1
|
Traccis F, Presciuttini R, Pani PP, Sinclair JMA, Leggio L, Agabio R. Alcohol-medication interactions: A systematic review and meta-analysis of placebo-controlled trials. Neurosci Biobehav Rev 2021; 132:519-541. [PMID: 34826511 DOI: 10.1016/j.neubiorev.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Alcohol and other xenobiotics may limit the therapeutic effects of medications. We aimed at investigating alcohol-medication interactions (AMI) after the exclusion of confounding effects related to other xenobiotics. We performed a systematic review and meta-analysis of controlled studies comparing the effects induced by alcohol versus placebo on pharmacodynamic and/or pharmacokinetic parameters of approved medications. Certainty in the evidence of AMI was assessed when at least 3 independent studies and at least 200 participants were available. We included 107 articles (3097 participants): for diazepam, cannabis, opioids, and methylphenidate, we found significant AMI and enough data to assign the certainty of evidence. Alcohol consumption significantly increases the peak plasma concentration of diazepam (low certainty; almost 290 participants), cannabis (high certainty; almost 650 participants), opioids (low certainty; 560 participants), and methylphenidate (moderate certainty; 290 participants). For most medications, we found some AMI but not enough data to assign them the certainty grades; for some medications, we found no differences between alcohol and placebo in any outcomes evaluated. Our results add further evidence for interactions between alcohol and certain medications after the exclusion of confounding effects related to other xenobiotics. Physicians should advise patients who use these specific medications to avoid alcohol consumption. Further studies with appropriate control groups, enough female participants to investigate sex differences, and elderly population are needed to expand our knowledge in this field. Short phrases suitable for indexing terms.
Collapse
Affiliation(s)
- Francesco Traccis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Riccardo Presciuttini
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Pier Paolo Pani
- Health Social Services Public Health Trust Sardinia, Cagliari, Italy.
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Basic Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States; Division of Addiction Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Neuroscience, Georgetown University, Washington, DC, United States.
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Sabeel S, Motaung B, Ozturk M, Mukasa S, Kengne AP, Blom D, Sliwa K, Nepolo E, Günther G, Wilkinson RJ, Schacht C, Thienemann F, Guler R. Protocol for systematic review and meta-analysis: impact of statins as immune-modulatory agents on inflammatory markers in adults with chronic diseases. BMJ Open 2020; 10:e039034. [PMID: 32792452 PMCID: PMC7430409 DOI: 10.1136/bmjopen-2020-039034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Statins, also known as 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, are lipid-lowering agents that are central in preventing or reducing the complications of atherosclerotic cardiovascular disease. Because statins have anti-inflammatory properties, there is considerable interest in their therapeutic potential in other chronic inflammatory conditions. We aim to identify the statin with the greatest ability to reduce systemic inflammation, independent of the underlying disease entity. METHODS AND ANALYSIS We aim to conduct a comprehensive search of published and peer-reviewed randomised controlled clinical trials, with at least one intervention arm of a Food & Drug Administration-licensed or European Medicines Agency-licensed statin and a minimum treatment duration of 12 weeks. Our objective is to investigate the effect of statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin) on lipid profile, particularly, cholesterol low-density lipoprotein and inflammation markers such as high-sensitive C reactive protein (hsCRP), CRP, tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, soluble cluster of differentiation 14 (sCD14) or sCD16 in adults, published in the last 20 years (between January 1999 and December 2019). We aim to identify the most potent statin to reduce systemic inflammation and optimal dosing. The following databases will be searched: Medline, Scopus, Web of Science and Cochrane Library of Systematic Reviews. The risk of bias of included studies will be assessed by Cochrane Risk of Bias Tool and Quality Assessment Tool for Quantitative Studies. The quality of studies will be assessed, to show uncertainty, by the Jadad Score. If sufficient evidence is identified, a meta-analysis will be conducted with risk ratios or ORs with 95% CIs in addition to mean differences. ETHICS AND DISSEMINATION Ethics approval is not required as no primary data will be collected. Results will be presented at conferences and published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020169919.
