1
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Chakraborty S, Debnath S, Mahipal Malappuram K, Parasuram S, Chang HT, Chatterjee K, Nain A. Flexible and Robust Piezoelectric Chitosan Films with Enhanced Bioactivity. Biomacromolecules 2025; 26:1128-1140. [PMID: 39804579 DOI: 10.1021/acs.biomac.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties. The CHT film remained intact for 30 days in aqueous environments. A systematic study revealed a gradual increase in the output voltage from 0.9 to 1.8 V under external force (1-16 N). In addition, the CHT film showed remarkable antibacterial and anti-inflammatory activities under ultrasound stimulation and inhibition of inflammatory cytokines. The CHT films also displayed enhanced cellular proliferation and ∼5-fold faster migration of NIH3T3 cells under US stimulation. Overall, this work presents a robust, biocompatible, and wearable CHT device that can transform biomechanical energy into electrical pulses for the modulation of cell fate processes and other bioactivities.
Collapse
Affiliation(s)
- Srishti Chakraborty
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Souvik Debnath
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | - Sampath Parasuram
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Huan-Tsung Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
3
|
Guiyedi K, Parquet M, Aoufouchi S, Chauzeix J, Rizzo D, Al Jamal I, Feuillard J, Gachard N, Peron S. Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:3749. [PMID: 39594704 PMCID: PMC11592262 DOI: 10.3390/cancers16223749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
This review examines the pivotal role of c-MYC in Chronic Lymphocytic Leukemia (CLL), focusing on how its overexpression leads to increased genetic instability, thereby accelerating disease progression. MYC, a major oncogene, encodes a transcription factor that regulates essential cellular processes, including cell cycle control, proliferation, and apoptosis. In CLL cases enriched with unmutated immunoglobulin heavy chain variable (IGHV) genes, MYC is significantly overexpressed and associated with active rearrangements in the IGH immunoglobulin heavy chain locus. This overexpression results in substantial DNA damage, including double-strand breaks, chromosomal translocations, and an increase in abnormal repair events. Consequently, c-MYC plays a dual role in CLL: it promotes aggressive cell proliferation while concurrently driving genomic instability through its involvement in genetic recombination. This dynamic contributes not only to CLL progression but also to the overall aggressiveness of the disease. Additionally, the review suggests that c-MYC's influence on genetic rearrangements makes it an attractive target for therapeutic strategies aimed at mitigating CLL malignancy. These findings underscore c-MYC's critical importance in advancing CLL progression, highlighting the need for further research to explore its potential as a target in future treatment approaches.
Collapse
Affiliation(s)
- Kenza Guiyedi
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| | - Milène Parquet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| | - Said Aoufouchi
- Gustave Roussy, B-Cell and Genome Plasticity Team, CNRS UMR9019, Villejuif, France and Université Paris-Saclay, 91400 Orsay, France
| | - Jasmine Chauzeix
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - David Rizzo
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Israa Al Jamal
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli 1300, Lebanon
| | - Jean Feuillard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Nathalie Gachard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Sophie Peron
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
4
|
Zacarías-Fluck MF, Soucek L, Whitfield JR. MYC: there is more to it than cancer. Front Cell Dev Biol 2024; 12:1342872. [PMID: 38510176 PMCID: PMC10952043 DOI: 10.3389/fcell.2024.1342872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
MYC is a pleiotropic transcription factor involved in multiple cellular processes. While its mechanism of action and targets are not completely elucidated, it has a fundamental role in cellular proliferation, differentiation, metabolism, ribogenesis, and bone and vascular development. Over 4 decades of research and some 10,000 publications linking it to tumorigenesis (by searching PubMed for "MYC oncogene") have led to MYC becoming a most-wanted target for the treatment of cancer, where many of MYC's physiological functions become co-opted for tumour initiation and maintenance. In this context, an abundance of reviews describes strategies for potentially targeting MYC in the oncology field. However, its multiple roles in different aspects of cellular biology suggest that it may also play a role in many additional diseases, and other publications are indeed linking MYC to pathologies beyond cancer. Here, we review these physiological functions and the current literature linking MYC to non-oncological diseases. The intense efforts towards developing MYC inhibitors as a cancer therapy will potentially have huge implications for the treatment of other diseases. In addition, with a complementary approach, we discuss some diseases and conditions where MYC appears to play a protective role and hence its increased expression or activation could be therapeutic.
