl radical production and cardiomyocyte injury during myocardial ischemia-reperfusion in rats. Free Radic Res 2016; 50:645-53. [PMID: 26953687 DOI: 10.3109/10715762.2016.1162300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To elucidate the involvement of monoamine oxidase (MAO) in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion, we applied microdialysis technique to the heart of anesthetized rats. Dialysate samples were collected during 30 min of induced ischemia followed by 60 min of reperfusion. We monitored dialysate 3,4-dihydrobenzoic acid (3,4-DHBA) concentration as an index of hydroxyl radical production using a trapping agent (4-hydroxybenzoic acid), and dialysate myoglobin concentration as an index of cardiomyocyte injury in the ischemic region. The effect of local administration of a MAO inhibitor, pargyline, was investigated. Dialysate 3,4-DHBA concentration increased from 1.9 ± 0.5 nM at baseline to 3.5 ± 0.7 nM at 20-30 min of occlusion. After reperfusion, dialysate 3,4-DHBA concentration further increased reaching a maximum (4.5 ± 0.3 nM) at 20-30 min after reperfusion, and stabilized thereafter. Pargyline suppressed the averaged increase in dialysate 3,4-DHBA concentration by ∼72% during occlusion and by ∼67% during reperfusion. Dialysate myoglobin concentration increased from 235 ± 60 ng/ml at baseline to 1309 ± 298 ng/ml at 20-30 min after occlusion. After reperfusion, dialysate myoglobin concentration further increased reaching a peak (5833 ± 1017 ng/ml) at 10-20 min after reperfusion, and then declined. Pargyline reduced the averaged dialysate myoglobin concentration by ∼56% during occlusion and by ∼41% during reperfusion. MAO plays a significant role in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion.
Collapse
Affiliation(s)
- Tadakatsu Inagaki
- a Department of Cardiac Physiology , National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| | - Tsuyoshi Akiyama
- a Department of Cardiac Physiology , National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| | - Cheng-Kun Du
- a Department of Cardiac Physiology , National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| | - Dong-Yun Zhan
- a Department of Cardiac Physiology , National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| | - Misa Yoshimoto
- b Department of Environmental Health , Nara Women's University , Nara , Japan
| | - Mikiyasu Shirai
- a Department of Cardiac Physiology , National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| |
Collapse
|
41
|
Delayed coronary reperfusion is ineffective at impeding the dynamic increase in cardiac efferent sympathetic nerve activity following myocardial ischemia. Basic Res Cardiol 2016; 111:35. [PMID: 27093872 DOI: 10.1007/s00395-016-0556-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Acute myocardial infarction (MI) is associated with an adverse and sustained increase in cardiac sympathetic nerve activity (SNA), triggering potentially fatal ventricular arrhythmias. While myocardial reperfusion undoubtedly improves patient prognosis, it remains unknown whether reperfusion therapy also attenuates the dangerous increase in SNA. This study aimed to investigate the effect of time-dependent coronary reperfusion therapy on cardiac SNA following acute MI. Electrophysiological recordings of cardiac efferent SNA were performed in urethane-anaesthetized rats following ligation of the left anterior descending coronary artery (i.e., MI) for either 15 or 45 min, followed by 'early' or 'delayed' reperfusion, respectively. Another group of rats had permanent ischemia with no reperfusion. Forty-five minutes of ischemia induced a 55 % increase in efferent SNA. Subsequent 'delayed' reperfusion was ineffective at ameliorating further increases in SNA (maximal 153 % increase), so that MI-induced increases in SNA mirrored that observed in rats with permanent MI. Although SNA did not increase during 15 min of ischemia, it did significantly increase, albeit delayed, during the subsequent reperfusion period (max. 75 % increase). Importantly, however, this increase in SNA, which tended to be lower in the 'early'-reperfusion group, was matched with a lower incidence of arrhythmias and mortality rate, compared to the 'delayed'-reperfusion and permanent-MI groups. These results highlight that 'prompt' coronary reperfusion, before SNA becomes activated, may provide a crucial window of opportunity for improving outcome. Further research is essential to identify the mechanisms that underpin, not only sympathetic activation, but also importantly sympathetic deactivation as a potential therapeutic target for MI.