Collapse
Affiliation(s)
- Solima Sabeel
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bongani Motaung
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra Mukasa
- General Medicine & Global Health, Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre Pascal Kengne
- South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Gunar Günther
- University of Namibia School of Medicine, Windhoek, Namibia
- Inselspital Bern, Bern, Switzerland
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Infectious Diseases, Imperial College London, London W12 0NN, United Kingdom
| | | | - Friedrich Thienemann
- General Medicine & Global Health, Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Kolovou GD, Salpea KD, Anagnostopoulou KK, Mikhailidis DP. Alcohol use, vascular disease, and lipid-lowering drugs. J Pharmacol Exp Ther 2006; 318:1-7. [PMID: 16627749 DOI: 10.1124/jpet.106.102269] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many epidemiological and clinical studies have shown that light-to-moderate alcohol (Alc) consumption is associated with reduced risk of coronary heart disease (CHD) and total mortality in middle-aged and elderly men and women. The plausible mechanisms for the putative cardioprotective effects include increased levels of high-density lipoprotein cholesterol, prevention of clot formation, reduced platelet aggregation, promotion of blood clot dissolution, and lowering of plasma lipoprotein (a) concentration. Individuals who need to be treated with lipid-lowering drugs, such as dyslipidemic or CHD patients, may benefit from these effects of Alc. Because hypolipidemic treatment is usually continued for life, an important issue is the suitability of Alc consumption in these patients. In the present review, the beneficial effects of Alc consumption on CHD risk, its side effects, and its safety and suitability when coadministered with hypolipidemic drugs are discussed.
Collapse
Affiliation(s)
- Genovefa D Kolovou
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece, and Department of Clinical Biochemistry, Vascular Disease Prevention Clinics, Royal Free Hospital, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
5
|
Mukamal KJ, Smith CC, Karlamangla AS, Moore AA. Moderate alcohol consumption and safety of lovastatin and warfarin among men: the post-coronary artery bypass graft trial. Am J Med 2006; 119:434-40. [PMID: 16651056 DOI: 10.1016/j.amjmed.2005.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 09/13/2005] [Indexed: 11/22/2022]
Abstract
PURPOSE Although moderate drinking has been associated with lower mortality among patients with coronary heart disease, its safety among patients taking common cardiac medications is unknown. SUBJECTS AND METHODS We studied 1244 men enrolled in the Post-Coronary Artery Bypass Graft (CABG) Trial who had undergone previous coronary bypass surgery. Participants were randomly assigned to lovastatin in low (mean 4 mg) or high (mean 76 mg) doses and to low-dose warfarin (mean international normalized ratio [INR] 1.4, goal INR <2.0) or placebo in a factorial design. Participants underwent routine measurement of alanine aminotransferase (ALT) and INR levels every 6 to 12 weeks for 4 to 5 years. We categorized weekly alcohol intake as abstention (<1 drink), light (1-6 drinks), moderate (7-13 drinks), and heavier (> or =14 drinks). RESULTS During follow-up, 66% of men taking warfarin had an INR of 2.0 or higher, and 7% of men had an ALT of 80 IU/L or higher. Maximum INR (P = .72) and ALT (P = .51) levels did not differ across categories of alcohol intake. The risks of an INR of 2.0 or higher were 67%, 66%, 68%, and 61% among non-, light, moderate, and heavier drinkers (P = .86), respectively. The corresponding risks of an ALT of 80 IU/L or more were 8%, 10%, 9%, and 6% (P = .70), respectively. CONCLUSION Moderate drinking did not adversely influence the safety of low-dose warfarin or even high-dose lovastatin among men in this randomized trial, as measured by INR and ALT levels.
