1
|
Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction. BIOSENSORS 2022; 12:bios12090762. [PMID: 36140147 PMCID: PMC9496807 DOI: 10.3390/bios12090762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with data processing technologies, including machine learning techniques. This paper reviews the background of nanomechanical sensors, especially conventional cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation, a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS and their applications towards artificial olfaction.
Collapse
|
2
|
Kolesnikov AL, Budkov YA, Gor GY. Models of adsorption-induced deformation: ordered materials and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:063002. [PMID: 34666316 DOI: 10.1088/1361-648x/ac3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Adsorption-induced deformation is a change in geometrical dimensions of an adsorbent material caused by gas or liquid adsorption on its surface. This phenomenon is universal and sensitive to adsorbent properties, which makes its prediction a challenging task. However, the pure academic interest is complemented by its importance in a number of engineering applications with porous materials characterization among them. Similar to classical adsorption-based characterization methods, the deformation-based ones rely on the quality of the underlying theoretical framework. This fact stimulates the recent development of qualitative and quantitative models toward the more detailed description of a solid material, e.g. account of non-convex and corrugated pores, calculations of adsorption stress in realistic three-dimension solid structures, the extension of the existing models to new geometries, etc. The present review focuses on the theoretical description of adsorption-induced deformation in micro and mesoporous materials. We are aiming to cover recent theoretical works describing the deformation of both ordered and disordered porous bodies.
Collapse
Affiliation(s)
- A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, 04318 Leipzig, Germany
| | - Yu A Budkov
- School of Applied Mathematics, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russia
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St. 1, 153045 Ivanovo, Russia
| | - G Y Gor
- Otto H. York Department Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States of America
| |
Collapse
|
3
|
Kasas S, Malovichko A, Villalba MI, Vela ME, Yantorno O, Willaert RG. Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing. Antibiotics (Basel) 2021; 10:287. [PMID: 33801939 PMCID: PMC7999052 DOI: 10.3390/antibiotics10030287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023] Open
Abstract
Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Anton Malovichko
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, and CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina;
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Grogan C, Amarandei G, Lawless S, Pedreschi F, Lyng F, Benito-Lopez F, Raiteri R, Florea L. Silicon Microcantilever Sensors to Detect the Reversible Conformational Change of a Molecular Switch, Spiropyan. SENSORS (BASEL, SWITZERLAND) 2020; 20:E854. [PMID: 32041095 PMCID: PMC7039217 DOI: 10.3390/s20030854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
The high sensitivity of silicon microcantilever sensors has expanded their use in areas ranging from gas sensing to bio-medical applications. Photochromic molecules also represent promising candidates for a large variety of sensing applications. In this work, the operating principles of these two sensing methods are combined in order to detect the reversible conformational change of a molecular switch, spiropyran. Thus, arrays of silicon microcantilever sensors were functionalized with spiropyran on the gold covered side and used as test microcantilevers. The microcantilever deflection response was observed, in five sequential cycles, as the transition from the spiropyran (SP) (CLOSED) to the merocyanine (MC) (OPEN) state and vice-versa when induced by UV and white light LED sources, respectively, proving the reversibility capabilities of this type of sensor. The microcantilever deflection direction was observed to be in one direction when changing to the MC state and in the opposite direction when changing back to the SP state. A tensile stress was induced in the microcantilever when the SP to MC transition took place, while a compressive stress was observed for the reverse transition. These different type of stresses are believed to be related to the spatial conformational changes induced in the photochromic molecule upon photo-isomerisation.
Collapse
Affiliation(s)
- Catherine Grogan
- School of Physics & Clinical & Optometric Sciences, Technological University of Dublin, Kevin Street, D08NF82 Dublin, Ireland; (C.G.); (G.A.); (F.P.); (F.L.)
| | - George Amarandei
- School of Physics & Clinical & Optometric Sciences, Technological University of Dublin, Kevin Street, D08NF82 Dublin, Ireland; (C.G.); (G.A.); (F.P.); (F.L.)
| | - Shauna Lawless
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, 9 Dublin, Ireland;
| | - Fran Pedreschi
- School of Physics & Clinical & Optometric Sciences, Technological University of Dublin, Kevin Street, D08NF82 Dublin, Ireland; (C.G.); (G.A.); (F.P.); (F.L.)
| | - Fiona Lyng
- School of Physics & Clinical & Optometric Sciences, Technological University of Dublin, Kevin Street, D08NF82 Dublin, Ireland; (C.G.); (G.A.); (F.P.); (F.L.)
- FOCAS Institute, Technological University Dublin, Camden Row, 8 Dublin, Ireland
| | - Fernando Benito-Lopez
- Analytical Microsystems & Materials for Lab-on-a-Chip Group (AMMa-LOAC), Microfluidics Cluster UPV/EHU, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, 16145 Genova, Italy;
| | - Larisa Florea
- School of Chemistry & AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, 2 Dublin, Ireland
| |
Collapse
|
5
|
Imamura G, Shiba K, Yoshikawa G, Washio T. Free-hand gas identification based on transfer function ratios without gas flow control. Sci Rep 2019; 9:9768. [PMID: 31278339 PMCID: PMC6611792 DOI: 10.1038/s41598-019-46164-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Gas identification is one of the most important functions of a gas sensor system. To identify gas species from sensing signals without gas flow control such as pumps or mass flow controllers, it is necessary to extract decisive dynamic features from complex sensing signals due to uncontrolled airflow. For that purpose, various analysis methods using system identification techniques have been proposed, whereas a method that is not affected by a gas input pattern has been demanded to enhance the robustness of gas identification. Here we develop a novel gas identification protocol based on a transfer function ratio (TFR) that is intrinsically independent of a gas input pattern. By combining the protocol with MEMS-based sensors-Membrane-type Surface stress Sensors (MSS), we have realized gas identification with a free-hand measurement, in which one can simply hold a small sensor chip near samples. From sensing signals obtained through the free-hand measurement, we have developed highly accurate machine learning models that can identify odors of spices and herbs as well as solvent vapors. Since no bulky gas flow control units are required, this protocol will expand the applicability of gas sensors to portable electronics, leading to practical artificial olfaction.