Collapse
Affiliation(s)
- Mariano F. Zacarías-Fluck
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Soucek
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Peptomyc S.L., Barcelona, Spain
| | - Jonathan R. Whitfield
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
5
|
Liu Z, Ishikawa K, Sanada E, Semba K, Li J, Li X, Osada H, Watanabe N. Identification of antimycin A as a c-Myc degradation accelerator via high-throughput screening. J Biol Chem 2023; 299:105083. [PMID: 37495110 PMCID: PMC10470004 DOI: 10.1016/j.jbc.2023.105083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc cofactors, activate c-Myc repressors, or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from monomeric Keima and enhanced GFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.
Collapse
Affiliation(s)
- Ziyu Liu
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), Koto-ku, Tokyo, Japan
| | - Emiko Sanada
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan; Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaomeng Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan; Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan.
| | - Nobumoto Watanabe
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan; Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan.
| |
Collapse
|
6
|
Cao J, Zhou A, Zhou Z, Liu H, Jia S. The role of GPLD1 in chronic diseases. J Cell Physiol 2023. [PMID: 37393554 DOI: 10.1002/jcp.31041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023]
Abstract
Glycosylphosphatidylinositol-specific phospholipase D (GPLD1) is a specific enzyme for glycosylphosphatidylinositol (GPI) anchors, thereby exerting its biological functions by cleaving membrane-associated GPI molecules. GPLD1 is abundant in serum, with a concentration of approximately 5-10 µg/mL. Previous studies have demonstrated that GPLD1 plays a crucial role in the pathogenesis of numerous chronic diseases including disorders of lipid and glucose metabolism, cancer, and neurological disorders. In the present study, we reviewed the structure, functions, and localization of GPLD1 in chronic diseases, as well as exercise-mediated regulation of GPLD1, thus providing a theoretical support to develop GPLD1 as a new therapeutic target for chronic diseases.
Collapse
Affiliation(s)
- Jing Cao
- Graduate School of Wuhan Sports University, Wuhan, China
| | - Anni Zhou
- Graduate School of Wuhan Sports University, Wuhan, China
| | - Zhuoyang Zhou
- Graduate School of Wuhan Sports University, Wuhan, China
| | - Hui Liu
- School of Physical Education, Jinan University, Jinan, China
| | - Shaohui Jia
- Hubei Key Laboratory of Sport Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
7
|
Fan G, Liu J, Wu Z, Li C, Zhang Y. Development and validation of the prognostic model based on autophagy-associated genes in idiopathic pulmonary fibrosis. Front Immunol 2022; 13:1049361. [PMID: 36578501 PMCID: PMC9791216 DOI: 10.3389/fimmu.2022.1049361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease. Many studies suggest that autophagy may be related to disease progression and prognosis in IPF. However, the mechanisms involved have not been fully elucidated. Methods We incorporated 232 autophagy-associated genes (AAGs) and two datasets, GSE28042 and GSE27957, from the GEO database. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression were used to construct the autophagy-associated prognostic model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functions of these autophagy-associated genes. CIBERSORT algorithm was used to calculate the immune cell infiltration between patients in the high-risk score and low-risk score groups. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was performed to explore the mRNA expression of five genes in the autophagy-associated risk model. Results We constructed a 5-autophagy-associated genes signature based on Univariate Cox analysis and LASSO regression. In our autophagy-associated risk model, IPF patients in the high-risk group demonstrated a poor overall survival rate compared to patients in the low-risk group. For 1-, 2-, and 3-year survival rates, the AUC predictive value of the AAG signature was 0.670, 0.787, and 0.864, respectively. These results were validated in the GSE27957 cohort, confirming the good prognostic effect of our model. GO and KEGG pathway analyses enriched immune-related pathways between the high-risk and low-risk groups. And there was also a significant difference in immune cell infiltration between two groups. And the results of qRT-PCR showed that the expression levels of FOXO1, IRGM, MYC, and PRKCQ were significantly decreased in the Peripheral Blood Mononuclear Cell (PBMC) of IPF patient samples. Conclusion Our study constructed and validated an autophagy-associated risk model based on MYC, MAPK1, IRGM, PRKCQ, and FOXO1. And those five genes may influence the progression of IPF by regulating immune responses and immune cells.
