1
|
Liu W, Zheng P, Xia Y, Li F, Zhang M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024; 269:125352. [PMID: 37984233 DOI: 10.1016/j.talanta.2023.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The threat from pesticide trifluralin residues to ecological environment and public health is becoming a growing problem. Thus, rapid and sensitive detection, particularly a simple and portable detected platform for trifluralin residues, are highly desired. Here, a small organic aggregation-induced emission (AIE) molecule (TPETPy) is facilely synthesized and applied to detect trifluralin both in lab and in actual water systems. Based on the photo-induced electron transfer (PET) mechanism, the emissive peak of TPETPy located at 475 nm in tetrahydrofuran (THF)/water mixture (ƒw = 90 %) under the excitation of 340 nm, decreases dramatically upon trace trifluralin addition and exhibits ultra-fast response (3 s), high sensitivity and selectivity, and good anti-interference ability. The fluorescence sensing correlation with the concentration of trifluralin shows good linearity in the range of 20-90 μg L-1 with the limit of detection of 6.28 μg L-1. Moreover, a portable smartphone-integrated detected platform based on fluorescent pattern Red/Green/Blue (RGB) values is first employed to realize the real-time and on-site quantitative fluorescent detection of trifluralin in actual water sources, featuring good accuracy and reproducibility. Hereby, this work provides not only a highly efficient trifluralin residues fluorescent probe but also a portable and straightforward operating platform to detect trifluralin pesticides quantitatively.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, PR China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Majer-Baranyi K, Szendrei F, Adányi N, Székács A. Application of Highly Sensitive Immunosensor Based on Optical Waveguide Light-Mode Spectroscopy (OWLS) Technique for the Detection of the Herbicide Active Ingredient Glyphosate. BIOSENSORS 2023; 13:771. [PMID: 37622857 PMCID: PMC10452378 DOI: 10.3390/bios13080771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The herbicide active ingredient glyphosate is the most widely applied herbicidal substance worldwide. Currently it is the market-leading pesticide, and its use is projected to further grow 4.5-fold between 2022 and 2029. Today, glyphosate use exceeds one megaton per year worldwide, which represents a serious environmental burden. A factor in the overall boost in the global use of glyphosate has been the spread of glyphosate-tolerant genetically modified (GM) crops that allow post-emergence applications of the herbicide on these transgenic crops. In turn, cultivation of glyphosate-tolerant GM crops represented 56% of the glyphosate use in 2019. Due to its extremely high application rate, xenobiotic behaviour and a water solubility (11.6 mg/mL at 25 °C) unusually high among pesticide active ingredients, glyphosate has become a ubiquitous water pollutant and a primary drinking water contaminant worldwide, presenting a threat to water quality. The goal of our research was to develop a rapid and sensitive method for detecting this herbicide active ingredient. For this purpose, we applied the novel analytical biosensor technique optical waveguide light-mode spectroscopy (OWLS) to the label-free detection of glyphosate in a competitive immunoassay format using glyphosate-specific polyclonal antibodies. After immobilising the antigen conjugate in the form of a glyphosate conjugated to human serum albumin for indirect measurement, the sensor chip was used in a flow-injection analyser system. For the measurements, an antibody stock solution was diluted to 2.5 µg/mL. During the measurement, standard solutions were mixed with the appropriate concentration of antibodies and incubated for 1 min before injection. The linear detection range and the EC50 value of the competitive detection method were between 0.01 and 100 ng/mL and 0.60 ng/mL, respectively. After investigating the indirect method, we tested the cross-reactivity of the antibody with glyphosate and structurally related compounds.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Fanni Szendrei
- Institute of Isotopes Co., Ltd., Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
3
|
Yeh CT, Barshilia D, Hsieh CJ, Li HY, Hsieh WH, Chang GE. Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance BioSensing System for Point-of-Care Applications. BIOSENSORS 2021; 11:523. [PMID: 34940280 PMCID: PMC8699450 DOI: 10.3390/bios11120523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 05/24/2023]
Abstract
The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10-8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-En Chang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Minxiong Township 62102, Taiwan; (C.-T.Y.); (D.B.); (C.-J.H.); (H.-Y.L.); (W.-H.H.)