Collapse
Affiliation(s)
- Gaku Imamura
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Kota Shiba
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Genki Yoshikawa
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
6
|
|
7
|
Mathew R, Ravi Sankar A. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors. NANO-MICRO LETTERS 2018; 10:35. [PMID: 30393684 PMCID: PMC6199092 DOI: 10.1007/s40820-018-0189-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 05/30/2023]
Abstract
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.
Collapse
Affiliation(s)
- Ribu Mathew
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu 600127 India
| | - A. Ravi Sankar
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu 600127 India
| |
Collapse
|
8
|
Maruyama S, Hizawa T, Takahashi K, Sawada K. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection. SENSORS 2018; 18:s18010138. [PMID: 29304011 PMCID: PMC5796276 DOI: 10.3390/s18010138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
We developed a Fabry-Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.
Collapse
Affiliation(s)
- Satoshi Maruyama
- AIST-TUT Advanced Sensor Collaborative Research Laboratory, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| | - Takeshi Hizawa
- Electronics Inspired-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| | - Kazuhiro Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
- JST Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-0076, Japan.
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
9
|
Alhadrami HA. Biosensors: Classifications, medical applications, and future prospective. Biotechnol Appl Biochem 2017; 65:497-508. [DOI: 10.1002/bab.1621] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 09/30/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Hani A. Alhadrami
- Faculty of Applied Medical SciencesDepartment of Medical Laboratory TechnologyKing Abdulaziz University Jeddah Kingdom of Saudi Arabia
- Special Infectious Agent UnitKing Fahd Medical Research CentreKing Abdulaziz University Jeddah Kingdom of Saudi Arabia
| |
Collapse
|
10
|
|
11
|
Mathew R, Sankar AR. Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Micromachined Resonators: A Review. MICROMACHINES 2016; 7:mi7090160. [PMID: 30404333 PMCID: PMC6190074 DOI: 10.3390/mi7090160] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022]
Abstract
This paper is a review of the remarkable progress that has been made during the past few decades in design, modeling, and fabrication of micromachined resonators. Although micro-resonators have come a long way since their early days of development, they are yet to fulfill the rightful vision of their pervasive use across a wide variety of applications. This is partially due to the complexities associated with the physics that limit their performance, the intricacies involved in the processes that are used in their manufacturing, and the trade-offs in using different transduction mechanisms for their implementation. This work is intended to offer a brief introduction to all such details with references to the most influential contributions in the field for those interested in a deeper understanding of the material.
Collapse
|
13
|
Ganser C, Fritz-Popovski G, Morak R, Sharifi P, Marmiroli B, Sartori B, Amenitsch H, Griesser T, Teichert C, Paris O. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:637-644. [PMID: 27335753 PMCID: PMC4902073 DOI: 10.3762/bjnano.7.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/12/2016] [Indexed: 06/01/2023]
Abstract
We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters.
Collapse
Affiliation(s)
| | | | - Roland Morak
- Institute of Physics, Montanuniversitaet Leoben, Austria
| | - Parvin Sharifi
- Institute of Physics, Montanuniversitaet Leoben, Austria
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Austria
| | - Thomas Griesser
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Austria
| | | | - Oskar Paris
- Institute of Physics, Montanuniversitaet Leoben, Austria
| |
Collapse
|
14
|
Dinarelli S, Girasole M, Kasas S, Longo G. Nanotools and molecular techniques to rapidly identify and fight bacterial infections. J Microbiol Methods 2016; 138:72-81. [PMID: 26806415 DOI: 10.1016/j.mimet.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
Reducing the emergence and spread of antibiotic-resistant bacteria is one of the major healthcare issues of our century. In addition to the increased mortality, infections caused by multi-resistant bacteria drastically enhance the healthcare costs, mainly because of the longer duration of illness and treatment. While in the last 20years, bacterial identification has been revolutionized by the introduction of new molecular techniques, the current phenotypic techniques to determine the susceptibilities of common Gram-positive and Gram-negative bacteria require at least two days from collection of clinical samples. Therefore, there is an urgent need for the development of new technologies to determine rapidly drug susceptibility in bacteria and to achieve faster diagnoses. These techniques would also lead to a better understanding of the mechanisms that lead to the insurgence of the resistance, greatly helping the quest for new antibacterial systems and drugs. In this review, we describe some of the tools most currently used in clinical and microbiological research to study bacteria and to address the challenge of infections. We discuss the most interesting advancements in the molecular susceptibility testing systems, with a particular focus on the many applications of the MALDI-TOF MS system. In the field of the phenotypic characterization protocols, we detail some of the most promising semi-automated commercial systems and we focus on some emerging developments in the field of nanomechanical sensors, which constitute a step towards the development of rapid and affordable point-of-care testing devices and techniques. While there is still no innovative technique that is capable of completely substituting for the conventional protocols and clinical practices, many exciting new experimental setups and tools could constitute the basis of the standard testing package of future microbiological tests.