Collapse
Affiliation(s)
- Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Wu
- Department of Respiratory & Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiyu Li
- Department of Respiratory & Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Zhang
- Department of Respiratory & Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Ying Zhang,
| |
Collapse
|
8
|
Leg length and bristle density, both necessary for water surface locomotion, are genetically correlated in water striders. Proc Natl Acad Sci U S A 2022; 119:2119210119. [PMID: 35193982 PMCID: PMC8892508 DOI: 10.1073/pnas.2119210119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Access to hitherto unexploited ecological opportunities is associated with phenotypic evolution and often results in significant lineage diversification. Yet our understanding of the mechanisms underlying such adaptive traits remains limited. Water striders have been able to exploit the water-air interface, primarily facilitated by changes in the density of hydrophobic bristles and a significant increase in leg length. These two traits are functionally correlated and are both necessary for generating efficient locomotion on the water surface. Whether bristle density and leg length have any cellular or developmental genetic mechanisms in common is unknown. Here, we combine comparative genomics and transcriptomics with functional RNA interference assays to examine the developmental genetic and cellular mechanisms underlying the patterning of the bristles and the legs in Gerris buenoi and Mesovelia mulsanti, two species of water striders. We found that two duplication events in the genes beadex and taxi led to a functional expansion of the paralogs, which affected bristle density and leg length. We also identified genes for which no function in bristle development has been previously described in other insects. Interestingly, most of these genes play a dual role in regulating bristle development and leg length. In addition, these genes play a role in regulating cell division. This result suggests that cell division may be a common mechanism through which these genes can simultaneously regulate leg length and bristle density. We propose that pleiotropy, through which gene function affects the development of multiple traits, may play a prominent role in facilitating access to unexploited ecological opportunities and species diversification.
Collapse
|
9
|
The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022; 19:23-36. [PMID: 34508258 PMCID: PMC9083341 DOI: 10.1038/s41571-021-00549-2] [Citation(s) in RCA: 483] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.
Collapse
|
10
|
c-Myc participates in high glucose-mediated endothelial inflammation via upregulation of IRAK1 expression in diabetic nephropathy. Cell Signal 2022; 92:110263. [DOI: 10.1016/j.cellsig.2022.110263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/18/2021] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
|
11
|
Qi Y, Qadir MMF, Hastreiter AA, Fock RA, Machi JF, Morales AA, Wang Y, Meng Z, Rodrigues CO. Endothelial c-Myc knockout enhances diet-induced liver inflammation and fibrosis. FASEB J 2022; 36:e22077. [PMID: 34878671 PMCID: PMC11367571 DOI: 10.1096/fj.202101086r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
Endothelial cells play an essential role in inflammation through synthesis and secretion of chemoattractant cytokines and expression of adhesion molecules required for inflammatory cell attachment and infiltration. The mechanisms by which endothelial cells control the pro-inflammatory response depend on the type of inflammatory stimuli, endothelial cell origin, and tissue involved. In the present study, we investigated the role of the transcription factor c-Myc in inflammation using a conditional knockout mouse model in which Myc is specifically deleted in the endothelium. At a systemic level, circulating monocytes, the chemokine CCL7, and the extracellular-matrix protein osteopontin were significantly increased in endothelial c-Myc knockout (EC-Myc KO) mice, whereas the cytokine TNFSF11 was downregulated. Using an experimental model of steatohepatitis, we investigated the involvement of endothelial c-Myc in diet-induced inflammation. EC-Myc KO animals displayed enhanced pro-inflammatory response, characterized by increased expression of pro-inflammatory cytokines and leukocyte infiltration, and worsened liver fibrosis. Transcriptome analysis identified enhanced expression of genes associated with inflammation, fibrosis, and hepatocellular carcinoma in EC-Myc KO mice relative to control (CT) animals after short-exposure to high-fat diet. Analysis of a single-cell RNA-sequencing dataset of human cirrhotic livers indicated downregulation of MYC in endothelial cells relative to healthy controls. In summary, our results suggest a protective role of endothelial c-Myc in diet-induced liver inflammation and fibrosis. Targeting c-Myc and its downstream pathways in the endothelium may constitute a potential strategy for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Yue Qi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Mirza M. F. Qadir