| |
Collapse
|
4
|
Farshchi F, Saadati A, Kholafazad-Kordasht H, Seidi F, Hasanzadeh M. Trifluralin recognition using touch-based fingertip: Application of wearable glove-based sensor toward environmental pollution and human health control. J Mol Recognit 2021; 34:e2927. [PMID: 34288170 DOI: 10.1002/jmr.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Monitoring of herbicides and pesticides in water, food, and the environment is essential for human health, and this requires low-cost, portable devices for widespread deployment of this technology. For the first time, a wearable glove-based electrochemical sensor based on conductive Ag nano-ink was developed for the on-site monitoring of trifluralin residue on the surface of various substrates. Three electrode system with optimal thicknesses was designed directly on the finger surface of a rubber glove. Then, fabricated electrochemical sensor used for the direct detection of trifluralin in the range of 0.01 μM to 1 mM on the surface of tomato and mulberry leaves using square wave voltammetry (SWV) and difference pulse voltammetry technique. The obtained LLOQ was 0.01 μM, which indicates the suitable sensitivity of this sensor. On the other hand, this sensor is portable, easy to use, and has a high environmental capability that can be effective in detecting other chemical threats in the soil and water environment.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kholafazad-Kordasht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Direct and Competitive Optical Grating Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins (Basel) 2021; 13:toxins13010043. [PMID: 33430121 PMCID: PMC7827007 DOI: 10.3390/toxins13010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Novel optical waveguide lightmode spectroscopy (OWLS)-based immunosensor formats were developed for label-free detection of Fusarium mycotoxin zearalenone (ZON). To achieve low limits of detection (LODs), both immobilised antibody-based (direct) and immobilised antigen-based (competitive) assay setups were applied. Immunoreagents were immobilised on epoxy-, amino-, and carboxyl-functionalised sensor surfaces, and by optimising the immobilisation methods, standard sigmoid curves were obtained in both sensor formats. An outstanding LOD of 0.002 pg/mL was obtained for ZON in the competitive immunosensor setup with a dynamic detection range between 0.01 and 1 pg/mL ZON concentrations, depending on the covalent immobilisation method applied. This corresponds to a five orders of magnitude improvement in detectability of ZON relative to the previously developed enzyme-linked immonosorbent assay (ELISA) method. The selectivity of the immunosensor for ZON was demonstrated with structural analogues (α-zearalenol, α-zearalanol, and β-zearalanol) and structurally unrelated mycotoxins. The method was found to be applicable in maize extract using acetonitrile as the organic solvent, upon a dilution rate of 1:10,000 in buffer. Thus, the OWLS immunosensor method developed appears to be suitable for the quantitative determination of ZON in aqueous medium. The new technique can widen the range of sensoric detection methods of ZON for surveys in food and environmental safety assessment.
Collapse
|
6
|
Saadati A, Hassanpour S, Hasanzadeh M. Lab-on-fruit skin and lab-on-leaf towards recognition of trifluralin using Ag-citrate/GQDs nanocomposite stabilized on the flexible substrate: A new platform for the electroanalysis of herbicides using direct writing of nano-inks and pen-on paper technology. Heliyon 2020; 6:e05779. [PMID: 33376825 PMCID: PMC7758526 DOI: 10.1016/j.heliyon.2020.e05779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Trifluralin is herbicide of the dinitroanilines group in which NO2 molecules are attached to the benzene ring at diverse positions. Trifluralin affects endocrine function and is listed as an endocrine disrupter in the European Union list. Therefore, its determination is so important in health science. In this study, an easy, sensitive and environmentally friendly method has been developed for determination of trifluralin based on its electrochemical oxidation on a three-electrode system designed on the surface of agricultural products using Ag-citrate/GQDs (graphene quantum dots) nano-ink. The sensor was prepared by direct writing on the surface of the samples. The designed electrodes were dried after 24 h at room temperature and used for trifluralin detection. Under optimized experimental conditions, the Ag-citrate/GQDs nano-ink based sensor was exhibited good sensitivity and specificity for trifluralin detection. The obtained linear range using the cyclic voltammetric (CV) technique is between 0.008 to 1 mM and low limit of quantification (LLOQ) was 0.008 mM. Also, the obtained linear range using differential pulse voltammetric (DPV) and square wave voltammetric (SWV) techniques is 0.005–0.04 mM with LLOQ of 0.005 mM. For further validation of the applicability of the proposed method, it was also used for detection of trifluralin on the surface of apple skin.