Collapse
|
42
|
Babiker FA. Pacing Postconditioning: Recent Insights of Mechanism of Action and Probable Future Clinical Application. Med Princ Pract 2016; 25 Suppl 1:22-8. [PMID: 25966896 PMCID: PMC5588518 DOI: 10.1159/000381916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/26/2015] [Indexed: 01/29/2023] Open
Abstract
Ischemic heart disease, also known as coronary heart disease or coronary artery disease, accounts for >50% of cardiovascular events and is a leading cause worldwide of morbidity and mortality. Hypoperfusion of the heart is the major cause of injury in ischemic heart disease, as it results in the death of cardiomyoctes due to a lack of oxygen and energy. This injury ultimately leads to a dead area in the heart called infarcted area or myocardial infarction. The formation of myocardial infarction leads to a lengthy process of remodeling which causes many changes in the architecture and the electrophysiology of the heart. These changes may eventually lead to death due to arrhythmia or heart failure. Tremendous efforts have been made over the last decades to decrease the burden of ischemic reperfusion (I/R) injury. The first salvage to the ischemic heart is reperfusion; however, this procedure is associated with a subsequent reperfusion injury. In the 1980s, a method known as preconditioning was introduced and showed great potential in combating ischemic heart disease, but this technique is limited by the difficulty of its translation to the clinic as it requires the anticipation of an occurrence of ischemic heart disease. Not long after, a new method, postconditioning, was introduced. This method showed great success, and several studies were performed to investigate its signaling cascades and the possibility of its translation to the clinic. Thereafter, several trials were made, and many methods of postconditioning were developed. One of these is intermittent dyssynchrony, pacing postconditioning (PPC), of the heart, which involves brief episodes of electrical pacing. PPC afforded a pronounced protection to the heart against I/R injury, similar to that afforded by pre- and postconditioning.
Collapse
Affiliation(s)
- Fawzi A. Babiker
- *Dr. Fawzi A. Babiker, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 249233, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
43
|
Bouleti C, Mewton N, Germain S. The no-reflow phenomenon: State of the art. Arch Cardiovasc Dis 2015; 108:661-74. [PMID: 26616729 DOI: 10.1016/j.acvd.2015.09.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
Primary percutaneous coronary intervention (PCI) is the best available reperfusion strategy for acute ST-segment elevation myocardial infarction (STEMI), with nearly 95% of occluded coronary vessels being reopened in this setting. Despite re-establishing epicardial coronary vessel patency, primary PCI may fail to restore optimal myocardial reperfusion within the myocardial tissue, a failure at the microvascular level known as no-reflow (NR). NR has been reported to occur in up to 60% of STEMI patients with optimal coronary vessel reperfusion. When it does occur, it significantly attenuates the beneficial effect of reperfusion therapy, leading to poor outcomes. The pathophysiology of NR is complex and incompletely understood. Many phenomena are known to contribute to NR, including leukocyte infiltration, vasoconstriction, activation of inflammatory pathways and cellular oedema. Vascular damage and haemorrhage may also play important roles in the establishment of NR. In this review, we describe the pathophysiological mechanisms of NR and the tools available for diagnosing it. We also describe the microvasculature and the endothelial mechanisms involved in NR, which may provide relevant therapeutic targets for reducing NR and improving the prognosis for patients.
Collapse
Affiliation(s)
- Claire Bouleti
- Service de cardiologie, hôpital Bichat, AP-HP, Paris, France; DHU FIRE, université Paris Diderot, Paris, France; Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS/UMR 7241, Paris, France; Inserm U 1050, Paris, France
| | - Nathan Mewton
- Hôpital cardiovasculaire Louis-Pradel, centre d'investigation clinique unité, hospices civils de Lyon, Bron, France; Inserm U 1407, Lyon, France
| | - Stéphane Germain
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS/UMR 7241, Paris, France; Inserm U 1050, Paris, France.