- Deming Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Araceli A. Hastreiter
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Ricardo A. Fock
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Jacqueline F. Machi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Alejo A. Morales
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Claudia O. Rodrigues
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Forder A, Hsing CY, Trejo Vazquez J, Garnis C. Emerging Role of Extracellular Vesicles and Cellular Communication in Metastasis. Cells 2021; 10:cells10123429. [PMID: 34943937 PMCID: PMC8700460 DOI: 10.3390/cells10123429] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Communication between cancer cells and the surrounding stromal cells of the tumor microenvironment (TME) plays a key role in promoting metastasis, which is the major cause of cancer death. Small membrane-bound particles called extracellular vesicles (EVs) are released from both cancer and stromal cells and have a key role in mediating this communication through transport of cargo such as various RNA species (mRNA, miRNA, lncRNA), proteins, and lipids. Tumor-secreted EVs have been observed to induce a pro-tumorigenic phenotype in non-malignant cells of the stroma, including fibroblasts, endothelial cells, and local immune cells. These cancer-associated cells then drive metastasis by mechanisms such as increasing the invasiveness of cancer cells, facilitating angiogenesis, and promoting the formation of the pre-metastatic niche. This review will cover the role of EV-mediated signaling in the TME during metastasis and highlight the therapeutic potential of targeting these pathways to develop biomarkers and novel treatment strategies.
Collapse
Affiliation(s)
- Aisling Forder
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
| | - Chi-Yun Hsing
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
| | - Jessica Trejo Vazquez
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
| | - Cathie Garnis
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
13
|
Cheng H, Tang S, Lian X, Meng H, Gu X, Jiang J, Li X. The Differential Antitumor Activity of 5-Aza-2'-deoxycytidine in Prostate Cancer DU145, 22RV1, and LNCaP Cells. J Cancer 2021; 12:5593-5604. [PMID: 34405020 PMCID: PMC8364635 DOI: 10.7150/jca.56709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation is a DNA methyltransferase-mediated epigenetic modification affecting gene expression. This process is involved in the initiation and development of malignant disease. 5-Aza-2'-deoxycytidine (5-Aza), a classic DNA methyltransferase inhibitor, possesses antitumor proliferation activity. However, whether 5-Aza induces cytotoxicity in solid tumors warrants further investigated. In this study, human prostate cancer (CaP) cells were treated with 5-Aza and subjected to cell viability and cytotoxicity analysis. Reverse transcription-polymerase chain reaction and methylation-specific polymerase chain reaction assay were utilized to test the gene expression and methylation status of the p53 and p21 gene promoters. The results showed that 5-Aza differentially inhibited spontaneous proliferation, arrested the cell cycle at S phase in DU145, at G1 phase in 22RV1 and LNCaP cells, and G2 phase in normal RWPE-1 cells, as well as induced the expression of phospho-H2A.X and tumor suppressive mammary serine protease inhibitor (maspin) in all three types of CaP cells. 5-Aza also increased p53 and p21 transcription through promoter demethylation, and decreased the expression of oncogene c-Myc in 22RV1 and LNCaP cells. Western blotting analysis showed that the poly (ADP-ribose) polymerase cleavage was detected in DU145 and 22RV1 cells. Moreover, there were no significant changes in p53, p21 and c-Myc expression in DU145 cells following treatment with 5-Aza. Thus, in responsible for its apoptotic induction and DNA damage, the mechanism of the antitumor activities of 5-Aza may involve in an increase of tumor suppressive maspin, upregulation of wild type p53-mediated p21 expression and a decrease of oncogene c-Myc level in 22RV1 and LNCaP cells, and enhancing the tumor suppressive maspin expression in DU145 cells. These results enriched our understanding of the multifaceted antitumor activity of 5-Aza, and provided the expression basis of biomarkers for its possible clinical application in prostate cancer.