Collapse
Affiliation(s)
- S Dinarelli
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - M Girasole
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - S Kasas
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Physique de la Matière Vivante, Lausanne, Switzerland; Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, Switzerland
| | - G Longo
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
15
|
Tao Y, Navaretti P, Hauert R, Grob U, Poggio M. Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. NANOTECHNOLOGY 2015; 26:465501. [PMID: 26501931 DOI: 10.1088/0957-4484/26/46/465501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on mechanical dissipation measurements carried out on thin (∼100 nm), single-crystal silicon cantilevers with varying chemical surface termination. We find that the 1-2 nm-thick native oxide layer of silicon contributes about 85% to the friction of the mechanical resonance. We show that the mechanical friction is proportional to the thickness of the oxide layer and that it crucially depends on oxide formation conditions. We further demonstrate that chemical surface protection by nitridation, liquid-phase hydrosilylation, or gas-phase hydrosilylation can inhibit rapid oxide formation in air and results in a permanent improvement of the mechanical quality factor between three- and five-fold. This improvement extends to cryogenic temperatures. Presented recipes can be directly integrated with standard cleanroom processes and may be especially beneficial for ultrasensitive nanomechanical force- and mass sensors, including silicon cantilevers, membranes, or nanowires.
Collapse
Affiliation(s)
- Y Tao
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland. Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | | | | | | | | |
Collapse
|
16
|
Bose S, Schmid S, Larsen T, Sylvest Keller S, Boisen A, Almdal K. Micromechanical fast quasi-static detection of α and β relaxations with nanograms of polymer. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sanjukta Bose
- Department of Micro- and Nanotechnology; Technical University of Denmark, DTU Nanotech; DK-2800 Kongens Lyngby Denmark
| | - Silvan Schmid
- Department of Micro- and Nanotechnology; Technical University of Denmark, DTU Nanotech; DK-2800 Kongens Lyngby Denmark
| | - Tom Larsen
- Department of Mechanical Engineering; Stanford University; Stanford CA 94305
| | - Stephan Sylvest Keller
- Department of Micro- and Nanotechnology; Technical University of Denmark, DTU Nanotech; DK-2800 Kongens Lyngby Denmark
| | - Anja Boisen
- Department of Micro- and Nanotechnology; Technical University of Denmark, DTU Nanotech; DK-2800 Kongens Lyngby Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology; Technical University of Denmark, DTU Nanotech; DK-2800 Kongens Lyngby Denmark
| |
Collapse
|
17
|
Pandya HJ, Roy R, Chen W, Chekmareva MA, Foran DJ, Desai JP. Accurate characterization of benign and cancerous breast tissues: aspecific patient studies using piezoresistive microcantilevers. Biosens Bioelectron 2015; 63:414-424. [PMID: 25128621 PMCID: PMC4167594 DOI: 10.1016/j.bios.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 11/30/2022]
Abstract
Breast cancer is the largest detected cancer amongst women in the US. In this work, our team reports on the development of piezoresistive microcantilevers (PMCs) to investigate their potential use in the accurate detection and characterization of benign and diseased breast tissues by performing indentations on the micro-scale tissue specimens. The PMCs used in these experiments have been fabricated using laboratory-made silicon-on-insulator (SOI) substrate, which significantly reduces the fabrication costs. The PMCs are 260 μm long, 35 μm wide and 2 μm thick with resistivity of order 1.316×10(-3) Ω cm obtained by using boron diffusion technique. For indenting the tissue, we utilized 8 μm thick cylindrical SU-8 tip. The PMC was calibrated against a known AFM probe. Breast tissue cores from seven different specimens were indented using PMC to identify benign and cancerous tissue cores. Furthermore, field emission scanning electron microscopy (FE-SEM) of benign and cancerous specimens showed marked differences in the tissue morphology, which further validates our observed experimental data with the PMCs. While these patient aspecific feasibility studies clearly demonstrate the ability to discriminate between benign and cancerous breast tissues, further investigation is necessary to perform automated mechano-phenotyping (classification) of breast cancer: from onset to disease progression.
Collapse
Affiliation(s)
- Hardik J Pandya
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Rajarshi Roy
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Wenjin Chen
- Center for Biomedical Imaging & Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Marina A Chekmareva
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - David J Foran
- Center for Biomedical Imaging & Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jaydev P Desai
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
18
|
Kasas S, Ruggeri FS, Benadiba C, Maillard C, Stupar P, Tournu H, Dietler G, Longo G. Detecting nanoscale vibrations as signature of life. Proc Natl Acad Sci U S A 2015; 112:378-81. [PMID: 25548177 PMCID: PMC4299216 DOI: 10.1073/pnas.1415348112] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Département des Neurosciences Fondamentales, Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland; and
| | - Francesco Simone Ruggeri
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carine Benadiba
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Maillard
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hélène Tournu
- Department of Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni Longo
- Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques, Facultè des Sciences des Base, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
19
|
Gopinath PG, Anitha VR, Mastani SA. Microcantilever based Biosensor for Disease Detection Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.12720/jomb.4.4.307-311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Pandya HJ, Chen W, Goodell LA, Foran DJ, Desai JP. Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissues. LAB ON A CHIP 2014; 14:4523-32. [PMID: 25267099 PMCID: PMC4224189 DOI: 10.1039/c4lc00594e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mechanical properties of tissue change significantly during the progression from healthy to malignant. Quantifying the mechanical properties of breast tissue within the tumor microenvironment can help to delineate benign from cancerous stages. In this work, we study high-grade invasive ductal carcinoma in comparison with their matched tumor adjacent areas, which exhibit benign morphology. Such paired tissue cores obtained from eight patients were indented using a MEMS-based piezoresistive microcantilever, which was positioned within pre-designated epithelial and stromal areas of the specimen. Field emission scanning electron microscopy studies on breast tissue cores were performed to understand the microstructural changes from benign to malignant. The normal epithelial tissues appeared compact and organized. The appearance of cancer regions, in comparison, not only revealed increased cellularity but also showed disorganization and increased fenestration. Using this technique, reliable discrimination between epithelial and stromal regions throughout both benign and cancerous breast tissue cores was obtained. The mechanical profiling generated using this method has the potential to be an objective, reproducible, and quantitative indicator for detecting and characterizing breast cancer.