Collapse
Affiliation(s)
- Kenneth J Mukamal
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, Mass 02215, USA.
| | | | | | | |
Collapse
|
6
|
Abe N, Osanai T, Fujiwara T, Kameda K, Matsunaga T, Okumura K. C-reactive protein-induced upregulation of extracellular matrix metalloproteinase inducer in macrophages: inhibitory effect of fluvastatin. Life Sci 2005; 78:1021-8. [PMID: 16182316 DOI: 10.1016/j.lfs.2005.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 06/09/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP)-9 were reported to be expressed at the macrophage-rich area in human coronary atherosclerotic plaque. We examined whether C-reactive protein (CRP) activates macrophages to express EMMPRIN and MMP-9 in vitro and whether statins inhibit it. METHODS AND RESULTS Rat peritoneal macrophages were collected by peritoneal lavage, and were incubated in the presence or absence of CRP. CRP at 5 microg/ml increased the gene expression of EMMPRIN relative to GAPDH, measured by RT-PCR, by 1.67+/-0.07 fold at 24 h and by 1.85+/-0.49 fold at 48 h (both p<0.05). The gene expression of MMP-9 in the presence of CRP at 5 microg/ml was followed by 1.36+/-0.11 fold increase at 24 h and by 3.95+/-0.81 fold at 48 h (both p<0.05). CRP at 5 microg/ml for 48 h increased by 6 fold MMP-9 activity, measured by zymography, without affecting tissue inhibitor of metalloproteinases-1. Boiled CRP at 5 mug/ml for 48 h unaffected MMP-9 activity. Fluvastatin blocked the CRP-induced increases in EMMPRIN and MMP-9 expression and activity. Diphenylene iodonium, an inhibitor of NADPH oxidase, had a similar effect on MMP-9 activity. Fluvastatin suppressed the CRP-induced increases in 8-epi-prostaglandin F(2alpha) levels in the condition media. CONCLUSIONS CRP is an activator for macrophages to enhance EMMPRIN and MMP-9 expression. Fluvastatin inhibits them presumably through its antioxidant effect.
Collapse
Affiliation(s)
- Naoki Abe
- Second Department of Internal Medicine, Hirosaki University School of Medicine 5 Zaifu, Hirosaki, Aomori, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Lanchote VL, Rocha A, de Albuquerque FU, Coelho EB, Bonato PS. Stereoselective analysis of fluvastatin in human plasma for pharmacokinetic studies. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 765:81-8. [PMID: 11817313 DOI: 10.1016/s0378-4347(01)00407-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluvastatin, an inhibitor of cholesterol biosynthesis, is commercialized as a racemic mixture of the (+)-3R,5S and (-)-3S,5R stereoisomers, although inhibition of HMG-CoA reductase mainly resides in the (+)-(3R,5S)-fluvastatin isomer. The aim of the present study was to analyze fluvastatin isomers in human plasma with application to studies on kinetic disposition. Plasma samples of 1 ml were eluted into 3 ml LC-18 Supelclean (Supelco) columns equilibrated with methanol and water. The columns were washed with water and acetonitrile and then eluted with methanol containing 0.2% diethylamine. The (+)-3R,5S and (-)-3S,5R isomers were separated by HPLC on a Chiralcel OD-H chiral phase column and detected by fluorescence (lambda(ex) 305 nm; lambda(em) 390 nm). The quantification limit was 0.75 ng for each isomer/ml plasma and linearity was observed up to 625 ng/ml. The relative standard deviations obtained for intra- and inter-assay precision were lower than 10% and the recovery was higher than 80% for both enantiomers. Application of the method to a stereoselective study on the pharmacokinetics of fluvastatin administered as a single oral dose (Lescol, 20 mg) to a healthy volunteer revealed stereoselectivity, with the highest plasma concentrations being observed for the (-)-3S,5R isomer (Cmax 92.4 vs. 60.3 ng/ml, AUC(0-infinity) 133.3 vs. 97.4 ng h/ml, Cl/f 150.2 vs. 205.2 l h(-1) and Vd/f 4.4 vs. 6.0 l/kg).