Collapse
Affiliation(s)
- Huiying Cheng
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Sijie Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xueqi Lian
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit 48201, MI, USA
| | - Xiang Gu
- Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xiaohua Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd., 2800 Chuangxin Blvd., Building H4, Hefei 230088, China.,National Center for Gene Testing Technology Application & Demonstration(Hefei), 2800 Chuangxin Blvd., Building H4, Hefei 230088, China
| |
Collapse
|
14
|
Ouyang J, Xie Z, Lei X, Tang G, Gan R, Yang X. Clinical crosstalk between microRNAs and gastric cancer (Review). Int J Oncol 2021; 58:7. [PMID: 33649806 PMCID: PMC7895535 DOI: 10.3892/ijo.2021.5187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, there were over 1 million new gastric cancer (GC) patients in 2018 and GC has become the sixth most common cancer worldwide. GC caused 783,000 deaths worldwide in 2018, making it the third most deadly cancer type. miRNAs are short (~22 nucleotides in length) non‑coding RNA molecules, which can regulate gene expression passively at a post‑transcriptional level. There are more and more in‑depth studies on miRNAs. There are numerous conclusive evidences that there is an inseparable link between miRNAs and GC. miRNAs can affect the entire process of GC, including the oncogenesis, development, diagnosis, treatment and prognosis of GC. Although many miRNAs have been linked to GC, few can be applied to clinical practice. This review takes the clinical changes of GC as a clue and summarizes the miRNAs related to GC that have confirmed the mechanism of action in the past three years. Through in‑depth study and understanding of the mechanism of those miRNAs, we predict their possible clinical uses, and suggest some new insights to overcome GC.
Collapse
Affiliation(s)
- Jing Ouyang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, University of South China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Runliang Gan
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China
| |
Collapse
|
15
|
Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15:383-403. [PMID: 33387254 DOI: 10.1007/s11684-020-0818-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Cancer development is a complicated process controlled by the interplay of multiple signaling pathways and restrained by oxygen and nutrient accessibility in the tumor microenvironment. High plasticity in using diverse nutrients to adapt to metabolic stress is one of the hallmarks of cancer cells. To respond to nutrient stress and to meet the requirements for rapid cell proliferation, cancer cells reprogram metabolic pathways to take up more glucose and coordinate the production of energy and intermediates for biosynthesis. Such actions involve gene expression and activity regulation by the moonlighting function of oncoproteins and metabolic enzymes. The signal - moonlighting protein - metabolism axis facilitates the adaptation of tumor cells under varying environment conditions and can be therapeutically targeted for cancer treatment.
Collapse
|
16
|
Zeinali T, Karimi L, Hosseinahli N, Shanehbandi D, Mansoori B, Mohammadi A, Hajiasgharzadeh K, Babaloo Z, Majidi-Zolbanin J, Baradaran B. Overexpression of miRNA-145 induces apoptosis and prevents proliferation and migration of MKN-45 gastric cancer cells. EXCLI JOURNAL 2020; 19:1446-1458. [PMID: 33250681 PMCID: PMC7689247 DOI: 10.17179/excli2020-2777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
MiR-145 is a tumor suppressor miRNA that its ubiquitously expressed in the body but in numerous types of cancers such as GC, its expression became reduced or sometimes ceased in many subjects. This study aimed at restoring the function of the miR-145 in MKN-45 cells and investigating the function of this miRNA in proliferation, apoptosis, and migration of GC cells. MKN-45 cells were transfected using the PCMV-miR-145 plasmid vector. The MTT, DAPI staining, and wound healing assays were applied to estimate the impacts of ectopic expression of miR-145 in vitro. Moreover, alterations in the expression levels of K-Ras, c-Myc, caspase-3, caspase-9, Bax, Bcl-2, and MMP-9 mRNA were measured by qRT-PCR analysis. The findings designated that high expression of miR-145 reduced the proliferation and migration and increased the apoptosis of the MKN-45 cells. These effects occur with concurrent suppression of c-Myc, K-Ras, Bcl-2, and MMP-9 as well as induction of caspase-3, caspase-9, and Bax expression. Exogenous miR-145 influences multiple oncogenic pathways and can be regarded as a promising avenue of future therapeutic interventions for GC therapy.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Leila Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zohreh Babaloo
