1
|
Sashidhara KV, Rao KB, Sonkar R, Modukuri RK, Chhonker YS, Kushwaha P, Chandasana H, Khanna AK, Bhatta RS, Bhatia G, Suthar MK, Saxena JK, Kumar V, Siddiqi MI. Hybrids of coumarin–indole: design, synthesis and biological evaluation in Triton WR-1339 and high-fat diet induced hyperlipidemic rat models. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00283h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipid lowering activity of novel coumarin–indole hybrids has been demonstrated.
Collapse
|
2
|
Is HPS2-THRIVE the death knell for niacin? J Clin Lipidol 2015; 9:343-50. [DOI: 10.1016/j.jacl.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 11/20/2022]
|
3
|
Tiwari V, Khokhar M. Mechanism of action of anti-hypercholesterolemia drugs and their resistance. Eur J Pharmacol 2014; 741:156-70. [PMID: 25151024 DOI: 10.1016/j.ejphar.2014.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023]
Abstract
Coronary artery disease is one of the leading causes of death worldwide. One of the significant causes of this disease is hypercholesterolemia which is the result of various genetic alterations that are associated with the accumulation of specific classes of lipoprotein particles in plasma. A number of drugs are used to treat hypercholesterolemia like statin, fibrate, bile acid sequestrants, niacin, ezetimibe, omega-3 fatty acids and natural extracts. It has been observed that these drugs show diverse response in different individuals. The present review explains the mechanism of action of these drugs as well as mechanism of its lesser effectiveness or resistance in some individuals. There are various identified genetic variations that are associated with diversity in the drugs response. Therefore, present study helps to understand the ethiology of drug mechanism and resistance developed against drugs used to treat hypercholesterolemia.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305801, Rajasthan, India.
| | - Manoj Khokhar
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305801, Rajasthan, India
| |
Collapse
|
4
|
Palani A, Rao AU, Chen X, Huang X, Su J, Tang H, Huang Y, Qin J, Xiao D, Degrado S, Sofolarides M, Zhu X, Liu Z, McKittrick B, Zhou W, Aslanian R, Greenlee WJ, Senior M, Cheewatrakoolpong B, Zhang H, Farley C, Cook J, Kurowski S, Li Q, van Heek M, Wang G, Hsieh Y, Li F, Greenfeder S, Chintala M. Discovery of SCH 900271, a Potent Nicotinic Acid Receptor Agonist for the Treatment of Dyslipidemia. ACS Med Chem Lett 2012; 3:63-8. [PMID: 24900372 DOI: 10.1021/ml200243g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/24/2011] [Indexed: 11/28/2022] Open
Abstract
Structure-guided optimization of a series of C-5 alkyl substituents led to the discovery of a potent nicotinic acid receptor agonist SCH 900271 (33) with an EC50 of 2 nM in the hu-GPR109a assay. Compound 33 demonstrated good oral bioavailability in all species. Compound 33 exhibited dose-dependent inhibition of plasma free fatty acid (FFA) with 50% FFA reduction at 1.0 mg/kg in fasted male beagle dogs. Compound 33 had no overt signs of flushing at doses up to 10 mg/kg with an improved therapeutic window to flushing as compared to nicotinic acid. Compound 33 was evaluated in human clinical trials.