Collapse
Affiliation(s)
- Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Haghighi M, Irandoust M, Shariati-rad M. Simultaneous determination of antinonin and trifluralin by electrochemical method and net analyte signal interferent modeling. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
9
|
Irandoust M, Haghighi M, Taherpour AA, Jafarzadeh M. Electrochemical sensing of trifluralin in water by fluconazole-immobilized Fe3O4/SiO2 nanomagnetic core–shell linked to carbon nanotube modified glassy carbon electrode; an experimental and theoretical modeling. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1271-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ferro ÉC, Cardoso CAL, Arruda GJ. Voltammetric detection of trifluralin in tap water, fruit juice, and vegetable extracts in the presence of surfactants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:762-769. [PMID: 29022832 DOI: 10.1080/03601234.2017.1356679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study describes a novel electrochemical method to determine the herbicide trifluralin in samples of water, fruit juice, and vegetable extracts in the presence of surfactants, using a glassy carbon electrode (GCE). In acidic media, trifluralin was irreversible on the glassy carbon electrode surface at -0.5 V vs. Ag/AgCl. Surfactant presence on the electrode-solution interface modified current intensities and shifted the reduction peak potential of trifluralin. Different types of surfactant and their concentrations were investigated. The anionic surfactant significantly enhanced the peak current intensity of trifluralin. Under optimal analytical conditions, an analytical curve was obtained in the concentration range of 0.48-32.20 µM. The limits of detection and quantification were estimated at 0.031 and 0.104 µM, respectively. The method was successfully applied to quantify trifluralin in samples of water, orange and tomato juice, and green pepper, carrot, and onion extracts, with recovery rates of 97.9-102.1%. The results were in good agreement with those obtained using high-performance liquid chromatography, indicating that the proposed electrochemical method can be employed to quantify trifluralin in various types foods, with sensitivity, specificity, selectivity and reproducibility.
Collapse
Affiliation(s)
- Érica Castro Ferro
- a Chemistry Program, Universidade Estadual de Mato Grosso do Sul , Dourados , MS , Brazil
| | - Claudia A L Cardoso
- a Chemistry Program, Universidade Estadual de Mato Grosso do Sul , Dourados , MS , Brazil
| | - Gilberto J Arruda
- a Chemistry Program, Universidade Estadual de Mato Grosso do Sul , Dourados , MS , Brazil
| |
Collapse
|
11
|
Chocarro-Ruiz B, Fernández-Gavela A, Herranz S, Lechuga LM. Nanophotonic label-free biosensors for environmental monitoring. Curr Opin Biotechnol 2017; 45:175-183. [PMID: 28458110 DOI: 10.1016/j.copbio.2017.03.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance.
Collapse
Affiliation(s)
- Blanca Chocarro-Ruiz
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Adrián Fernández-Gavela
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Sonia Herranz
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Ku YF, Li HY, Hsieh WH, Chau LK, Chang GE. Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers. OPTICS EXPRESS 2015; 23:14850-9. [PMID: 26072843 DOI: 10.1364/oe.23.014850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an investigation on the use of low-index cavity layers to enhance the sensitivity of injection-molded guided-mode resonance (GMR) sensors. By adjusting the sputtering parameters, a low-index cavity layer is created at the interface between the waveguide layer and the substrate. Refractive index measurements show that a sensitivity enhancement of up to 220% is achieved with a cavity layer, in comparison to a reference GMR sensor without a cavity layer. Finite-element-method simulations were performed, and the results indicate that the cavities significantly redistribute the resonance mode profile and thus enhances the sensitivity. The present investigation demonstrates a new method for enhancing the sensitivity of injection-molded GMR sensors for high-sensitivity label-free biosensing.
Collapse
|
13
|
Stefan-van Staden RI, Bokretsion RG, van Staden JF, Aboul-Enein HY. Immunosensors in Clinical and Environmental Analysis. Crit Rev Anal Chem 2014. [DOI: 10.1080/10408347.2013.866035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Orgovan N, Patko D, Hos C, Kurunczi S, Szabó B, Ramsden JJ, Horvath R. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport. Adv Colloid Interface Sci 2014; 211:1-16. [PMID: 24846752 DOI: 10.1016/j.cis.2014.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing.