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Li X, Ren G, Cai C, Yang X, Nie L, Jing X, Li C. TNF‑α regulates the osteogenic differentiation of bone morphogenetic factor 9 adenovirus‑transduced rat follicle stem cells via Wnt signaling. Mol Med Rep 2020; 22:3141-3150. [PMID: 32945435 PMCID: PMC7453510 DOI: 10.3892/mmr.2020.11439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is a chronic infectious disease that alters the cellular microenvironment and promotes bone absorption. Bone morphogenetic protein 9 (BMP9) serves an important role in proliferation and differentiation, and tumor necrosis factor‑alpha (TNF‑α) is an important contributor to bone resorption. The present study aimed to investigate the effect of osteogenic differentiation in the presence of BMP9 and TNF‑α in rat follicle stem cells (rDFCs). rDFCs were transfected with adenoviruses expressing BMP9 (AdBMP9) and the expression levels of important proteins [BMP9, β‑catenin, glycogen synthase kinase 3β (GSK3β), phosphorylated‑GSK3β, calcium/calmodulin dependent protein kinase II and nemo like kinase] were determined using western blotting. The effect of osteogenesis was analyzed using reverse transcription‑quantitative PCR, in addition to alkaline phosphatase, Alizarin Red S, and hematoxylin and eosin staining methods. The results of the present study revealed that TNF‑α activated the canonical Wnt signaling pathway and suppressed osteogenesis. High concentrations of Dickkopf 1 (DKK1) reduced the osteogenic differentiation of AdBMP9‑transduced rDFCs, whereas low concentrations of DKK1 promoted BMP9‑induced bone formation, which was discovered to partially act via the canonical and non‑canonical Wnt signaling pathways. In conclusion, the findings of the present study suggested that the enhanced promoting effect of BMP9 alongside the treatment with low concentrations of DKK1 may be useful for treating periodontitis bone absorption.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Ge Ren
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Changjun Cai
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xia Yang
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Li Nie
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xueqin Jing
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Conghua Li
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
18
|
Chen J, Ding C, Chen Y, Hu W, Lu Y, Wu W, Zhang Y, Yang B, Wu H, Peng C, Xie H, Zhou L, Wu J, Zheng S. ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis. Oncogenesis 2020; 9:42. [PMID: 32350243 PMCID: PMC7190855 DOI: 10.1038/s41389-020-0226-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous, multigene-driven malignant tumor. Long chain acyl-CoA synthetase 4 (ACSL4), an enzyme has pivotal roles in arachidonic acid (AA) metabolism. However, its function and the underlying molecular mechanisms in HCC are still not fully elucidated. Here, we identified ACSL4 as a novel marker for AFP high subtype HCC through transcriptome profiling. ACSL4 was frequently upregulated in HCC samples and associated with poor prognosis. Functionally, ACSL4 knockdown resulted in decreased cell growth, whereas ectopic ACSL4 expression facilitated tumor formation in vitro and in vivo. Mechanistically, ACSL4 stabilized the oncoprotein c-Myc through ubiquitin-proteasome system in an ERK/FBW7-dependent manner. Cell growth ability mediated by ACSL4 elevation was partly attenuated by c-Myc depletion using siRNA or its inhibitor 10058-F4. In contrast, the effects of ACSL4 silencing were partially reversed by c-Myc overexpression via FBW7 knockdown. Clinically, ACSL4 expression was positively correlated with c-Myc in HCC. In conclusion, ACSL4 is a novel marker for AFP high subtype HCC. Our data uncovered a new mechanism by which ACSL4 promotes HCC progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis and could be a valuable prognostic biomarker and a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Chaofeng Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, China
| | - Yunhao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yuejie Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wenxuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yanpeng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China.
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, 310003, Hangzhou, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, 310003, Hangzhou, China.
- Key Laboratory of Organ Transplantation, 310003, Hangzhou, Zhejiang Province, China.