Collapse
Affiliation(s)
- Anandan Palani
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ashwin U. Rao
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiao Chen
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xianhai Huang
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jing Su
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Haiqun Tang
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ying Huang
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jun Qin
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Dong Xiao
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Sylvia Degrado
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Michael Sofolarides
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaohong Zhu
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhidan Liu
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brian McKittrick
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Wei Zhou
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert Aslanian
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - William J. Greenlee
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mary Senior
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Boonlert Cheewatrakoolpong
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hongtao Zhang
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Constance Farley
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John Cook
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Stan Kurowski
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qiu Li
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Margaret van Heek
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Gangfeng Wang
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yunsheng Hsieh
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Fangbiao Li
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Scott Greenfeder
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Madhu Chintala
- Department of Medicinal Chemistry, ‡Department of Biology, and §Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
5
|
Parhofer KG. Pathophysiology of diabetic dyslipidemia: implications for atherogenesis and treatment. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Qin J, Rao A, Chen X, Zhu X, Liu Z, Huang X, Degrado S, Huang Y, Xiao D, Aslanian R, Cheewatrakoolpong B, Zhang H, Greenfeder S, Farley C, Cook J, Kurowski S, Li Q, van Heek M, Chintala M, Wang G, Hsieh Y, Li F, Palani A. Discovery of a potent nicotinic Acid receptor agonist for the treatment of dyslipidemia. ACS Med Chem Lett 2011; 2:171-6. [PMID: 24900295 DOI: 10.1021/ml100251u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/02/2010] [Indexed: 11/28/2022] Open
Abstract
Nicotinic acid has been used clinically for decades to control serum lipoproteins. Nicotinic acid lowers very low-density lipoprotein (VLDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, and lipoprotein-a (LPa), and it is also effective in raising high-density lipoprotein (HDL)-cholesterol. However, nicotinic acid has several side effects in clinical use. The most notable is intense cutaneous vasodilation "flushing" on the upper body and face. We discovered a pyranopyrimidinedione series to be nicotinic acid receptor agonists. A potent nicotinic acid receptor agonist from this series {5-(3-cyclopropylpropyl)-2-(difluoromethyl)-3H-pyrano[2,3-d]pyrimidine-4,7-dione}with reduced flushing side effect in dogs was identified.
Collapse
Affiliation(s)
- Jun Qin
- Department of Medicinal Chemistry
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ganfeng Wang
- Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yunsheng Hsieh
- Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Fangbiao Li
- Department of Drug Metabolism & Pharmacokinetics, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | | |
Collapse
|
7
|
Koh Y, Ben-Ezra V, Biggerstaff KD, Nichols DL. Responses of blood lipids and lipoproteins to extended-release niacin and exercise in sedentary postmenopausal women. J Gerontol A Biol Sci Med Sci 2010; 65:924-32. [PMID: 20530245 DOI: 10.1093/gerona/glq097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Niacin and exercise positively alter blood lipids and lipoproteins via different mechanisms. However, the effects of niacin combined with exercise on blood lipid and lipoprotein profiles have not been investigated in sedentary postmenopausal women. The current study examined the responses of blood lipids and lipoproteins to niacin and exercise in 18 sedentary postmenopausal women, who underwent four conditions: no-niacin rest, no-niacin exercise, niacin rest, and niacin exercise. Participants ingested 1,000 mg/day of extended-release niacin for 4 weeks during the niacin condition. As an exercise treatment, participants performed a single bout of exercise on a treadmill at 60% heart rate reserve until 400 kcal were expended. Extended-release niacin without the exercise intervention significantly (p < .001) increased high-density lipoprotein cholesterol and high-density lipoprotein-2 cholesterol by 12.4% and 33.3%, respectively, and decreased the total cholesterol to high-density lipoprotein cholesterol ratio by 14.8%. Thus, 4 weeks of 1,000 mg/day of extended-release niacin can improve the blood lipid and lipoprotein profiles in sedentary postmenopausal women.
Collapse
Affiliation(s)
- Yunsuk Koh
- Department of Health and Kinesiology, Lamar University, P. O. Box 10039, Beaumont, TX 77710, USA.
