1
|
Owumi S, Oluwawibe BJ, Agbarogi H, Otunla MT, Owoeye O, Arunsi UO. Integrated In-silico and In-vivo Assessments of Betaine's Effect on the Hypothalamic-Pituitary-Testicular (HPT) Axis in Fluoride-Treated Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04519-y. [PMID: 39907888 DOI: 10.1007/s12011-025-04519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Toxicity is associated with undue sodium fluoride (NaF) exposure, and Betaine (BET) is recognised for its nutraceutical benefits. Although it is necessary to reduce toxic level exposure to fluoride, the literature lacks information on the role of BET in mitigating fluoride-induced reproductive toxicity. Therefore, this study assesses the impact of BET on NaF-induced reproductive perturbation in male rats. Wistar rats were treated with NaF (9 mg/kg) alone or co-treated with BET (50 or 100 mg/kg) for 28 d. Our findings indicate that BET significantly mitigated alterations in sperm functionality indices caused by NaF treatment. BET substantially increased reproductive hormone levels and averted NaF-induced increases in oxidative stress biomarkers and testicular enzymes. NaF-induced increases in inflammatory markers in the testis, epididymis, and hypothalamus were effectively reversed upon BET co-treatment. Also, co-treatment with BET protected genome integrity, as evidenced by p53 and apoptotic markers Bax and Bcl-2 levels, abating damages in the testes, epididymis, and hypothalamus of NaF-treated rats. Also, our findings from in-silico studies revealed that BET moderately inhibits the molecular activation of the inhibitor of nuclear factor-κB kinase, hypoxia-inducible factor -1 alpha, and proviral integration for the Moloney murine leukaemia virus-1 kinase. While it is preferable to reduce fluoride exposure, the relevant findings here indicate that BET exhibits anti-inflammatory, antioxidant, and anti-apoptotic properties that ameliorate inadvertent NaF-mediated toxicities in experimental rats exposed to NaF.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria.
| | - Bayode J Oluwawibe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uche O Arunsi
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
2
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
3
|
Sawicka AK, Jaworska J, Brzeska B, Sabisz A, Samborowska E, Radkiewicz M, Szurowska E, Winklewski PJ, Szarmach A, Olek RA. L-Carnitine Combined with Leucine Supplementation Does Not Improve the Effectiveness of Progressive Resistance Training in Healthy Aged Women. J Nutr Health Aging 2022; 26:945-953. [PMID: 36259583 DOI: 10.1007/s12603-022-1848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate the effect of L-carnitine (LC) in combination with leucine supplementation on muscle strength and muscle hypertrophy in aged women participating in a resistance exercise training (RET) program. DESIGN/SETTING/PARTICIPANTS Thirty-seven out of sixty (38.3% dropout) healthy women aged 60-75 years (mean 67.6 ± 0.7 years) completed the intervention in one of three groups. One of the supplemented groups received 1 g of L-carnitine-L-tartrate in combination with 3 g of L-leucine per day (LC+L group; n = 12), and the second supplemented group received 4 g of L-leucine per day (L group; n = 13). The control group (CON group; n = 12) received no supplementation. INTERVENTION All three groups completed the same RET protocol involving exercise sessions twice per week for 24 weeks. MEASUREMENTS Before and after the experiment, participants performed isometric and isokinetic muscle strength testing on the Biodex dynamometer. The cross-sectional areas of the major knee extensors and total thigh muscles were assessed using magnetic resonance imaging. Fasting serum levels of insulin-like growth factor-1 (IGF-1), myostatin and decorin, and plasma levels of total carnitine (TC) and trimethylamine-N-oxide (TMAO) levels were measured. RESULTS The 24-week RET significantly increased muscle strength and muscle volume, but the group and time interactions were not significant for the muscle variables analyzed. Plasma total carnitine increased only in the LC+L group (p = 0.009). LC supplementation also caused a significant increase in plasma TMAO, which was higher after the intervention in the LC+L group than in the L (p < 0.001), and CON (p = 0.005) groups. The intervention did not change plasma TMAO concentration in the L (p = 0.959) and CON (p = 0.866) groups. After the intervention serum decorin level was higher than before in both supplemented groups combined (p = 0.012), still not significantly different to post intervention CON (p = 0.231). No changes in serum IGF-1 and myostatin concentrations and no links between the changes in blood markers and muscle function or muscle volume were observed. CONCLUSIONS LC combined with leucine or leucine alone does not appear to improve the effectiveness of RET.