| |
Collapse
|
44
|
Prati F, Romagnoli E, Limbruno U, Pawlowski T, Fedele S, Gatto L, Di Vito L, Pappalardo A, Ramazzotti V, Picchi A, Trivisonno A, Materia L, Pfiatkosky P, Paoletti G, Marco V, Tavazzi L, Versaci F, Stone GW. Randomized evaluation of intralesion versus intracoronary abciximab and aspiration thrombectomy in patients with ST-elevation myocardial infarction: The COCTAIL II trial. Am Heart J 2015; 170:1116-23. [PMID: 26678633 DOI: 10.1016/j.ahj.2015.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thrombus burden and distal embolization are predictive of no-reflow during primary percutaneous coronary intervention (PCI) in patients with acute ST-elevation myocardial infarction (STEMI). We sought to compare the efficacy of pharmacological and catheter-based strategies for thrombus in patients with STEMI and high atherothrombotic burden. METHODS Between January 2012 and December 2013, 128 STEMI patients undergoing primary PCI at 5 centers were randomly assigned in a 2 × 2 factorial design to intracoronary (IC) abciximab bolus (via the guide catheter) versus intralesion (IL) abciximab bolus, each with versus without aspiration thrombectomy (AT). Study end points were residual intrastent atherothrombotic burden, defined as the number of cross-sections with residual tissue area >10% as assessed by optical coherence tomography, and indices of angiographic and myocardial reperfusion. RESULTS Residual intrastent atherothrombotic burden did not significantly differ with IL versus IC abciximab (median [interquartile range] 6.0 [1-15] vs 6.0 [2-11], P = .806) and with AT versus no aspiration (6.0 [1-13] vs 6.0 [2-12], P = .775). Intralesion abciximab administration was associated with improved angiographic myocardial reperfusion in terms of thrombolysis in myocardial infarction (TIMI) flow (3 [3-3] vs 3 [2-3], P = .040), corrected TIMI frame count (12 ± 5 vs 17 ± 16, P = .021), and myocardial blush grade (3 [2-3] vs 3 [2-3], P = .035). In particular, IL abciximab was associated with higher occurrence of final TIMI 3 flow (90% vs 73.8%, P = .032) and myocardial blush grade 3 (71.6% vs 52.4%, P = .039). Conversely, AT had no significant effect on indices of angiographic or myocardial reperfusion. CONCLUSIONS In patients with STEMI and high thrombotic burden, neither IL versus IC abciximab nor AT versus no aspiration reduced postprocedure intrastent atherothrombotic burden in patients with STEMI undergoing primary PCI. However, IL abciximab improved indices of angiographic and myocardial reperfusion compared to IC abciximab, benefits not apparent with AT.
Collapse
|
45
|
Ng VG, Lansky AJ, Toro S, Parise H, Cristea E, Mehran R, Stone GW. Prognostic utility of myocardial blush grade after PCI in patients with NSTE-ACS: Analysis from the ACUITY trial. Catheter Cardiovasc Interv 2015; 88:215-24. [PMID: 25641255 DOI: 10.1002/ccd.25865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/07/2015] [Accepted: 01/25/2015] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We evaluated the ability of post-procedural myocardial blush grade (MBG) to stratify outcomes of patients undergoing percutaneous coronary intervention (PCI) for non-ST segment elevation acute coronary syndromes (NSTE-ACS). BACKGROUND MBG strongly correlates with survival after reperfusion therapy in patients with ST-segment elevation myocardial infarction (STEMI). METHODS Of 13,819 NSTE-ACS patients randomized in the ACUITY trial, 3,115 patients underwent PCI and had MBG analyzed by an independent angiographic core laboratory. We examined net adverse clinical events (NACE; composite ischemia or bleeding), composite ischemia (death, MI or ischemia-driven revascularization) and non-CABG major bleeding according to final MBG. RESULTS At 30 days, patients with MBG-0/1 had higher rates of NACE (25.1% vs. 13.9%, P = 0.002) and composite ischemia (19.1% vs. 9.4%, P = 0.002) than patients with MBG-2/3. At 1-year follow-up, MBG-0/1 patients had significantly higher rates of composite ischemia compared to other patients (27.8% vs. 19.8%, P = 0.02). By multivariable analysis, MBG-0/1 was an independent predictor of 30-day ischemia-driven revascularization (OR 5.74 [2.63, 12.54], P < 0.0001) in the total population and among patients with normal post-PCI epicardial TIMI-3 flow (OR 6.39 [2.06, 19.78], P = 0.001). However, 1-year outcomes were similar between patients with and without normal myocardial perfusion. CONCLUSIONS In conclusion, MBG is a predictor of 30-day revascularization in the overall population and in patients with normal epicardial flow but fails to stratify 1-year outcomes. Thus, unlike in STEMI patients, the prognostic value of MBG in NSTE-ACS patients appears to be limited to the short-term. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vivian G Ng
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Alexandra J Lansky
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Saleem Toro
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Helen Parise
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Ecaterina Cristea
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Roxana Mehran
- Division of Cardiology, Department of Medicine, Mount Sinai Medical Center and the Cardiovascular Research Foundation, New York, New York
| | - Gregg W Stone
- Division of Cardiology, Department of Medicine, Columbia University Medical Center and the Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
46
|
Oxidative Stress and Lung Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:590987. [PMID: 26161240 PMCID: PMC4487720 DOI: 10.1155/2015/590987] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.