| | | | | | | |
Collapse
|
8
|
Chapman MJ, Redfern JS, McGovern ME, Giral P. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther 2010; 126:314-45. [PMID: 20153365 DOI: 10.1016/j.pharmthera.2010.01.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/16/2022]
Abstract
Although statin therapy represents a cornerstone of cardiovascular disease (CVD) prevention, a major residual CVD risk (60-70% of total relative risk) remains, attributable to both modifiable and non-modifiable risk factors. Among the former, low levels of HDL-C together with elevated triglyceride (TG)-rich lipoproteins and their remnants represent major therapeutic targets. The current pandemic of obesity, metabolic syndrome, and type 2 diabetes is intimately associated with an atherogenic dyslipidemic phenotype featuring low HDL-C combined with elevated TG-rich lipoproteins and small dense LDL. In this context, there is renewed interest in pharmacotherapeutic strategies involving niacin and fibrates in monotherapy and in association with statins. This comprehensive, critical review of available data in dyslipidemic subjects indicates that niacin is more efficacious in raising HDL-C than fibrates, whereas niacin and fibrates reduce TG-rich lipoproteins and LDL comparably. Niacin is distinguished by its unique capacity to effectively lower Lp(a) levels. Several studies have demonstrated anti-atherosclerotic action for both niacin and fibrates. In contrast with statin therapy, the clinical benefit of fibrates appears limited to reduction of nonfatal myocardial infarction, whereas niacin (frequently associated with statins and/or other agents) exerts benefit across a wider range of cardiovascular endpoints in studies involving limited patient numbers. Clearly the future treatment of atherogenic dyslipidemias involving the lipid triad, as exemplified by the occurrence of the mixed dyslipidemic phenotype in metabolic syndrome, type 2 diabetes, renal, and auto-immune diseases, requires integrated pharmacotherapy targeted not only to proatherogenic particles, notably VLDL, IDL, LDL, and Lp(a), but also to atheroprotective HDL.
Collapse
Affiliation(s)
- M John Chapman
- Dyslipidemia, Inflammation and Atherosclerosis Research Unit, UMR-S939, National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié-Salpetriere, Paris, France.
| | | | | | | |
Collapse
|
9
|
Frederick K, Maurer T, Kalgutkar A, Royer L, Francone O, Winter S, Terra S, Chen D, Gao X. Pharmacokinetics, disposition and lipid-modulating activity of 5-{2-[4-(3,4-difluorophenoxy)-phenyl]-ethylsulfamoyl}-2-methyl-benzoic acid, a potent and subtype-selective peroxisome proliferator-activated receptor α agonist in preclinical species and human. Xenobiotica 2009; 39:766-81. [DOI: 10.1080/00498250903121796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Abstract
High-density lipoprotein (HDL) cholesterol is a heterogeneous group of lipoproteins exhibiting a variety of properties like prostacyclin production stimulation, decrease in platelet aggregation, endothelial cell apoptosis inhibition, and low-density lipoprotein oxidation blockade. Epidemiologic studies have shown an inverse relation between HDL cholesterol levels and cardiovascular risk. Low HDL cholesterol is associated with increased risk for myocardial infarction, stroke, sudden death, peripheral artery disease, and postangioplasty restenosis. In contrast, high HDL levels are associated with longevity and protection against atherosclerotic disease development. Given the evolving epidemic of obesity, diabetes mellitus, and metabolic syndrome, the prevalence of low HDL will continue to rise. In the United States, low HDL is present in 35% of men, 15% of women, and approximately 63% of patients with coronary artery disease. Data extracted from the Framingham study highlight that 1-mg increase in HDL levels decreases by 2% to 3% the risk of cardiovascular disease. There is no doubt regarding clinical importance about isolated low HDL, but relatively few clinicians consider a direct therapeutic intervention of this dyslipidemia. In this sense, lifestyle measures should be the first-line strategy to manage low HDL levels. On the other hand, pharmacologic options include niacin, fibrates, and statins. Fibrates appear to reduce risk preferentially in patients with low HDL with metabolic syndrome, whereas statins reduce risk across all levels of HDL. Torcetrapib, a cholesteryl esters transfer protein inhibitor, represented a hope to raise this lipoprotein; however, all clinical trials on this drug had ceased after ILLUMINATE, RADIANCE and ERASE trials had recorded an increase in mortality, rates of myocardial infarction, angina, and heart failure. In the near future, drugs as beta-glucans, Apo-A1 mimetic peptides, and ACAT inhibitors, are the new promises to treat this condition.