Collapse
Affiliation(s)
- A K Sawicka
- Robert A. Olek, Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Krolowej Jadwigi 27/39; 61-871 Poznan, Poland, e-mail: , ORCID: 0000-0002-3714-7386
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules 2021; 11:biom11121892. [PMID: 34944536 PMCID: PMC8699500 DOI: 10.3390/biom11121892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.
Collapse
|
5
|
Hydration of Simple Model Peptides in Aqueous Osmolyte Solutions. Int J Mol Sci 2021; 22:ijms22179350. [PMID: 34502252 PMCID: PMC8431001 DOI: 10.3390/ijms22179350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The biology and chemistry of proteins and peptides are inextricably linked with water as the solvent. The reason for the high stability of some proteins or uncontrolled aggregation of others may be hidden in the properties of their hydration water. In this study, we investigated the effect of stabilizing osmolyte–TMAO (trimethylamine N-oxide) and destabilizing osmolyte–urea on hydration shells of two short peptides, NAGMA (N-acetyl-glycine-methylamide) and diglycine, by means of FTIR spectroscopy and molecular dynamics simulations. We isolated the spectroscopic share of water molecules that are simultaneously under the influence of peptide and osmolyte and determined the structural and energetic properties of these water molecules. Our experimental and computational results revealed that the changes in the structure of water around peptides, caused by the presence of stabilizing or destabilizing osmolyte, are significantly different for both NAGMA and diglycine. The main factor determining the influence of osmolytes on peptides is the structural-energetic similarity of their hydration spheres. We showed that the chosen peptides can serve as models for various fragments of the protein surface: NAGMA for the protein backbone and diglycine for the protein surface with polar side chains.
Collapse
|
6
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
7
|
Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. BIOLOGY 2021; 10:456. [PMID: 34067313 PMCID: PMC8224793 DOI: 10.3390/biology10060456] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Medicinal herbs and many food ingredients possess favorable biological properties that contribute to their therapeutic activities. One such natural product is betaine, a stable, nontoxic natural substance that is present in animals, plants, and microorganisms. Betaine is also endogenously synthesized through the metabolism of choline or exogenously consumed through dietary intake. Betaine mainly functions as (i) an osmolyte and (ii) a methyl-group donor. This review describes the major physiological effects of betaine in whole-body health and its ability to protect against both liver- as well as non-liver-related diseases and conditions. Betaine's role in preventing/attenuating both alcohol-induced and metabolic-associated liver diseases has been well studied and is extensively reviewed here. Several studies show that betaine protects against the development of alcohol-induced hepatic steatosis, apoptosis, and accumulation of damaged proteins. Additionally, it can significantly prevent/attenuate progressive liver injury by preserving gut integrity and adipose function. The protective effects are primarily associated with the regulation of methionine metabolism through removing homocysteine and maintaining cellular SAM:SAH ratios. Similarly, betaine prevents metabolic-associated fatty liver disease and its progression. In addition, betaine has a neuroprotective role, preserves myocardial function, and prevents pancreatic steatosis. Betaine also attenuates oxidant stress, endoplasmic reticulum stress, inflammation, and cancer development. To conclude, betaine exerts significant therapeutic and biological effects that are potentially beneficial for alleviating a diverse number of human diseases and conditions.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew C. Paal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
9
|
Bhat MY, Singh LR, Dar TA. Trimethylamine N-oxide abolishes the chaperone activity of α-casein: an intrinsically disordered protein. Sci Rep 2017; 7:6572. [PMID: 28747709 PMCID: PMC5529454 DOI: 10.1038/s41598-017-06836-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Osmolytes (small molecules that help in circumventing stresses) are known to promote protein folding and prevent aggregation in the case of globular proteins. However, the effect of such osmolytes on the structure and function of intrinsically disordered proteins (IDPs) has not been clearly understood. Here we have investigated the effect of methylamine osmolytes on α-casein (an IDP present in mammalian milk) and discovered that TMAO (Trimethylamine-N-oxide) but not other methylamines renders α-casein functionless. We observed that the loss of chaperone activity of α-casein in presence of TMAO was due to the induction of an unstable aggregation-prone intermediate. The results indicate that different osmolytes may have different structural and functional consequences on IDPs, and therefore might have clinical implications for a large number of human diseases (e.g., amyloidosis, cancer, diabetes, and neurodegeneration) where IDPs are involved.