Collapse
Affiliation(s)
- V L Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, SP, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Fluvastatin, the first fully synthetic HMG-CoA reductase inhibitor, has been shown to reduce cholesterol in patients with hyperlipidaemia, to prevent subsequent coronary events in patients with established coronary heart disease, and to alter endothelial function and plaque stability in animal models. Fluvastatin is relatively hydrophilic, compared with the semisynthetic HMG-CoA reductase inhibitors, and, therefore, it is extensively absorbed from the gastrointestinal tract. After absorption, it is nearly completely extracted and metabolised in the liver to 2 hydroxylated metabolites and an N-desisopropyl metabolite, which are excreted in the bile. Approximately 95% of a dose is recovered in the faeces, with 60% of a dose recovered as the 3 metabolites. The 6-hydroxy and N-desisopropyl fluvastatin metabolites are exclusively generated by cytochrome P450 (CYP) 2C9 and do not accumulate in the blood. CYP2C9, CYP3A4, CYP2C8 and CYP2D6 form the 5-hydroxy fluvastatin metabolite. Because of its hydrophilic nature and extensive plasma protein binding, fluvastatin has a small volume of distribution with minimal concentrations in extrahepatic tissues. The pharmacokinetics of fluvastatin are not influenced by renal function, due to its extensive metabolism and biliary excretion; limited data in patients with cirrhosis suggest a 30% reduction in oral clearance. Age and gender do not appear to affect the disposition of fluvastatin. CYP3A4 inhibitors (erythromycin, ketoconazole and itraconazole) have no effect on fluvastatin pharmacokinetics, in contrast to other HMG-CoA reductase inhibitors which are primarily metabolised by CYP3A and are subject to potential drug interactions with CYP3A inhibitors. Coadministration of fluvastatin with gastrointestinal agents such as cholestyramine, and gastric acid regulating agents (H2 receptor antagonists and proton pump inhibitors), significantly alters fluvastatin disposition by decreasing and increasing bioavailability, respectively. The nonspecific CYP inducer rifampicin (rifampin) significantly increases fluvastatin oral clearance. In addition to being a CYP2C9 substrate, fluvastatin demonstrates inhibitory effects on this isoenzyme in vitro and in vivo. In human liver microsomes, fluvastatin significantly inhibits the hydroxylation of 2 CYP2C9 substrates, tolbutamide and diclofenac. The oral clearances of the CYP2C9 substrates diclofenac, tolbutamide, glibenclamide (glyburide) and losartan are reduced by 15 to 25% when coadministered with fluvastatin. These alterations have not been shown to be clinically significant. There are inadequate data evaluating the potential interaction of fluvastatin with warfarin and phenytoin, 2 CYP2C9 substrates with a narrow therapeutic index, and caution is recommended when using fluvastatin with these agents. Fluvastatin does not appear to have a significant effect on other CYP isoenzymes or P-glycoprotein-mediated transport in vivo.
Collapse
Affiliation(s)
- C D Scripture
- Division of Pharmacotherapy, School of Pharmacy, University of North Carolina, Chapel Hill 27599-7360, USA
| | | |
Collapse
|
9
|
Hart CL, Smith GD, Hole DJ, Hawthorne VM. Alcohol consumption and mortality from all causes, coronary heart disease, and stroke: results from a prospective cohort study of scottish men with 21 years of follow up. BMJ (CLINICAL RESEARCH ED.) 1999; 318:1725-9. [PMID: 10381706 PMCID: PMC31100 DOI: 10.1136/bmj.318.7200.1725] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To relate alcohol consumption to mortality. DESIGN Prospective cohort study. SETTING 27 workplaces in the west of Scotland. PARTICIPANTS 5766 men aged 35-64 when screened in 1970-3 who answered questions on their usual weekly alcohol consumption. MAIN OUTCOME MEASURES Mortality from all causes, coronary heart disease, stroke, and alcohol related causes over 21 years of follow up related to units of alcohol consumed per week. RESULTS Risk for all cause mortality was similar for non-drinkers and men drinking up to 14 units a week. Mortality risk then showed a graded association with alcohol consumption (relative rate compared with non-drinkers 1. 34 (95% confidence interval 1.14 to 1.58) for 15-21 units a week, 1. 49 (1.27 to 1.75) for 22-34 units, 1.74 (1.47 to 2.06) for 35 or more units). Adjustment for risk factors attenuated the increased relative risks, but they remained significantly above 1 for men drinking 22 or more units a week. There was no strong relation between alcohol consumption and mortality from coronary heart disease after adjustment. A strong positive relation was seen between alcohol consumption and risk of mortality from stroke, with men drinking 35 or more units having double the risk of non-drinkers, even after adjustment. CONCLUSIONS The overall association between alcohol consumption and mortality is unfavourable for men drinking over 22 units a week, and there is no clear evidence of any protective effect for men drinking less than this.