Collapse
|
11
|
Xenophontos S, Hadjivassiliou M, Karagrigoriou A, Demetriou N, Miltiadous G, Marcou I, Elisaf M, Mikhailidis DP, Cariolou MA. Low HDL cholesterol, smoking and IL-13 R130Q polymorphism are associated with myocardial infarction in Greek Cypriot males. A pilot study. Open Cardiovasc Med J 2008; 2:52-9. [PMID: 18949100 PMCID: PMC2570578 DOI: 10.2174/1874192400802010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 11/22/2022] Open
Abstract
This study was carried out in Greek Cypriot males to identify risk factors that predispose to myocardial infarction (MI). Genetic and lipid risk factors were investigated for the first time in a Greek Cypriot male case-control study.Contrary to other studies, mean low density lipoprotein cholesterol did not differ between cases and controls. High density lipoprotein cholesterol on the other hand, although within normal range in cases and controls, was significantly higher in the control population. In agreement with many other studies, smoking was significantly more prevalent in cases compared with controls. In pooled cases and controls, smokers had a significantly lower HDL-C level compared with non-smokers. The frequency of the IL-13 R130Q homozygotes for the mutation (QQ), as well as the mutant allele were significantly higher in cases compared with controls. The IL-13 R130Q variant, or another locus, linked to it, may increase the risk of MI.
Collapse
Affiliation(s)
- Stavroulla Xenophontos
- Department of Cardiovascular Genetics & The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Faucher N, Martres P, Laroze A, Pineau O, Potvain F, Grillot D. Design, synthesis and evaluation of trifluoromethane sulfonamide derivatives as new potent and selective peroxisome proliferator-activated receptor α agonists. Bioorg Med Chem Lett 2008; 18:710-5. [DOI: 10.1016/j.bmcl.2007.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/15/2022]
|
13
|
Miida T, Takahashi A, Ikeuchi T. Prevention of stroke and dementia by statin therapy: Experimental and clinical evidence of their pleiotropic effects. Pharmacol Ther 2007; 113:378-93. [PMID: 17113151 DOI: 10.1016/j.pharmthera.2006.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/25/2006] [Indexed: 12/26/2022]
Abstract
Stroke and dementia are major causes of disability in most countries. Epidemiological studies have demonstrated that statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are likely to reduce the risk for developing these formidable disorders. The favorable outcomes in statin users may be attributable to not only cholesterol-dependent actions, but also various cholesterol-independent actions called "pleiotropic effects." Several clinical trials have suggested that statins decrease the incidence of stroke, especially ischemic stroke. Statins improve endothelial function, inhibit platelet activation, reduce blood coagulability, and suppress inflammatory reactions, all of which may contribute to the beneficial effects of the therapy. Statins also reduce the risk of vasospasm caused by subarachnoid hemorrhage (SAH). In addition, statins might inhibit the development and progression of Alzheimer's disease (AD), the dominant type of dementia in most industrialized countries, upstream of the amyloid cascade. In vitro studies have shown that statins modulate the metabolism of the beta-amyloid precursor protein (APP) and reduce the extracellular level of its proteolytic product, amyloid-beta (Abeta). The aggregated Abeta is cytotoxic, leading to formation of neurofibrillary tangles and neuronal loss in the brain. Inflammatory processes are active in AD and may contribute significantly to AD pathology. We review the experimental background regarding the pleiotropic effects of statins and summarize clinical trials that examined the preventative effects of statin therapy on stroke and dementia. We include current trials in which statin therapy is initiated within 24 hr of onset of acute ischemic stroke.