Collapse
Affiliation(s)
- Mohd Younus Bhat
- Clinical Biochemistry, University of Kashmir, Srinagar, J&K, 190006, India
| | | | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, J&K, 190006, India.
| |
Collapse
|
10
|
Kumar A, Bisht M, Venkatesu P. Exploring the structure and stability of amino acids and glycine peptides in biocompatible ionic liquids. RSC Adv 2016. [DOI: 10.1039/c5ra26690d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are vital components for a variety of biological systems and can be linked through covalent bonds (or peptide bonds) to form a protein structure.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Meena Bisht
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | | |
Collapse
|
11
|
Stojanovski B, Breydo L, Uversky VN, Ferreira GC. Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase. RSC Adv 2016. [DOI: 10.1039/c6ra22533k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tertiary structure, solvation and kinetic properties of the catalytically active aminolevulinate synthase molten globule are modulated by crowders or osmolytes.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Leonid Breydo
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Gloria C. Ferreira
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
12
|
Reddy PM, Taha M, Sharma YVRK, Venkatesu P, Lee MJ. Quantifying the co-solvent effects on trypsin from the digestive system of carp Catla catla by biophysical techniques and molecular dynamics simulations. RSC Adv 2015. [DOI: 10.1039/c5ra01302j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urea molecules locate within 0.5 nm of the surface of trypsin.
Collapse
Affiliation(s)
- P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
- Department of Chemical Engineering
| | - M. Taha
- CICECO
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | | | | | - Ming-Jer Lee
- Department of Chemical Engineering
- National Taiwan University of Science & Technology
- Taipei 10607
- Taiwan
| |
Collapse
|
13
|
Attri P, Jha I, Choi EH, Venkatesu P. Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. Int J Biol Macromol 2014; 69:114-23. [DOI: 10.1016/j.ijbiomac.2014.05.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
|
14
|
Attri P, Choi EH. Influence of reactive oxygen species on the enzyme stability and activity in the presence of ionic liquids. PLoS One 2013; 8:e75096. [PMID: 24066167 PMCID: PMC3774661 DOI: 10.1371/journal.pone.0075096] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/09/2013] [Indexed: 11/23/2022] Open
Abstract
In this paper, we have examined the effect of ammonium and imidazolium based ionic liquids (ILs) on the stability and activity of proteolytic enzyme α-chymotrypsin (CT) in the presence of cold atmospheric pressure plasma jet (APPJ). The present work aims to illustrate the state of art implementing the combined action of ILs and APPJ on the enzyme stability and activity. Our circular dichroism (CD), fluorescence and enzyme activity results of CT have revealed that buffer and all studied ILs {triethylammonium hydrogen sulphate (TEAS) from ammonium family and 1-butyl-3-methyl imidazolium chloride ([Bmim][Cl]), 1-methylimidazolium chloride ([Mim][Cl]) from imidazolium family} are notable to act as protective agents against the deleterious action of the APPJ, except triethylammonium dihydrogen phosphate (TEAP) ammonium IL. However, TEAP attenuates strongly the deleterious action of reactive oxygen species (ROS) created by APPJ on native structure of CT. Further, TEAP is able to retain the enzymatic activity after APPJ exposure which is absent in all the other systems.This study provides the first combined effect of APPJ and ILs on biomolecules that may generate many theoretical and experimental opportunities. Through this methodology, we can utilise both enzyme and plasma simultaneously without affecting the enzyme structure and activity on the material surface; which can prove to be applicable in various fields.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Korea
- * E-mail: (EHC); (PA)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Korea
- * E-mail: (EHC); (PA)
| |
Collapse
|
15
|
Wazawa T, Yasui SI, Morimoto N, Suzuki M. 1,3-Diethylurea-enhanced Mg-ATPase activity of skeletal muscle myosin with a converse effect on the sliding motility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2620-9. [PMID: 23954499 DOI: 10.1016/j.bbapap.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
We investigate the effects of urea and its derivatives on the ATPase activity and on the in vitro motility of chicken skeletal muscle actomyosin. Mg-ATPase rate of myosin subfragment-1 (S1) is increased by 4-fold by 0.3M 1,3-diethylurea (DEU), but it is unaffected by urea, thiourea, and 1,3-dimethylurea at ≤1M concentration. Thus, we further examine the effects of DEU in comparison to those of urea as reference. In in vitro motility assay, we find that in the presence of 0.3M DEU, the sliding speeds of actin filaments driven by myosin and heavy meromyosin (HMM) are significantly decreased to 1/16 and 1/6.6, respectively, compared with the controls. However, the measurement of the actin-activated ATPase activity of HMM shows that the maximal rate, Vmax, is almost unchanged with DEU. Thus, the myosin-driven sliding motility of actin filaments is significantly impeded in the presence of 0.3M DEU, whereas the cyclic interaction of myosin with F-actin occurs during the ATP turnover, the rate of which is close to that without DEU. In contrast to DEU, 0.3M urea exhibits only modest effects on both actin-activated ATPase and sliding motility of actomyosin. Thus, DEU has the effect of uncoupling the sliding motility of actomyosin from its ATP turnover.