Collapse
Affiliation(s)
- C L Hart
- Department of Public Health, University of Glasgow, Glasgow G12 8RZ
| | | | | | | |
Collapse
|
10
|
Schrama YC, Hené RJ, de Jonge N, Joles JA, Van Rijn HJ, Bär DR, Ververs TF, Van Tol A, Koomans HA. Efficacy and muscle safety of fluvastatin in cyclosporine-treated cardiac and renal transplant recipients: an exercise provocation test. Transplantation 1998; 66:1175-81. [PMID: 9825814 DOI: 10.1097/00007890-199811150-00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dyslipidemia is found in the majority of renal and cardiac transplant recipients. Although 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors significantly lower low-density lipoprotein cholesterol (LDL-C) levels, such treatment has been associated with muscle toxicity, especially when used in combination with cyclosporine (CsA). We investigated the efficacy and muscle safety of fluvastatin, a new 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitor, in CsA-treated transplant recipients. METHODS The efficacy was determined by measuring the lipid profile before and after 8 weeks of fluvastatin therapy. As parameter for possible muscle damage, the rise in serum levels of the muscle proteins creatine kinase and myoglobin was measured after an exercise provocation test (30 min on a bicycle ergometer at 60% of their maximal work load) before and during fluvastatin therapy. Nineteen CsA-treated renal and cardiac transplant recipients with hypercholesterolemia were selected. RESULTS After 8 weeks of treatment with a dose of fluvastatin necessary to reduce LDL-C below 3.5 mmol/L (20 mg for 3 and 40 mg for 16 patients), total cholesterol was lowered by 20% and LDL-C by 30%, and HDL2-C was increased by 35% (all P<0.01). The rise in creatine kinase after exercise before and during fluvastatin therapy was, respectively, 40% and 51%, and the rise in myoglobin was 64% and 50%. These rises were not significantly different. Hence, there was no indication for subclinical muscle pathology by fluvastatin use. Fluvastatin was well tolerated, and no adverse effects on liver or kidney function were found. CONCLUSIONS Fluvastatin can effectively lower LDL-C in CsA-treated renal and cardiac transplant recipients, without demonstrable adverse effects.
Collapse
Affiliation(s)
- Y C Schrama
- Department of Nephrology, University Hospital Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The frequent use of alcohol (ethanol) together with prescription drugs gives any described pharmacokinetic interaction significant clinical implications. The issue is both the effect of alcohol on the pharmacokinetics of various drugs and also the effect of those drugs on the pharmacokinetics of alcohol. This review discusses these pharmacokinetic interactions but also briefly describes some other effects of alcohol that are clinically relevant to drug prescribing. The use of several different study designs may be required before we can confidently state the presence or absence of any alcohol-drug interaction. Short term administration of alcohol in volunteers is the most common study design but studies of social drinking and prolonged moderate alcohol intake can be important in some situations. Community-based studies may illustrate the clinical relevance of any interaction. Alcohol can affect the pharmacokinetics of drugs by altering gastric emptying or liver metabolism (by inducing cytochrome P450 2E1). Drugs may affect the pharmacokinetics of alcohol by altering gastric emptying and inhibiting gastric alcohol dehydrogenase. The role of gastric alcohol dehydrogenase in the first-pass metabolism of alcohol is reviewed in this article and the arguments for and against any potential interaction between alcohol and H2 receptor antagonists are also discussed. The inhibition of the metabolism of acetaldehyde may cause disulfiram-like reactions. Pharmacodynamic interactions between alcohol and prescription drugs are common, particularly the additive sedative effects with benzodiazepines and also with some of the antihistamine drugs; other interactions may occur with tricyclic antidepressants. Alcohol intake may be a contributing factor to the disease state which is being treated and may complicate treatment because of various pathophysiological effects (e.g. impairment of gluconeogenesis and the risk of hypoglycaemia with oral hypoglycaemic agents). The combination of nonsteroidal anti-inflammatory drugs and alcohol intake increases the risk of gastrointestinal haemorrhage.