Collapse
Affiliation(s)
- Takashi Miida
- Division of Clinical Preventive Medicine, Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | | | | |
Collapse
|
14
|
Lopez D, McLean MP. Activation of the rat scavenger receptor class B type I gene by PPARalpha. Mol Cell Endocrinol 2006; 251:67-77. [PMID: 16584836 DOI: 10.1016/j.mce.2006.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/16/2006] [Accepted: 02/23/2006] [Indexed: 11/25/2022]
Abstract
Peroxisomal proliferator activated receptor alpha (PPARalpha) is activated by fibrate drugs which are known to protect against atherosclerosis. The present study examines the effects of PPARalpha on SR-BI expression. For this study, a rat SR-BI promoter-luciferase reporter gene construct was co-transfected into different cell lines with expression vectors that encode for PPARalpha+/-retinoic X receptor alpha (RXRalpha). PPARalpha/RXR increased the activity of the SR-BI promoter, an effect that was enhanced by clofibrate. Sequence analysis of the rat SR-BI promoter revealed the presence of a putative peroxisomal proliferator response element (PPRE) at bp -1,622. Electrophoretic mobility shift assays demonstrated that PPARalpha and RXRalpha are able to bind to the SR-BI PPRE motif. In addition, mutational analysis studies confirmed that this PPRE motif is responsible for the PPARalpha/RXRalpha-dependent activation of the rat SR-BI promoter in the cell lines examined.
Collapse
Affiliation(s)
- Dayami Lopez
- Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd., MDC 37, Tampa, 33612, USA
| | | |
Collapse
|
15
|
Miida T, Hirayama S, Nakamura Y. Cholesterol-independent effects of statins and new therapeutic targets: ischemic stroke and dementia. J Atheroscler Thromb 2005; 11:253-64. [PMID: 15557707 DOI: 10.5551/jat.11.253] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or "statins", are used as cholesterol-lowering agents worldwide. Statins inhibit cholesterol biosynthesis, leading to enhanced uptake of low-density lipoprotein (LDL) from the circulation via LDL receptors. This strong cholesterol-lowering action contributes to the beneficial effects of statins. For example, large clinical trials have demonstrated that statins significantly reduce cardiovascular risk. Recent research has shown that statins have other multiple actions involved in endothelial function, cell proliferation, inflammatory response, immunological reactions, platelet function, and lipid oxidation. These "pleiotropic actions" of statins probably provide a significant contribution to the reduction of cardiovascular events. This review summarizes the pleiotropic actions of statins in both basic and clinical studies. It also considers the potential for statin therapy in the treatment of stroke and dementia.
Collapse
Affiliation(s)
- Takashi Miida
- Division of Clinical Preventive Medicine, Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Japan.
| | | | | |
Collapse
|
16
|
Abstract
Amyloid-beta (Abeta) has for a long time been thought to play a central role in the pathogenesis of Alzheimer disease (AD). Analysis of available data indicates that Abeta possesses properties of a metal-binding apolipoprotein influencing lipid transport and metabolism. Protection of lipoproteins from oxidation by transition metals, synaptic activity and role in the acute phase response represent plausible physiological functions of Abeta. However, these important biochemical qualities which may critically influence the development of AD, have been largely ignored by mainstream AD researchers, making Abeta appear to be a "black sheep" in a "good apolipoprotein" family. New studies are needed to shed further light on the physiological role of Abeta in lipid metabolism in the brain.
Collapse
Affiliation(s)
- Anatol Kontush
- INSERM Unité 551, Hôpital de la Pitié, Pavilion Benjamin Delessert, 83, Bd de l'Hôpital, 75651 Paris Cedex 13, France.