Collapse
Affiliation(s)
- Tetsuichi Wazawa
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
16
|
|
17
|
Kumemoto R, Yusa K, Shibayama T, Hatori K. Trimethylamine N-oxide suppresses the activity of the actomyosin motor. Biochim Biophys Acta Gen Subj 2012; 1820:1597-604. [DOI: 10.1016/j.bbagen.2012.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
18
|
Vasantha T, Attri P, Venkatesu P, Devi RSR. Structural Basis for the Enhanced Stability of Protein Model Compounds and Peptide Backbone Unit in Ammonium Ionic Liquids. J Phys Chem B 2012; 116:11968-78. [DOI: 10.1021/jp308443f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- T. Vasantha
- Department of Chemistry, Sri Padmavathi Womens Degree and Post Graduate College, Tirupati 517 502, India
| | - Pankaj Attri
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | | - R. S. Rama Devi
- Department of Chemistry, Sri Padmavathi Womens Degree and Post Graduate College, Tirupati 517 502, India
| |
Collapse
|
19
|
Apicella JM, Lee EC, Bailey BL, Saenz C, Anderson JM, Craig SAS, Kraemer WJ, Volek JS, Maresh CM. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise. Eur J Appl Physiol 2012; 113:793-802. [DOI: 10.1007/s00421-012-2492-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/03/2012] [Indexed: 02/08/2023]
|
20
|
Attri P, Venkatesu P. Influence of protic ionic liquids on the structure and stability of succinylated Con A. Int J Biol Macromol 2012; 51:119-28. [DOI: 10.1016/j.ijbiomac.2012.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022]
|
21
|
Kumar A, Venkatesu P. Overview of the stability of α-chymotrypsin in different solvent media. Chem Rev 2012; 112:4283-307. [PMID: 22506806 DOI: 10.1021/cr2003773] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Kumar A, Attri P, Venkatesu P. Trehalose protects urea-induced unfolding of α-chymotrypsin. Int J Biol Macromol 2010; 47:540-5. [DOI: 10.1016/j.ijbiomac.2010.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
23
|
Venkatesu P, Lee MJ, Lin HM. Osmolyte counteracts urea-induced denaturation of alpha-chymotrypsin. J Phys Chem B 2009; 113:5327-38. [PMID: 19354310 DOI: 10.1021/jp8113013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stability of proteins is reduced by urea, which is methylamine and nonprotecting osmolyte; eventually urea destabilizes the activity and function and alters the structure of proteins, whereas the stability of proteins is raised by the osmolytes, which are not interfering with the functional activity of proteins. The deleterious effect of urea on proteins has been counteracted by methylamines (osmolytes), such as trimethylamine N-oxide (TMAO), betaine, and sarcosine. To distinctly enunciate the comparison of the counteracting effects between these methylamines on urea-induced denaturation of alpha-chymotrypsin (CT), we measured the hydrodynamic diameter (d(H)) and the thermodynamic properties (T(m), DeltaH, DeltaG(U), and DeltaC(p)) with dynamic light scattering (DLS) and differential scanning calorimeter (DSC), respectively. The present investigation compares the compatibility and counteracting hypothesis by determining the effects of methylamines and urea, as individual components and in combination at a concentration ratio of 1:2 (methylamine:urea) as well as various urea concentrations (0.5-5 M) in the presence of 1 M methylamine. The experimental results revealed that the naturally occurring osmolytes TMAO, betaine, and sarcosine strongly counteracted the urea actions on alpha-chymotrypsin. The results also indicated that TMAO counteracting the urea effects on CT was much stronger than betaine or sarcosine.