Collapse
Affiliation(s)
- Hardik J Pandya
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
21
|
Aghayee S, Benadiba C, Notz J, Kasas S, Dietler G, Longo G. Combination of fluorescence microscopy and nanomotion detection to characterize bacteria. J Mol Recognit 2014; 26:590-5. [PMID: 24089366 DOI: 10.1002/jmr.2306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/11/2022]
Abstract
Antibiotic-resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor.
Collapse
Affiliation(s)
- S Aghayee
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Dias AD, Kingsley DM, Corr DT. Recent advances in bioprinting and applications for biosensing. BIOSENSORS 2014; 4:111-36. [PMID: 25587413 PMCID: PMC4264374 DOI: 10.3390/bios4020111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic.
Collapse
Affiliation(s)
- Andrew D Dias
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA; E-Mails: (A.D.D.); (D.M.K.)
| | - David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA; E-Mails: (A.D.D.); (D.M.K.)
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA; E-Mails: (A.D.D.); (D.M.K.)
| |
Collapse
|
23
|
Longo G, Kasas S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:230-44. [PMID: 24616433 DOI: 10.1002/wnan.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/07/2022]
Abstract
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Collapse
Affiliation(s)
- Giovanni Longo
- Ecole Polytechnique Fédérale de Lausanne, LPMV, Lausanne, Switzerland; Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
24
|
Lim YC, Kouzani AZ, Duan W, Dai XJ, Kaynak A, Mair D. A surface-stress-based microcantilever aptasensor. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:15-24. [PMID: 24681916 DOI: 10.1109/tbcas.2013.2286255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.
Collapse
|
25
|
Lee D, Kim S, Van Neste CW, Lee M, Jeon S, Thundat T. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array. NANOTECHNOLOGY 2014; 25:035501. [PMID: 24346340 DOI: 10.1088/0957-4484/25/3/035501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A rapid method of obtaining photoacoustic spectroscopic signals for trace amounts of surface adsorbed molecules using a nanostructured coupled resonator array is described. Explosive molecules adsorbed on a nanoporous anodic aluminum oxide cantilever, which has hexagonally ordered nanowells with diameters and well-to-well distances of 35 nm and 100 nm, respectively, are excited using pulsed infrared (IR) light with a frequency matching the common mode resonance frequency of the coupled resonator. The common mode resonance amplitudes of the coupled resonator as a function of illuminating IR wavelength present a photoacoustic IR absorption spectrum representing the chemical signatures of the adsorbed explosive molecules. In addition, the mass of the adsorbed molecules as an orthogonal signal for quantitative analysis is determined by measuring the variation of the localized, individual mode resonance frequency of a cantilever on the array. The limit of detection of the ternary mixture of explosive molecules (1:1:1 of trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) is estimated to be ~ 100 ng cm(-2). These multi-modal signals enable us to perform quantitative and rapid chemical sensing and analysis in ambient conditions.
Collapse
Affiliation(s)
- Dongkyu Lee
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Bose S, Schmid S, Larsen T, Keller SS, Sommer-Larsen P, Boisen A, Almdal K. Micromechanical String Resonators: Analytical Tool for Thermal Characterization of Polymers. ACS Macro Lett 2014; 3:55-58. [PMID: 35651109 DOI: 10.1021/mz400470n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resonant microstrings show promise as a new analytical tool for thermal characterization of polymers with only few nanograms of sample. The detection of the glass transition temperature (Tg) of an amorphous poly(d,l-lactide) (PDLLA) and a semicrystalline poly(l-lactide) (PLLA) is investigated. The polymers are spray coated on one side of the resonating microstrings. The resonance frequency and quality factor (Q) are measured simultaneously as a function of temperature. Change in the resonance frequency reflects a change in static tensile stress, which yields information about the Young's modulus of the polymer, and a change in Q reflects the change in damping of the polymer-coated string. The frequency response of the microstring is validated with an analytical model. From the frequency independent tensile stress change, static Tg values of 40.6 and 57.6 °C were measured for PDLLA and PLLA, respectively. The frequency-dependent damping from Q indicates higher Tg values of 62.6 and 88.8 °C for PDLLA and PLLA, respectively, at ∼105 Hz. Resonant microstrings facilitate thermal analysis of nanogram polymer samples measuring the static and a dynamic glass transition temperature simultaneously.
Collapse
Affiliation(s)
- Sanjukta Bose
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, DK-2800 Kongens Lyngby, Denmark
| | - Silvan Schmid
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, DK-2800 Kongens Lyngby, Denmark
| | - Tom Larsen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, DK-2800 Kongens Lyngby, Denmark
| | - Stephan S. Keller
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, DK-2800 Kongens Lyngby, Denmark
| | - Peter Sommer-Larsen
- Department
of Energy Conversion and Storage, Technical University of Denmark, DTU Energy Conversion, DK-4000 Roskilde, Denmark
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, DK-2800 Kongens Lyngby, Denmark
| | - Kristoffer Almdal
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Ji HF, Yang X, Zhang J, Thundat T. Molecular recognition of biowarfare agents using micromechanical sensors. Expert Rev Mol Diagn 2014; 4:859-66. [PMID: 15525227 DOI: 10.1586/14737159.4.6.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent terrorist events have demonstrated that an urgent and widespread need exists for the development of novel sensors for threat detection, especially biowarfare agents. The advent of inexpensive, mass-produced microcantilever sensors promises to bring about a revolution in detection of terrorist threats. Extremely sensitive and highly selective sensors can be developed for using a microcantilever platform. Microcantilevers undergo bending when molecules are adsorbed on a single side. For biowarfare agent detection, specificity is achieved by immobilizing antibodies on one side of the cantilever. Antigen adsorption decreases surface energy and stress, resulting in cantilever deflection.