| |
Collapse
|
17
|
Curb JD, Abbott RD, Rodriguez BL, Masaki KH, Chen R, Popper JS, Petrovitch H, Ross GW, Schatz IJ, Belleau GC, Yano K. High density lipoprotein cholesterol and the risk of stroke in elderly men: the Honolulu heart program. Am J Epidemiol 2004; 160:150-7. [PMID: 15234936 DOI: 10.1093/aje/kwh177] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High density lipoprotein (HDL) cholesterol has been inversely associated with coronary heart disease. Associations with stroke are less clear, particularly among the elderly. In this study, the authors examined the relation between HDL cholesterol levels and the risk of stroke in elderly men. Levels of HDL cholesterol were measured in 2,444 Honolulu Heart Program men aged 71-93 years at the 1991-1993 examinations. The participants, who were free of prevalent stroke, coronary heart disease, and cancer at baseline, were followed to the end of 1998 for thromboembolic and hemorrhagic stroke. While HDL cholesterol was unrelated to hemorrhagic events, incidence of thromboembolic stroke declined consistently with increasing HDL cholesterol level (p = 0.003). There was a nearly threefold excess of thromboembolic stroke in men with low HDL cholesterol levels (<1.0 mmol/liter (<40 mg/dl)) compared with men with high levels (> or =1.6 mmol/liter (> or =60 mg/dl)) (10.6/1,000 person-years vs. 3.6/1,000 person-years; p = 0.001). Adjustment for other risk factors had little effect on these findings, although associations appeared strongest in elderly men with "desirable" total cholesterol levels, hypertension, or diabetes mellitus. These findings suggest that HDL cholesterol level is inversely related to the risk of thromboembolic stroke in elderly men. Whether HDL cholesterol alters the effect of other factors on stroke risk in elderly men warrants further study.
Collapse
Affiliation(s)
- J David Curb
- Pacific Health Research Institute, Honolulu, HI 96817, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vitamin B3. Dis Mon 2003. [DOI: 10.1016/j.disamonth.2003.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Abstract
Low high-density lipoprotein (HDL) cholesterol is an important predictor of risk for coronary artery disease. Although current treatment guidelines for dyslipidemia do not include specific targets for HDL cholesterol, the categorical definition of low HDL cholesterol has been changed from <35 mg/dL to <40 mg/dL. 3-hydroxy-3-methylglutaryl reductase inhibitors (statins) increase HDL cholesterol to a moderate degree. Fibrates also increase HDL cholesterol to a moderate degree and have additive effects with statins. Niacin is the most potent currently available agent for increasing HDL cholesterol, and its effects are also additive to those of statins. Other agents that increase HDL cholesterol include thiazolidinediones, estrogen, and omega-3 fatty acids. The mechanisms by which nonstatin pharmacologic agents increase HDL cholesterol are not completely understood but probably involve multiple mechanisms for each class.
Collapse
Affiliation(s)
- Daniel J Rader
- Department of Medicine and Center for Experimental Therapeutics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| |
Collapse
|
20
|
Vosper H, Khoudoli GA, Graham TL, Palmer CNA. Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther 2002; 95:47-62. [PMID: 12163127 DOI: 10.1016/s0163-7258(02)00232-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dyslipidaemia is a major risk factor in the development of atherosclerosis, and lipid lowering is achieved clinically using fibrate drugs and statins. Fibrate drugs are ligands for the fatty acid receptor peroxisome proliferator-activated receptor (PPAR)alpha, and the lipid-lowering effects of this class of drugs are mediated by the control of lipid metabolism, as directed by PPARalpha. PPARalpha ligands also mediate potentially protective changes in the expression of several proteins that are not involved in lipid metabolism, but are implicated in the pathogenesis of heart disease. Clinical studies with bezafibrate and gemfibrozil support the hypothesis that these drugs may have a significant protective effect against cardiovascular disease. The thiazolidinedione group of insulin-sensitising drugs are PPARgamma ligands, and these have beneficial effects on serum lipids in diabetic patients and have also been shown to inhibit the progression of atherosclerosis in animal models. However, their efficacy in the prevention of cardiovascular-associated mortality has yet to be determined. Recent studies have found that PPARdelta is also a regulator of serum lipids. However, there are currently no drugs in clinical use that selectively activate this receptor. It is clear that all three forms of PPARs have mechanistically different modes of lipid lowering and that drugs currently available have not been optimised on the basis of PPAR biology. A new generation of rationally designed PPAR ligands may provide substantially improved drugs for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Helen Vosper