Collapse
Affiliation(s)
- Pannur Venkatesu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan.
| | | | | |
Collapse
|
24
|
Parvalbumin characterization from the euryhaline stingray Dasyatis sabina. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:339-46. [DOI: 10.1016/j.cbpa.2008.04.595] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 11/20/2022]
|
25
|
Ortiz-Costa S, Sorenson MM, Sola-Penna M. Betaine protects urea-induced denaturation of myosin subfragment-1. FEBS J 2008; 275:3388-96. [DOI: 10.1111/j.1742-4658.2008.06487.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Venkatesu P, Lee MJ, Lin HM. Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state. Arch Biochem Biophys 2007; 466:106-15. [PMID: 17697669 DOI: 10.1016/j.abb.2007.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/16/2022]
Abstract
To understand trimethylamine N-oxide (TMAO) attenuation of the denaturating effects of urea or guanidine hydrochloride (GdnHCl), we have determined the apparent transfer free energies (DeltaG(tr)(')) of cyclic dipeptides (CDs) from water to TMAO, urea or GdnHCl, and also the blends of TMAO and denaturants (urea or GdnHCl) at a 1:2 ratio as well as various denaturant concentrations in the presence of 1M TMAO, through the solubility measurements, at 25 degrees C. The CDs investigated in the present study included cyclo(Gly-Gly), cyclo(Ala-Ala) and cyclo(Val-Val). The observed DeltaG(tr)(') values indicate that TMAO can stabilize the CDs while urea or GdnHCl can destabilize the CDs. Furthermore, the DeltaG(tr)(') values of the blends of TMAO with urea or GdnHCl revealed that TMAO strongly counteracted the denaturating effects of urea on CDs in all instances, however, TMAO partially counteracted the perturbing effects of GdnHCl on CDs. TMAO counteraction ability of the deleterious effects of denaturants depended on the denaturant-CDs pair. The experimental results were further used to estimate the transfer free energies (Deltag(tr)(')) of the various functional group contributions from water to TMAO, urea or GdnHCl individually and to the combinations of TMAO and the denaturants in various ratios.
Collapse
Affiliation(s)
- Pannur Venkatesu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan
| | | | | |
Collapse
|
27
|
Zancan P, Sola-Penna M. Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures. Arch Biochem Biophys 2005; 444:52-60. [PMID: 16289020 DOI: 10.1016/j.abb.2005.09.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
A number of naturally occurring small organic molecules, primarily involved in maintaining osmotic pressure in the cell, display chaperone-like activity, stabilizing the native conformation of proteins, and protecting them from various kinds of stress. Most of them are sugars, polyols, amino acids or methylamines. Similar to molecular chaperones, most of these compounds have no substrate specificity, but some specifically stabilize certain proteins. In the present work, the capacity of trehalose and glycerol, two well-known osmolytes, to stabilize and renature inorganic pyrophosphatase is demonstrated. Both trehalose and glycerol significantly protect pyrophosphatase against thermoinactivation achieved by incubating the enzyme at temperatures up to 95 degrees C, and allow the enzyme already inactivated in the presence of these osmolytes to renature upon incubation at low temperatures. To the best of our knowledge, there are no data on the effects of these compounds on renaturation of thermoinactivated proteins. The correlation between the recovery of enzyme activity and structural changes indicated by fluorescence spectroscopy contribute to better understanding of the protein stabilization mechanism.
Collapse
Affiliation(s)
- Patricia Zancan
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro-RJ 21941-590, Brazil
| | | |
Collapse
|
28
|
Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 2005; 208:2819-30. [PMID: 16043587 DOI: 10.1242/jeb.01730] [Citation(s) in RCA: 1143] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SUMMARYOrganic osmolytes are small solutes used by cells of numerous water-stressed organisms and tissues to maintain cell volume. Similar compounds are accumulated by some organisms in anhydrobiotic, thermal and possibly pressure stresses. These solutes are amino acids and derivatives,polyols and sugars, methylamines, methylsulfonium compounds and urea. Except for urea, they are often called `compatible solutes', a term indicating lack of perturbing effects on cellular macromolecules and implying interchangeability. However, these features may not always exist, for three reasons. First, some of these solutes may have unique protective metabolic roles, such as acting as antioxidants (e.g. polyols, taurine, hypotaurine),providing redox balance (e.g. glycerol) and detoxifying sulfide (hypotaurine in animals at hydrothermal vents and seeps). Second, some of these solutes stabilize macromolecules and counteract perturbants in non-interchangeable ways. Methylamines [e.g. trimethylamine N-oxide (TMAO)] can enhance protein folding and ligand binding and counteract perturbations by urea (e.g. in elasmobranchs and mammalian kidney), inorganic ions, and hydrostatic pressure in deep-sea animals. Trehalose and proline in overwintering insects stabilize membranes at subzero temperatures. Trehalose in insects and yeast,and anionic polyols in microorganisms around hydrothermal vents, can protect proteins from denaturation by high temperatures. Third, stabilizing solutes appear to be used in nature only to counteract perturbants of macromolecules,perhaps because stabilization is detrimental in the absence of perturbation. Some of these solutes have applications in biotechnology, agriculture and medicine, including in vitro rescue of the misfolded protein of cystic fibrosis. However, caution is warranted if high levels cause overstabilization of proteins.