Collapse
Affiliation(s)
- Hai Feng Ji
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
The ability to precisely control the morphology and dimension coupled with the tunable surface reactivity has led to the widespread investigation of nanomaterials for various device applications. The associated high surface area to volume ratio implies that large numbers of atom are residing on the surface and are available for interaction. Accordingly, nanomaterials have demonstrated the potential to realize sensors with ultrahigh sensitivities and fast response kinetics. The smaller size further provides the possibility of miniaturization and integration of large number of devices. All these properties makes them an attractive candidate for the fabrication of electronic nose or e-nose. E-nose is an intelligent chemical-array sensor system that mimics the mammalian olfactory system. The present paper critically reviews the recent development in the field of nanomaterials based e-nose devices. In particular, this paper is focused on the description of nanomaterials for e-nose application, specifically on the promising approaches that are going to contribute towards the further development of this field. Various issues related to successful utilization of different nanomaterials for commercial application are discussed, taking help from the literature. The review concludes by briefing the important steps taken towards the commercialization and highlighting the loopholes that are still to be addressed.
Collapse
|
29
|
Sang S, Zhao Y, Zhang W, Li P, Hu J, Li G. Surface stress-based biosensors. Biosens Bioelectron 2013; 51:124-35. [PMID: 23948243 DOI: 10.1016/j.bios.2013.07.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/27/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed.
Collapse
Affiliation(s)
- Shengbo Sang
- MicroNano System Research Center, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. NATURE NANOTECHNOLOGY 2013; 8:522-6. [PMID: 23812189 DOI: 10.1038/nnano.2013.120] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 05/27/2013] [Indexed: 05/24/2023]
Abstract
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Collapse
Affiliation(s)
- G Longo
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fairbairn M, Moheimani SOR. Sensorless enhancement of an atomic force microscope micro-cantilever quality factor using piezoelectric shunt control. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:053706. [PMID: 23742557 DOI: 10.1063/1.4805108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The image quality and resolution of the Atomic Force Microscope (AFM) operating in tapping mode is dependent on the quality (Q) factor of the sensing micro-cantilever. Increasing the cantilever Q factor improves image resolution and reduces the risk of sample and cantilever damage. Active piezoelectric shunt control is introduced in this work as a new technique for modifying the Q factor of a piezoelectric self-actuating AFM micro-cantilever. An active impedance is placed in series with the tip oscillation voltage source to modify the mechanical dynamics of the cantilever. The benefit of using this control technique is that it removes the optical displacement sensor from the Q control feedback loop to reduce measurement noise in the loop and allows for a reduction in instrument size.
Collapse
Affiliation(s)
- M Fairbairn
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | |
Collapse
|
32
|
Yoshikawa G, Akiyama T, Loizeau F, Shiba K, Gautsch S, Nakayama T, Vettiger P, de Rooij NF, Aono M. Two dimensional array of piezoresistive nanomechanical Membrane-type Surface Stress Sensor (MSS) with improved sensitivity. SENSORS 2012. [PMID: 23202237 PMCID: PMC3522990 DOI: 10.3390/s121115873] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS) chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.
Collapse
Affiliation(s)
- Genki Yoshikawa
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; E-Mails: (K.S.); (T.N.); (M.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-29-860-4749; Fax: +81-29-860-4706
| | - Terunobu Akiyama
- Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel CH-2002, Switzerland; E-Mails: (T.A.); (F.L.); (S.G.); (P.V.); (N.F.R.)
| | - Frederic Loizeau
- Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel CH-2002, Switzerland; E-Mails: (T.A.); (F.L.); (S.G.); (P.V.); (N.F.R.)
| | - Kota Shiba
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; E-Mails: (K.S.); (T.N.); (M.A.)
| | - Sebastian Gautsch
- Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel CH-2002, Switzerland; E-Mails: (T.A.); (F.L.); (S.G.); (P.V.); (N.F.R.)
| | - Tomonobu Nakayama
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; E-Mails: (K.S.); (T.N.); (M.A.)
| | - Peter Vettiger
- Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel CH-2002, Switzerland; E-Mails: (T.A.); (F.L.); (S.G.); (P.V.); (N.F.R.)
| | - Nico F. de Rooij
- Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel CH-2002, Switzerland; E-Mails: (T.A.); (F.L.); (S.G.); (P.V.); (N.F.R.)
| | - Masakazu Aono
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; E-Mails: (K.S.); (T.N.); (M.A.)
| |
Collapse
|
33
|
Atomic force microscopy as a tool applied to nano/biosensors. SENSORS 2012; 12:8278-300. [PMID: 22969400 PMCID: PMC3436029 DOI: 10.3390/s120608278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 11/17/2022]
Abstract
This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.
Collapse
|
34
|
Zagnoni M. Miniaturised technologies for the development of artificial lipid bilayer systems. LAB ON A CHIP 2012; 12:1026-1039. [PMID: 22301684 DOI: 10.1039/c2lc20991h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Artificially reproducing cellular environments is a key aim of synthetic biology, which has the potential to greatly enhance our understanding of cellular mechanisms. Microfluidic and lab-on-a-chip (LOC) techniques, which enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, can play a major role in achieving this by offering alternative and powerful methodologies in an on-chip format. Such techniques have been successfully employed over the last twenty years to provide innovative solutions for chemical analysis and cell-, molecular- and synthetic- biology. In the context of the latter, the formation of artificial cell membranes (or artificial lipid bilayers) that incorporate membrane proteins within miniaturised LOC architectures offers huge potential for the development of highly sensitive molecular sensors and drug screening applications. The aim of this review is to give a comprehensive and critical overview of the field of microsystems for creating and exploiting artificial lipid bilayers. Advantages and limitations of three of the most popular approaches, namely suspended, supported and droplet-based lipid bilayers, are discussed. Examples are reported that show how artificial cell membrane microsystems, by combining together biological procedures and engineering techniques, can provide novel methodologies for basic biological and biophysical research and for the development of biotechnology tools.