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | |
Collapse
|
21
|
Abstract
Elevated concentrations of circulating apolipoprotein B (apoB)-containing lipoproteins, other than low-density lipoprotein (LDL), have been implicated as causative agents for the development of atherosclerosis. A form of dyslipidemia, the atherogenic lipoprotein profile, that consists of elevated intermediate-density lipoprotein (IDL), triglycerides (TGs), dense LDL and dense very low density lipoprotein (VLDL), and low high density lipoprotein-2, occurs in 40% to 50% of patients with coronary artery disease (CAD). The recently released Adult Treatment Panel III guidelines suggest that because elevated TGs are an independent CAD risk factor, some TG-rich lipoproteins, commonly called remnant lipoproteins, must be atherogenic. Relevant to this series on diabetes, a number of studies have shown that in type 2 diabetes, the severity of CAD is positively related to the numbers of TG-rich particles in the plasma. Although less clear, other studies in type 2 diabetes suggest that elevated levels of lipoprotein (a) [Lp(a)] may also be independently associated with CAD. In this article, we summarize evidence for the role of apoB-containing lipoprotein particles other than LDL in the development of atherosclerosis and discuss methods of quantification and possible pharmacologic interventions for lowering their plasma concentrations. The particles reviewed include the TG-rich lipoproteins: VLDL and its remnants, chylomicron remnants and IDL, and the C-rich lipoprotein: Lp(a).
Collapse
Affiliation(s)
- Jere P Segrest
- Atherosclerosis Research Unit, Department of Medicine and Biochemistry and Molecular Biology, 630 Boshell Building, University of Alabama Medical Center, Birmingham, AL 35294-0012, USA.
| |
Collapse
|
22
|
Draijer R, Volger OL, Dahlmans VEH, de Wit ECM, Havekes LM, Princen HMG. HOE 402 lowers serum cholesterol levels by reducing VLDL-lipid production, and not by induction of the LDL receptor, and reduces atherosclerosis in wild-type and LDL receptor-deficient mice. Biochem Pharmacol 2002; 63:1755-61. [PMID: 12007578 DOI: 10.1016/s0006-2952(02)00898-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous rodent studies suggested that the potent hypolipidemic agent 4-amino-2-(4,4-dimethyl-2-oxo-1-imidazolidinyl)pyrimidine-5-N-(trifluoromethyl-phenyl) carboxamide monohydrochloride (HOE 402) is an inducer of the LDL receptor (LDLR). Using wild-type and heterozygous and homozygous LDLR-deficient (LDLR+/0 and LDLR0/0) mice, fed a low or high cholesterol diet, we investigated whether HOE 402 specifically induces the LDLR and whether other pathways are affected. Upon treatment with 0.05% (w/w) HOE 402, the serum cholesterol levels of wild-type, LDLR+/0 and LDLR0/0 mice, were maximally reduced by 53, 56, and 73%, respectively (P<0.05), by reducing levels in very low density-lipoprotein (VLDL), intermediate density-lipoprotein (IDL), and low density-lipoprotein (LDL) cholesterol, whereas high density-lipoprotein (HDL) cholesterol levels were increased. The observations that HOE 402 exhibited no effect on in vivo clearance of 125I-labeled LDL in wild-type mice, and clearly reduced serum cholesterol levels in LDLR0/0 mice, indicate that the LDLR is not the main target for the compound. In wild-type mice, production of VLDL-TG, and cholesterol were reduced by more than 50% by HOE 402 (P<0.05), whereas VLDL apolipoprotein B (ApoB) secretion was unaffected, indicating that HOE 402 treatment changes the size, rather than the number of the secreted VLDL particles. The reduced VLDL production was accompanied by a 22% decreased hepatic cholesterol ester concentration (P<0.05). Additionally, HOE 402 treatment strongly reduced the aortic content of atherosclerotic lesions by 90 and 72% in LDLR+/0 and LDLR0/0 mice, respectively (P<0.01). In conclusion, HOE 402 is a potent cholesterol-lowering compound, which inhibits VLDL production, and consequently attenuates atherosclerosis development.
Collapse
Affiliation(s)
- Richard Draijer
- Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|