1
|
Sereno D, Müller WE, Bausen M, Elkhooly TA, Markl JS, Wiens M. An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): At the crossroads of poriferan innate immune and apoptotic pathways. Biochem Biophys Rep 2017; 11:161-173. [PMID: 28955781 PMCID: PMC5614693 DOI: 10.1016/j.bbrep.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a recently discovered family of neurotrophic factors. MANF can be secreted but is generally resident within the endoplasmic reticulum (ER) in neuronal and non-neuronal cells, where it is involved in the ER stress response with pro-survival effects. Here we report the discovery of the MANF homolog SDMANF in the sponge Suberites domuncula. The basal positioning of sponges (phylum Porifera) in the animal tree of life offers a unique vantage point on the early evolution of the metazoan-specific genetic toolkit and molecular pathways. Since sponges lack a conventional nervous system, SDMANF presents an enticing opportunity to investigate the evolutionary ancient role of these neurotrophic factors. SDMANF shares considerable sequence similarity with its metazoan homologs. It also comprises a putative protein binding domain with sequence similarities to the Bcl-2 family of apoptotic regulators. In Suberites, SDMANF is expressed in the vicinity of bacteriocytes, where it co-localizes with the toll-like receptor SDTLR. In transfected human cells, SDMANF was detected in both the organelle protein fraction and the cell culture medium. The intracellular SDMANF protein level was up-regulated in response to both a Golgi/ER transport inhibitor and bacterial lipopolysaccharides (LPS). Upon LPS challenge, transfected cells revealed a decreased caspase-3 activity and increased cell viability with no inducible Bax expression compared to the wild type. These results suggest a deep evolutionary original cytoprotective role of MANF, at the crossroads of innate immune and apoptotic pathways, of which a neurotrophic function might have arisen later in metazoan evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Wiens
- Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg-University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
2
|
Tatebayashi K, Tanaka Y, Nakano-Doi A, Sakuma R, Kamachi S, Shirakawa M, Uchida K, Kageyama H, Takagi T, Yoshimura S, Matsuyama T, Nakagomi T. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke. Stem Cells Dev 2017; 26:787-797. [PMID: 28323540 PMCID: PMC5466056 DOI: 10.1089/scd.2016.0334] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.
Collapse
Affiliation(s)
- Kotaro Tatebayashi
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasue Tanaka
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan .,2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Rika Sakuma
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Saeko Kamachi
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Manabu Shirakawa
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazutaka Uchida
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Kageyama
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshinori Takagi
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Takayuki Nakagomi
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
3
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
4
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Zhang X, Li J, Li C, Li Y, Zhu W, Zhou H, Ding Z, Liu L. HSPA12B attenuates acute lung injury during endotoxemia in mice. Int Immunopharmacol 2015; 29:599-606. [DOI: 10.1016/j.intimp.2015.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 01/24/2023]
|
6
|
Liu ZW, Wang HY, Guan L, Zhao B. Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury. World J Emerg Med 2015; 6:67-73. [PMID: 25802570 DOI: 10.5847/wjem.j.1920-8642.2015.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The present study was undertaken to examine the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA). METHODS Seventy-two male Sprague Dawley (SD) rats were divided into control group, oleic acid-induced ALI group (OA group), oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA+NaHS group), and sodium hydrosulfide treatment group (NaHS group). Rats of each group were further subdivided into 3 subgroups. Index of quantitative assessment of histological lung injury (IQA), wet/dry weight ratio (W/D) and H2S level of lung tissues were measured. The expressions of endoplasmic reticulum stress markers including glucose-regulated protein 78 (GRP78) and α-subunit of eukaryotic translation initiation factor-2 (elF2α) in lung tissues were measured by immunohistochemical staining and Western blotting. RESULTS The IQA score and W/D ratio of lung tissues at the three time points significantly increased in rats injected with OA, but significantly decreased in other rats injected with OA and NaHS. The level of H2S in lung tissue at the three time points significantly decreased in rats injected with OA, but significantly increased in other rats injected with both OA and NaHS. GRP78 and elF2α decreased in rats injected with OA, but increased in other rats injected with both OA and NaHS, especially at 4-hour and 6-hour time points. CONCLUSION The results suggested that H2S could promote alveolar epithelial cell endoplasmic reticulum stress in rats with ALI.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Hai-Ying Wang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lan Guan
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Bin Zhao
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
7
|
The unfolded protein response triggered by environmental factors. Semin Immunopathol 2013; 35:259-75. [PMID: 23553212 DOI: 10.1007/s00281-013-0371-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/13/2013] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress and consequent unfolded protein response (UPR) are involved in a diverse range of pathologies including ischemic diseases, neurodegenerative disorders, and metabolic diseases, such as diabetes mellitus. The UPR is also triggered by various environmental factors; e.g., pollutants, infectious pathogens, therapeutic drugs, alcohol, physical stress, and malnutrition. This review summarizes current knowledge on environmental factors that induce ER stress and describes how the UPR is linked to particular pathological states after exposure to environmental triggers.
Collapse
|
8
|
Tanaka KI, Shirai A, Ito Y, Namba T, Tahara K, Yamakawa N, Mizushima T. Expression of 150-kDa oxygen-regulated protein (ORP150) stimulates bleomycin-induced pulmonary fibrosis and dysfunction in mice. Biochem Biophys Res Commun 2012; 425:818-24. [PMID: 22892132 DOI: 10.1016/j.bbrc.2012.07.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 07/28/2012] [Indexed: 11/29/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Li Z, Mao Z, Lin Y, Liang W, Jiang F, Liu J, Tang Q, Ma D. Dynamic changes of tissue factor pathway inhibitor type 2 associated with IL-1β and TNF-α in the development of murine acute lung injury. Thromb Res 2008; 123:361-6. [DOI: 10.1016/j.thromres.2008.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/03/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
|
10
|
Itoh T, Obata H, Murakami S, Hamada K, Kangawa K, Kimura H, Nagaya N. Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L446-52. [PMID: 17557801 DOI: 10.1152/ajplung.00412.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.
Collapse
Affiliation(s)
- Takefumi Itoh
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Hiramatsu N, Kasai A, Hayakawa K, Yao J, Kitamura M. Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucleic Acids Res 2006; 34:e93. [PMID: 16877567 PMCID: PMC1540736 DOI: 10.1093/nar/gkl515] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Activity of secreted alkaline phosphatase (SEAP) produced by transfected cells is rapidly down-regulated by endoplasmic reticulum (ER) stress independent of transcriptional regulation. This phenomenon was observed in a wide range of cell types triggered by various ER stress inducers. The magnitude of the decrease in SEAP was proportional to the extent of ER stress and inversely correlated with the induction of endogenous ER stress markers grp78 and grp94. In contrast to SEAP, activity of secreted luciferase was less susceptible to ER stress. The decrease in SEAP activity by ER stress was caused by abnormal post-translational modification, accelerated degradation and reduced secretion of SEAP protein. In transgenic mice constitutively producing SEAP, systemic induction of ER stress led to reduction in serum SEAP. In these mice, administration with lipopolysaccharide caused rapid, transient decrease in serum SEAP activity, and it was correlated with up-regulation of grp78 in several organs including the spleen, lung, kidney, liver and heart. These results elucidated for the first time a possible involvement of transient, systemic ER stress in endotoxemia and provided evidence for usefulness of ER stress responsive alkaline phosphatase for real-time monitoring of ER stress in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Masanori Kitamura
- To whom correspondence should be addressed: Tel: +81 55 273 8054; Fax: +81 55 273 8054;
| |
Collapse
|