Collapse
Affiliation(s)
- A G Fraser
- Department of Medicine, University of Auckland, New Zealand.
| |
Collapse
|
12
|
Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet 1997; 32:403-25. [PMID: 9160173 DOI: 10.2165/00003088-199732050-00005] [Citation(s) in RCA: 369] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hypercholesterolaemia plays a crucial role in the development of atherosclerotic diseases in general and coronary heart disease in particular. The risk of progression of the atherosclerotic process to coronary heart disease increases progressively with increasing levels of total serum cholesterol or low density lipoprotein (LDL) cholesterol at both the individual and the population level. The statins are reversible inhibitors of the microsomal enzyme HMG-CoA reductase, which converts HMG-CoA to mevalonate. This is an early rate-limiting step in cholesterol biosynthesis. Inhibition of HMG-CoA reductase by statins decreases intracellular cholesterol biosynthesis, which then leads to transcriptionally upregulated production of microsomal HMG-CoA reductase and cell surface LDL receptors. Subsequently, additional cholesterol is provided to the cell by de novo synthesis and by receptor-mediated uptake of LDL-cholesterol from the blood. This resets intracellular cholesterol homeostasis in extrahepatic tissues, but has little effect on the overall cholesterol balance. There are no simple methods to investigate the concentration-dependent inhibition of HMG-CoA reductase in human pharmacodynamic studies. The main clinical variable is plasma LDL-cholesterol, which takes 4 to 6 weeks to show a reduction after the start of statin treatment. Consequently, a dose-effect rather than a concentration-effect relationship is more appropriate to use in describing the pharmacodynamics. Fluvastatin, lovastatin, pravastatin and simvastatin have similar pharmacodynamic properties; all can reduce LDL-cholesterol by 20 to 35%, a reduction which has been shown to achieve decreases of 30 to 35% in major cardiovascular outcomes. Simvastatin has this effect at doses of about half those of the other 3 statins. The liver is the target organ for the statins, since it is the major site of cholesterol biosynthesis, lipoprotein production and LDL catabolism. However, cholesterol biosynthesis in extrahepatic tissues is necessary for normal cell function. The adverse effects of HMG-reductase inhibitors during long term treatment may depend in part upon the degree to which they act in extrahepatic tissues. Therefore, pharmacokinetic factors such as hepatic extraction and systemic exposure to active compound(s) may be clinically important when comparing the statins. Different degrees of liver selectivity have been claimed for the HMG-CoA reductase inhibitors. However, the literature contains confusing data concerning the degree of liver versus tissue selectivity. Human pharmacokinetic data are poor and incomplete, especially for lovastatin and simvastatin, and it is clear that any conclusion on tissue selectivity is dependent upon the choice of experimental model. However, the drugs do differ in some important aspects concerning the degree of metabolism and the number of active and inactive metabolites. The rather extensive metabolism by different cytochrome P450 isoforms also makes it difficult to characterise these drugs regarding tissue selectivity unless all metabolites are well characterised. The effective elimination half-lives of the hydroxy acid forms of the 4 statins are 0.7 to 3.0 hours. Protein binding is similar (> 90%) for fluvastatin, lovastatin and simvastatin, but it is only 50% for pravastatin. The best characterised statins from a clinical pharmacokinetic standpoint are fluvastatin and pravastatin. The major difference between these 2 compounds is the higher liver extraction of fluvastatin during the absorption phase compared with pravastatin (67 versus 45%, respectively, in the same dose range). Estimates of liver extraction in humans for lovastatin and simvastatin are poorly reported, which makes a direct comparison difficult.
Collapse
Affiliation(s)
- H Lennernäs
- Department of Pharmacy, Uppsala University, Sweden.
| | | |
Collapse
|