Collapse
|
15
|
Szalontai H, Adányi N, Kiss A. Comparative determination of two probiotics by QCM and OWLS-based immunosensors. N Biotechnol 2014; 31:395-401. [PMID: 24768869 DOI: 10.1016/j.nbt.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/17/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
The regular consumption of foods containing probiotic bacteria has beneficial physiological effects on the health and the digestion system. There is a need for novel analytical approaches for the determination of these bacteria that are faster than the classical plate counting method. For this purpose, two label-free biosensors were investigated and presented in this paper: Quartz Crystal Microbalance (QCM) and Optical Waveguide Lightmode Spectroscopy (OWLS) based direct immunosensors were developed for real-time direct detection of probiotic bacteria in fermented dairy products. Bifidobacterium bifidum O1356 and Lactobacillus acidophilus O1132 were detected by polyclonal anti-B. bifidum IgG and anti-L. acidophilus IgG immobilized on the sensors' surface. Sulfo-LC-SPDP cross linking agent was used to bind antibodies to the gold surface of the QCM's AT-cut quartz wafer. Concerning OWLS, antibodies were covalently bound to the amino groups of the silanized surface of the waveguide by glutaraldehyde. The dynamic measuring range was found between 1.0E+3 and 5.0E+5CFUmL(-1) in 100 fold diluted fermented milk products by QCM and with OWLS. Considering the current legislation of the probiotic content in probiotic products, the two developed immunosensors can be applied for rapid quantification of L. acidophilus and B. bifidum in fermented milk. These examinations offer effective alternatives to the microbiological plate counting method.
Collapse
Affiliation(s)
- Helga Szalontai
- Eszterházy Károly College, Institute of Food Science, Leányka u. 6., Eger H-3300, Hungary.
| | - Nóra Adányi
- Central Environmental and Food Science Research Institute, Herman Ottó u. 15., Budapest H-1022, Hungary
| | - Attila Kiss
- Eszterházy Károly College, Institute of Food Science, Leányka u. 6., Eger H-3300, Hungary
| |
Collapse
|
16
|
Adányi N, Székács I, Szendrő I, Székács A. Determination of histamine content in vegetable juices by using direct and competitive immunosensors. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2012.731686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
17
|
Majer-Baranyi K, Székács A, Szendrő I, Kiss A, Adányi N. Optical waveguide lightmode spectroscopy technique–based immunosensor development for deoxynivalenol determination in wheat samples. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1598-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Székács A, Adányi N, Székács I, Majer-Baranyi K, Szendro I. Optical waveguide light-mode spectroscopy immunosensors for environmental monitoring. APPLIED OPTICS 2009; 48:B151-B158. [PMID: 19183573 DOI: 10.1364/ao.48.00b151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coupling the high specificity of the immunoanalytical reaction with the high sensitivity of optical waveguide light-mode spectroscopy (OWLS) detection gives the possibility to develop immunosensors with in most cases a definitely lower detection limit than traditionally used immunoassays. Measurements were performed on the sensitized surface of optical waveguide grating coupler sensors (2400 lines/mm grating). The OWLS technique is based on the precise measurement of the resonance angle of a polarized laser light (632.8 nm), diffracted by a grating and incoupled into a thin waveguide. The effective refractive index, determined from the resonance incoupling angle detected at high accuracy, allows determination of layer thickness and coverage (or mass) of the adsorbed or bound material with ultrahigh sensitivity. OWLS immunosensors were developed as label-free immunosensors with an amino group modified SiO(2)-TiO(2) sensor surface on which the immunoreactants could be anchored. One of the components of the antibody-antigen complex was chemically bound on the sensor surface, allowing noncompetitive or competitive detection of the analytes. To illustrate that the resulting immunosensors are suitable for the determination of small and large molecular weight analytes, OWLS sensor formats were applied for quantitative detection of a herbicide active ingredient trifluralin, a Fusarium mycotoxin zearalenone, and an egg yolk protein of key importance in endocrine regulation, vitellogenin.
Collapse
Affiliation(s)
- András Székács
- Plant Protection Institute, Hungarian Academy of Sciences, POB 102, H-1525 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
19
|
Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 2009; 20:10-26. [DOI: 10.1016/j.semcdb.2009.01.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/23/2009] [Indexed: 01/29/2023]
|
20
|
Wen X, Fei J, Chen X, Yi L, Ge F, Huang M. Electrochemical analysis of trifluralin using a nanostructuring electrode with multi-walled carbon nanotubes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:1015-1020. [PMID: 18539374 DOI: 10.1016/j.envpol.2008.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/30/2008] [Accepted: 05/03/2008] [Indexed: 05/26/2023]
Abstract
The electroanalytical behaviors of the endocrine-disrupting chemical trifluralin have been studied at a nanostructuring electrode. The nanostructuring electrode was fabricated by coating a uniform multi-wall carbon nanotubes/dihexadecyl hydrogen phosphate (MWNTs/DHP) film on glassy carbon electrode (GCE). The reduction peak currents of trifluralin increased remarkably and the reduction peak potential shifted positively at the nanostructuring electrode, compared with that at a bare GCE. The results showed that this nanostructuring electrode exhibited excellent enhancement effects on the electrochemical reduction of trifluralin. Consequently, a simple and sensitive electroanalytical method was developed for the determination of trifluralin. Under optimal conditions, a linear response of trifluralin was obtained in the range from 5.0 x 10(-9) to 6.0 x 10(-6) mol L(-1) (r=0.998) and with a limit of detect (LOD) of 2.0 x 10(-9) mol L(-1). The proposed procedure was successfully applied to determine trifluralin in soil samples with satisfactory results.