Collapse
Affiliation(s)
- Paul H Yancey
- Biology Department, Whitman College, Walla Walla, WA 99362, USA.
| |
Collapse
|
29
|
Faber-Barata J, Sola-Penna M. Opposing effects of two osmolytes ? trehalose and glycerol ? on thermal inactivation of rabbit muscle 6-phosphofructo-1-kinase. Mol Cell Biochem 2005; 269:203-7. [PMID: 15786733 DOI: 10.1007/s11010-005-3090-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Trehalose and glycerol are known as good stabilizers of function and structure of several macromolecules against stress conditions. We previously reported that they have comparable effectiveness on protecting two yeast cytosolic enzymes against thermal inactivation. However, enzyme protection has always been associated to a decrease in catalytic activity at the stabilizing conditions i.e., the presence of the protective molecule. In the present study we tested trehalose and glycerol on thermal protection of the mammalian cytosolic enzyme phosphofructokinase. Here we found that trehalose was able to protect phosphofructokinase against thermal inactivation as well as to promote an activation of its catalytic activity. The enzyme incubated in the presence of 1 M trehalose did not present any significant inactivation within 2 h of incubation at 50 degrees C, contrasting to control experiments where the enzyme was fully inactivated during the same period exhibiting a t0.5 for thermal inactivation of 56+/-5 min. On the other hand, enzyme incubated in the presence of 37.5% (v/v) glycerol was not protected against incubation at 50 degrees C. Indeed, when phosphofructokinase was incubated for 45 min at 50 degrees C in the presence of lower concentrations of glycerol (7.5-25%, v/v), the remaining activity was 2-4 times lower than control. These data show that the compatibility of effects previously shown for trehalose and glycerol with some yeast cytosolic enzymes can not be extended to all globular enzyme system. In the case of phosphofructokinase, we believe that its property of shifting between several different complex oligomers configurations can be influenced by the physicochemical properties of the stabilizing molecules.
Collapse
Affiliation(s)
- Joana Faber-Barata
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
30
|
Abstract
Betaine is distributed widely in animals, plants, and microorganisms, and rich dietary sources include seafood, especially marine invertebrates ( approximately 1%); wheat germ or bran ( approximately 1%); and spinach ( approximately 0.7%). The principal physiologic role of betaine is as an osmolyte and methyl donor (transmethylation). As an osmolyte, betaine protects cells, proteins, and enzymes from environmental stress (eg, low water, high salinity, or extreme temperature). As a methyl donor, betaine participates in the methionine cycle-primarily in the human liver and kidneys. Inadequate dietary intake of methyl groups leads to hypomethylation in many important pathways, including 1) disturbed hepatic protein (methionine) metabolism as determined by elevated plasma homocysteine concentrations and decreased S-adenosylmethionine concentrations, and 2) inadequate hepatic fat metabolism, which leads to steatosis (fatty accumulation) and subsequent plasma dyslipidemia. This alteration in liver metabolism may contribute to various diseases, including coronary, cerebral, hepatic, and vascular diseases. Betaine has been shown to protect internal organs, improve vascular risk factors, and enhance performance. Databases of betaine content in food are being developed for correlation with population health studies. The growing body of evidence shows that betaine is an important nutrient for the prevention of chronic disease.
Collapse
Affiliation(s)
- Stuart A S Craig
- Danisco USA Inc., 440 Saw Mill River Road, Ardsley, NY 10502, USA.
| |
Collapse
|