Collapse
|
47
|
Chen JR, Wei J, Wang LY, Zhu Y, Li L, Olunga MA, Gao XM, Fan GW. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3051-66. [PMID: 26109848 PMCID: PMC4474392 DOI: 10.2147/dddt.s82146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aim To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ) on myocardial ischemia/reperfusion (I/R) injury through antioxidative stress and mitochondrial protection. Methods and results Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery) and reperfusion (120 minutes). Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C). Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ. Conclusion Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.
Collapse
Affiliation(s)
- Jing Rui Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jing Wei
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ling Yan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Mary Akinyi Olunga
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xiu Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guan Wei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People's Republic of China ; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
48
|
Dare AJ, Logan A, Prime TA, Rogatti S, Goddard M, Bolton EM, Bradley JA, Pettigrew GJ, Murphy MP, Saeb-Parsy K. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J Heart Lung Transplant 2015; 34:1471-80. [PMID: 26140808 PMCID: PMC4626443 DOI: 10.1016/j.healun.2015.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/22/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023] Open
Abstract
Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury.
Collapse
Affiliation(s)
- Anna J Dare
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Tracy A Prime
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Sebastian Rogatti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Martin Goddard
- Papworth Hospital National Health Service Foundation Trust, Papworth Everard, Cambridge, United Kingdom
| | - Eleanor M Bolton
- Department of Surgery, University of Cambridge, and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - J Andrew Bradley
- Department of Surgery, University of Cambridge, and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- Department of Surgery, University of Cambridge, and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
49
|
Shih YM, Shih JM, Pai MH, Hou YC, Yeh CL, Yeh SL. Glutamine Administration After Sublethal Lower Limb Ischemia Reduces Inflammatory Reaction and Offers Organ Protection in Ischemia/Reperfusion Injury. JPEN J Parenter Enteral Nutr 2015; 40:1122-1130. [PMID: 26059902 DOI: 10.1177/0148607115587949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study investigated the effects of intravenous glutamine (GLN) administration on the expression of adhesion molecules and inflammatory mediators in a mice model of hind limb ischemia/reperfusion (IR) injury. METHODS There were 3 IR groups and 1 normal control (NC) group. The NC group did not undergo the IR procedure. Mice in the IR groups underwent 90 minutes of limb ischemia followed by a variable period of reperfusion. Ischemia was performed by applying a 4.5-oz orthodontic rubber band to the left thigh. Mice in one IR group were sacrificed immediately after reperfusion. The other 2 IR groups were injected once with either 0.75 g GLN/kg body weight (G group) or an equal volume of saline (S group) via tail vein before reperfusion. Mice in the S and G groups were subdivided and sacrificed at 4 or 24 hours after reperfusion. RESULTS IR enhanced the inflammatory cytokine gene expressions in muscle. Also, plasma interleukin (IL)-6 levels, blood neutrophil percentage, and the adhesion molecule and chemokine receptors expressed by leukocytes were upregulated after reperfusion. The IR-induced muscle inflammatory mediator gene expressions, blood macrophage percentage, and plasma IL-6 concentration had declined at an early or a late phase of reperfusion when GLN was administered. Histologic findings also found that remote lung injury was attenuated during IR insult. CONCLUSIONS A single dose of GLN administration immediately after sublethal lower limb ischemia reduces the inflammatory reaction locally and systemically; this may offer local and distant organ protection in hind limb IR injury.
Collapse
Affiliation(s)
- Yao-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Juey-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Hou
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Li Yeh
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| | - Sung-Ling Yeh
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Novel insights into an “old” phenomenon: the no reflow. Int J Cardiol 2015; 187:273-80. [DOI: 10.1016/j.ijcard.2015.03.359] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/31/2022]
|