Collapse
Affiliation(s)
- Xiaoqin Wen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J. Immunosensors for detection of pesticide residues. Biosens Bioelectron 2008; 23:1577-87. [DOI: 10.1016/j.bios.2008.01.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/15/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
22
|
|
23
|
Farré M, Kantiani L, Barceló D. Advances in immunochemical technologies for analysis of organic pollutants in the environment. Trends Analyt Chem 2007. [DOI: 10.1016/j.trac.2007.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
González-Martínez MA, Puchades R, Maquieira A. Optical immunosensors for environmental monitoring: How far have we come? Anal Bioanal Chem 2006; 387:205-18. [PMID: 17072601 DOI: 10.1007/s00216-006-0849-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 12/21/2022]
Abstract
Immunosensing has proved to be a very interesting research area. This review discusses what has actually been achieved in the field of optical immunosensing for environmental screening, and what still needs to be done. The review is presented from a practical point of view. In terms of the basic design of the immunosensor, there is a trend towards decreasing assay time; indeed, this has been reduced from 15-20 minutes to less than 5 minutes. Another goal is to simplify the manifold, and label-free approaches combining indirect assay formats and the detection of antibody binding are popular. Rapid displacement assays have also been investigated thoroughly. In terms of some important features of immunosensing devices, the reusability of the sensing element has been studied in great depth, and working lifetimes of more than five hundred assays can now be found for all assay formats. Multianalyte assays are now being investigated, and current systems are able to monitor 2-3 target compounds, although this number is set to increase greatly (to >30) in the near future. In this sense, an increasing number of publications can be found on microarrays intended for multianalyte determinations. The application of immunosensing to real situations is the main challenge. Immunosensors are barely commercialized and are yet to be established as research or routine tools, due to a lack of validated protocols for a wide range of sample matrices. Regarding compounds considered as analytes, some significant pollutants such as dioxins or pharmaceuticals are rarely chosen as targets, although the current tendency is towards a broader spectrum of analytes. New immunoreagents should be raised for these compounds, for use in immunosensors that can be used as screening tools.
Collapse
Affiliation(s)
- M A González-Martínez
- Departemento de Química, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | | | | |
Collapse
|
25
|
Adányi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Váradi M, Szendro I. Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens Bioelectron 2006; 22:797-802. [PMID: 16600588 DOI: 10.1016/j.bios.2006.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by a number of different fungi, and can be present in a wide range of food and feed commodities including cereal grains, oil seeds, dried fruits, apple juice, wine and meat products from animals fed contaminated meal. Many mycotoxins are highly resistant, and survive food processing, and therefore enter the food chain and provide a threat to human health. The optical waveguide lightmode spectroscopy (OWLS) technique has been applied to the detection of Aflatoxin and Ochratoxin in both competitive and in direct immunoassays. After immobilizing the antibody or antigen conjugate for the direct or indirect measurement, respectively, the sensor chip was used in flow-injection analyser (FIA) system. When using non-competitive method, sensor responses were obtained first only at analyte concentrations of 5-10 ng ml(-1). In both cases, the responses were very unstable. For competitive sensor investigation with the sensitized chip first the optimal dilution rate of monoclonal antibodies was determined, for the measurement of Ochratoxin A and Aflatoxin B1 the monoclonal antibody stock solution was diluted to 1 microg ml(-1) and to a 1:400 dilution, respectively. During the competitive measurement standard solutions were mixed with monoclonal antibodies at the appropriate concentration, the mixture was incubated for 1 min and injected into the OWLS system. The sensitive detection range of the competitive detection method was between 0.5 and 10 ng ml(-1) in both cases. After the establishment of the indirect method, barley and wheat flour samples were measured, and the results were in good correlation by those measured by enzyme linked immuno-sorbent assay (ELISA). Regression coefficient between the two methods for Ochratoxin and Aflatoxin was determined as 0.96 and 0.89, respectively.
Collapse
Affiliation(s)
- N Adányi
- Central Food Research Institute, Herman Ottó út 15, Budapest H-1022, Hungary.
| | | | | | | | | | | |
Collapse
|