Collapse
Affiliation(s)
- Michele Zagnoni
- Centre for Microsystems and Photonics, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
35
|
Abstract
The mammalian olfactory system is able to detect many more odorants than the number of receptors it has by utilizing cross-reactive odorant receptors that generate unique response patterns for each odorant. Mimicking the mammalian system, artificial noses combine cross-reactive sensor arrays with pattern recognition algorithms to create robust odor-discrimination systems. The first artificial nose reported in 1982 utilized a tin-oxide sensor array. Since then, however, a wide range of sensor technologies have been developed and commercialized. This review highlights the most commonly employed sensor types in artificial noses: electrical, gravimetric, and optical sensors. The applications of nose systems are also reviewed, covering areas such as food and beverage quality control, chemical warfare agent detection, and medical diagnostics. A brief discussion of future trends for the technology is also provided.
Collapse
|
36
|
Buchapudi K, Xu X, Ataian Y, Ji HF, Schulte M. Micromechanical measurement of AChBP binding for label-free drug discovery. Analyst 2012; 137:263-8. [DOI: 10.1039/c1an15734e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Kelling S, Huang J, Capener MJ, Elliott SR. Breath analysis system based on phase-shifting interferometric microscopy readout of microcantilever arrays. J Breath Res 2011; 5:037106. [DOI: 10.1088/1752-7155/5/3/037106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Yoshikawa G, Akiyama T, Gautsch S, Vettiger P, Rohrer H. Nanomechanical membrane-type surface stress sensor. NANO LETTERS 2011; 11:1044-1048. [PMID: 21314159 DOI: 10.1021/nl103901a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.
Collapse
Affiliation(s)
- Genki Yoshikawa
- World Premier International (WPI) Research Center, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | | | |
Collapse
|
39
|
Ekinci KL, Yakhot V, Rajauria S, Colosqui C, Karabacak DM. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS. LAB ON A CHIP 2010; 10:3013-25. [PMID: 20862440 DOI: 10.1039/c003770m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A solid body undergoing oscillatory motion in a fluid generates an oscillating flow. Oscillating flows in Newtonian fluids were first treated by G.G. Stokes in 1851. Since then, this problem has attracted much attention, mostly due to its technological significance. Recent advances in micro- and nanotechnology require that this problem be revisited: miniaturized mechanical resonators with linear dimensions in microns and sub-microns-microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), respectively-give rise to oscillating flows when operated in fluids. Yet flow parameters for these devices, such as the characteristic flow time and length scales, may deviate greatly from those in Stokes' solution. As a result, new and interesting physics emerges with important consequences to device applications. In this review, we shall provide an introduction to this area of fluid dynamics, called high-frequency nanofluidics, with emphasis on both theory and experiments.
Collapse
Affiliation(s)
- K L Ekinci
- Mechanical Engineering Department, Boston University, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
40
|
Li M, Myers EB, Tang HX, Aldridge SJ, McCaig HC, Whiting JJ, Simonson RJ, Lewis NS, Roukes ML. Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis. NANO LETTERS 2010; 10:3899-903. [PMID: 20795729 PMCID: PMC3839305 DOI: 10.1021/nl101586s] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Miniaturized gas chromatography (GC) systems can provide fast, quantitative analysis of chemical vapors in an ultrasmall package. We describe a chemical sensor technology based on resonant nanoelectromechanical systems (NEMS) mass detectors that provides the speed, sensitivity, specificity, and size required by the microscale GC paradigm. Such NEMS sensors have demonstrated detection of subparts per billion (ppb) concentrations of a phosphonate analyte. By combining two channels of NEMS detection with an ultrafast GC front-end, chromatographic analysis of 13 chemicals was performed within a 5 s time window.
Collapse
Affiliation(s)
- Mo Li
- Kavli Nanoscience Institute, California Institute of Technology, MS 114-36, Pasadena, California 91125
| | - E. B. Myers
- Kavli Nanoscience Institute, California Institute of Technology, MS 114-36, Pasadena, California 91125
| | - H. X. Tang
- Kavli Nanoscience Institute, California Institute of Technology, MS 114-36, Pasadena, California 91125
| | - S. J. Aldridge
- Kavli Nanoscience Institute, California Institute of Technology, MS 114-36, Pasadena, California 91125
| | - H. C. McCaig
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - J. J. Whiting
- Sandia National Laboratories, Albuquerque, New Mexico 87123
| | - R. J. Simonson
- Sandia National Laboratories, Albuquerque, New Mexico 87123
| | - N. S. Lewis
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - M. L. Roukes
- Kavli Nanoscience Institute, California Institute of Technology, MS 114-36, Pasadena, California 91125
| |
Collapse
|
41
|
Lee JH, Han J. Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator. MICROFLUIDICS AND NANOFLUIDICS 2010; 9:973-979. [PMID: 20953263 PMCID: PMC2954427 DOI: 10.1007/s10404-010-0598-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Here, we report a new method of concentration-enhanced binding kinetics for a rapid immunoassay screening test on a gold surface in a poly(dimethylsiloxane) (PDMS) microfluidic chip format. The use of alkylthiolate self-assembled monolayers on gold surfaces of a PDMS-glass microchip resulted in accelerated binding kinetics of Human chorionic gonadotropin (hCG) at an electrokinetic trapping zone. We used a PBS solution (buffer concentration ~ 150 mM), not a dibasic buffer system (~10 mM), for the dynamic preconcentrating operation and the preconcentration of cy3 labeled streptavidin onto biotinylated Au surface revealed that the binding kinetics of the protein were linearly proportional to the concentration profile of the preconcentration plug. We showed rapid detection of hCG in the clinical range with a shorten assay time of 10 min. Also, we demonstrated that the amount of sample needed were detection was decreased from ~4 mL to ~25 μL in the standard serum tests. The enhanced binding kinetics between hcG Ag-Ab via preconcentration showed good feasibility for use in a rapid immunoassay screening test.
Collapse
Affiliation(s)
- Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 447-1, Wolgye, Nowon, Seoul, South Korea 139-701
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
42
|
Dong Y, Gao W, Zhou Q, Zheng Y, You Z. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds. Anal Chim Acta 2010; 671:85-91. [PMID: 20541647 DOI: 10.1016/j.aca.2010.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 04/26/2010] [Accepted: 05/05/2010] [Indexed: 12/01/2022]
Abstract
The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved.
Collapse
Affiliation(s)
- Ying Dong
- Department of Precision Instrument and Mechanology, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
43
|
Ji HF, Armon BD. Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. Anal Chem 2010; 82:1634-1642. [PMID: 20128621 PMCID: PMC2836585 DOI: 10.1021/ac901955d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microcantilever sensor technology has been steadily growing for the last 15 years. While we have gained a great amount of knowledge in microcantilever bending due to surface stress changes, which is a unique property of microcantilever sensors, we are still in the early stages of understanding the fundamental surface chemistries of surface-stress-based microcantilever sensors. In general, increasing surface stress, which is caused by interactions on the microcantilever surfaces, would improve the S/N ratio and subsequently the sensitivity and reliability of microcantilever sensors. In this review, we will summarize (A) the conditions under which a large surface stress can readily be attained and (B) the strategies to increase surface stress in case a large surface stress cannot readily be reached. We will also discuss our perspectives on microcantilever sensors based on surface stress changes.
Collapse
Affiliation(s)
- Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19010, USA.
| | | |
Collapse
|
44
|
Godin M, Tabard-Cossa V, Miyahara Y, Monga T, Williams PJ, Beaulieu LY, Bruce Lennox R, Grutter P. Cantilever-based sensing: the origin of surface stress and optimization strategies. NANOTECHNOLOGY 2010; 21:75501. [PMID: 20081290 DOI: 10.1088/0957-4484/21/7/075501] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many interactions drive the adsorption of molecules on surfaces, all of which can result in a measurable change in surface stress. This article compares the contributions of various possible interactions to the overall induced surface stress for cantilever-based sensing applications. The surface stress resulting from adsorption-induced changes in the electronic density of the underlying surface is up to 2-4 orders of magnitude larger than that resulting from intermolecular electrostatic or Lennard-Jones interactions. We reveal that the surface stress associated with the formation of high quality alkanethiol self-assembled monolayers on gold surfaces is independent of the molecular chain length, supporting our theoretical findings. This provides a foundation for the development of new strategies for increasing the sensitivity of cantilever-based sensors for various applications.
Collapse
Affiliation(s)
- Michel Godin
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Aernecke MJ, Walt DR. Temporally resolved fluorescence spectroscopy of a microarray-based vapor sensing system. Anal Chem 2009; 81:5762-9. [PMID: 19518137 DOI: 10.1021/ac900589b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a method to measure the complete fluorescence spectrum from numerous fluorescent microspheres in a microarray simultaneously during exposure to a vapor. The technique, called spectrally resolved sensor imaging (SRSI), positions a transmission grating directly in front of the microscope objective on a standard epi-fluorescence microscope. This modification produces a hybrid image on the CCD camera that contains a conventional fluorescence image in the zero-order diffracted light and a fluorescence spectral image in the first-order diffracted light. Three types of surface-functionalized silica microspheres were coated with a solvatochromic dye. The surface functionality on the microspheres influences the maximum emission wavelength of the dye and generates a fluorescence spectral signature that is used to identify each sensor type. These sensors were randomly distributed into a photolithographically fabricated microarray platform, and the spectral signature of each individual sensor was measured. The time resolution of spectral acquisition is short enough to capture dynamic changes in the fluorescence emission as a vapor is presented to the array. The ability to measure the entire fluorescence spectrum from each sensor simultaneously during a vapor exposure increases the dimensionality of the response data and significantly improves the classification accuracy of the system.
Collapse
Affiliation(s)
- Matthew J Aernecke
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
46
|
Norman LL, Badia A. Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress. J Am Chem Soc 2009; 131:2328-37. [PMID: 19166296 DOI: 10.1021/ja808400s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemically induced motion of free-standing microcantilevers is attracting interest as micro/nanoactuators and robotic devices. The development and implementation of these cantilever-based actuating technologies requires a molecular-level understanding of the origin of the surface stress that causes the cantilever to bend. Here, we report a detailed study of the electroactuation dynamics of gold-coated microcantilevers modified with a model, redox-active ferrocenylundecanethiolate self-assembled monolayer (FcC(11)SAu SAM). The microcantilever transducer enabled the observation of the redox transformation of the surface-confined ferrocene. Oxidation of the FcC(11)SAu SAM in perchlorate electrolyte generated a compressive surface stress change of -0.20 +/- 0.04 N m(-1), and cantilever deflections ranging from approximately 0.8 microm to approximately 60 nm for spring constants between approximately 0.01 and approximately 0.8 N m(-1). A comparison of the charge-normalized surface stress of the FcC(11)SAu cantilever with values published for the electrochemical oxidation of polyaniline- and polypyrrole-coated cantilevers reveals a striking 10- to 100-fold greater stress for the monomolecular FcC(11)SAu system compared to the conducting polymer multilayers used for electroactuation. The larger stress change observed for the FcC(11)SAu microcantilever is attributable to steric constraints in the close-packed FcC(11)SAu SAM and an efficient coupling between the chemisorbed FcC(11)S- monolayer and the Au-coated microcantilever transducer (vs physisorbed conducting polymers). The microcantilever deflection vs quantity of electrogenerated ferrocenium obtained in cyclic voltammetry and potential step/hold experiments, as well as the surface stress changes obtained for mixed FcC(11)S-/C(11)SAu SAMs containing different populations of clustered vs isolated ferrocenes, have permitted us to establish the molecular basis of stress generation. Our results strongly suggest that the redox-induced deflection of a FcC(11)SAu microcantilever is caused by a monolayer volume expansion resulting from collective reorientational motions induced by the complexation of perchlorate ions to the surface-immobilized ferroceniums. The cantilever responds to the lateral pressure exerted by an ensemble of reorienting ferrocenium-bearing alkylthiolates upon each other rather than individual anion pairing events. This finding has general implications for using SAM-modified microcantilevers as (bio)sensors because it indicates that the cantilever responds to collective in-plane molecular interactions rather than reporting individual (bio)chemical events.
Collapse
Affiliation(s)
- Lana L Norman
- FQRNT Center for Self-Assembled Chemical Structures, Regroupement québécois sur les matériaux de pointe, and Department of Chemistry, Université de Montréal, QC H3C 3J7 Canada
| | | |
Collapse
|
47
|
Lee C, Thillaigovindan J. Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator. APPLIED OPTICS 2009; 48:1797-1803. [PMID: 19340132 DOI: 10.1364/ao.48.001797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present in-depth discussion of the design and optimization of a nanomechanical sensor using a silicon cantilever comprising a two-dimensional photonic crystal (PC) nanocavity resonator arranged in a U-shaped silicon PC waveguide. For example, the minimum detectable strain, vertical deflection at the cantilever end, and force load are observed as 0.0133%, 0.37 mum, and 0.0625 muN, respectively, for a 30 mum long and 15 mum wide cantilever. In the graph of strain versus resonant wavelength shift, a rather linear relationship is observed for various data derived from different cantilevers. Both the resonant wavelength and the resonant wavelength shift of cantilevers under deformation or force loads are mainly a function of defect length change. Results point out that all these mechanical parameters are mainly dependent on the defect length of the PC nanocavity resonator. This new PC cantilever sensor shows promising linear characteristics as an optical nanomechanical sensor.
Collapse
Affiliation(s)
- Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore.
| | | |
Collapse
|
48
|
Lee Y, Lee S, Seo H, Jeon S, Moon W. Label-Free Detection of a Biomarker with Piezoelectric Micro Cantilever Based on Mass Micro Balancing. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jala.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With a piezoelectric micro cantilever sensor, a biomarker for various cancers is detected up to the concentration level required to determine a disease by using the mass micro balancing whose principle is that change of mechanical vibrant frequency is measured due to a target material attached on a sensor structure. The used piezoelectric micro cantilever sensor is designed so as to have the sufficient values of mass sensitivity and reliability. The used piezoelectric film, which acts as both sensor and actuator, is a plumbum zirconate titanate (PZT). Geometrical dimension of the micro cantilever is 100 μm (length) by 30 μm (width) by 5 μm (thickness). The 50-μm-long PZT film with thickness of 2.5 μm is covered from its root to its middle. Carcinoembryonic antigen (CEA), the biomarker for testing the sensor as label-free detection for pathological tests, is known as a biomarker for various cancers. The critical value of CEA concentration is known as 30 pM (5 ng/mL), and it is detected by the binding of antigen and antibody from high concentration to the critical concentration. From the results, the sensor could be applied to label-free detection sensors for pathological tests.
Collapse
Affiliation(s)
- Yeolho Lee
- Pohang University of Science & Technology, Republic of Korea
| | - Sangkyu Lee
- Pohang University of Science & Technology, Republic of Korea
| | - Hyejung Seo
- Pohang University of Science & Technology, Republic of Korea
| | - Sangmin Jeon
- Pohang University of Science & Technology, Republic of Korea
| | - Wonkyu Moon
- Pohang University of Science & Technology, Republic of Korea
| |
Collapse
|
49
|
Hill K, Dutta P, Zareba A, Eldridge ML, Sepaniak MJ. Morphological and chemical optimization of microcantilever surfaces for thyroid system biosensing and beyond. Anal Chim Acta 2008; 625:55-62. [DOI: 10.1016/j.aca.2008.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/25/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
|
50
|
Lubarsky GV, Hähner G. Hydrodynamic methods for calibrating the normal spring constant of microcantilevers. NANOTECHNOLOGY 2008; 19:325707. [PMID: 21828829 DOI: 10.1088/0957-4484/19/32/325707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Knowledge of the spring constants of microcantilevers is vital in atomic force microscopy and for cantilever-based devices that are, for example, employed as probes in biomedical applications. We compare two recently developed hydrodynamic methods for the determination of the normal spring constant of microcantilevers. Both approaches are non-invasive when determining the spring constant and require only knowledge of the thermal noise response of the cantilever in a fluid and its plan view dimensions. The methods do not bear the risk of damaging the cantilever and are therefore attractive for example in mass sensing applications in cases where the cantilever has been modified, e.g. with a coating. The specific strengths of the methods are discussed and the results for a variety of cantilevers are presented and compared.
Collapse
Affiliation(s)
- Gennady V Lubarsky
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | | |
Collapse
|