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Tajeddin N, Ahadi AM, Javadi G, Ayat H. Evaluation of Myc Gene Expression as a Preventive Marker for Increasing the Implantation Success in the Infertile Women. Int J Prev Med 2020; 11:18. [PMID: 32175058 PMCID: PMC7050263 DOI: 10.4103/ijpvm.ijpvm_398_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/27/2019] [Indexed: 11/04/2022] Open
Abstract
Background There are numerous couples worldwide currently suffering from infertility. Several factors, including genetic abnormalities are involved in infertility. In this study, we investigated the expression of myc gene in uterine tissue of infertile women. The protein encoded by this gene is one of the important transcription factors involved in the expression of many genes in the embryonic growth, and development pathways. Methods There are about 45 samples of uterine tissue from women with primary and secondary infertility were involved in this study. After extracting RNA and synthesizing cDNA, using specific primers for the myc gene and the beta-actin gene (as an internal control), gene expression was evaluated by Real-time RT-PCR method. Results The results of myc gene expression analysis showed no significant pattern between the affected and healthy women, however decreasing of its expression should not be rejected. Conclusions This study is the first report about myc gene expression and its relation with the primary and secondary infertility. Myc gene expression study at different times of sexual period of infertile woman is suggested. Also, we proposed here, as a preventive strategy, improvement of the expression level of myc gene by some methods, such as hormone therapy, can increase the implantation success in the infertile women.
Collapse
Affiliation(s)
- Nahid Tajeddin
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, University of Shahrekord, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| | - Gholamreza Javadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hoda Ayat
- Department of Genetics, Faculty of Science, University of Shahrekord, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| |
Collapse
|
20
|
Song G, Guo G, Du T, Li X, Wang J, Yan Y, Zhao Y. RALY may cause an aggressive biological behavior and a dismal prognosis in non-small-cell lung cancer. Exp Cell Res 2020; 389:111884. [PMID: 32014444 DOI: 10.1016/j.yexcr.2020.111884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
RALY is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP), an RNA-binding protein that plays a role in mRNA splicing and metabolism, may be involved in tumorigenesis and development. Some studies have shown that RALY plays a role in promoting cancer in a variety of tumors. However, the biological function and molecular mechanism of RALY in non-small cell lung cancer (NSCLC) remain unknown. TCGA databases were used to gather RALY expression data in NSCLC, the results indicate that RALY is highly expressed in cancer tissue of NSCLC patients. Then we demonstrated that RALY gene expression was notably upregulated in NSCLC tissue and cell lines (A549 and SK-MES-1), and was associated with lymph node metastasis (P = 0.007) and poorer overall survival in NSCLC patients. Subsequently, RALY in A549 and SK-MES-1 cells was knocked down by lentivirus to analyze the consequences of RALY on the biological behavior of NSCLC cell lines. Our results indicated that RALY knockdown impaired NSCLC cells proliferation, migration, and invasion, as well as arrested cells in G1 phase, and the reintroduction of RALY recused its biological phenotype. Furthermore, RALY knockdown down-regulated the expression levels of c-Myc, Cyclin D1, CDK4, MMP9, Rho A ,Rho C, N-cadherin and β-catenin, and up-regulated the expression levels of P27, Rho B and E-cadherin. Therefore, targeting RALY could be a promising molecular target for NSCLC treatment.
Collapse
Affiliation(s)
- Guanchu Song
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China
| | - Genyan Guo
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China
| | - Tianqi Du
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China
| | - Xiang Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China
| | - Jie Wang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China
| | - Ying Yan
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China; Department of Radiation Oncology, General Hospital of the Northern War Zone of the Chinese People's Liberation Army, Shenyang, 110016, Liaoning province, China.
| | - Yuxia Zhao
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning province, China.
| |
Collapse
|
21
|
Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, Wang X, Si Y, Ning T, Zhang L, Li H, Ge S, Liu R, Lin D, Li S, Ying G, Ba Y. Exosome miR-155 Derived from Gastric Carcinoma Promotes Angiogenesis by Targeting the c-MYB/VEGF Axis of Endothelial Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1449-1459. [PMID: 32160713 PMCID: PMC7056628 DOI: 10.1016/j.omtn.2020.01.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Exosomes, membranous nanovesicles, naturally carry proteins, mRNAs, and microRNAs (miRNAs) and play important roles in tumor pathogenesis. Here we showed that gastric cancer (GC) cell-derived exosomes can function as vehicles to deliver miR-155 to promote angiogenesis in GC. In this study, we first detected that the expression of miR-155 and c-MYB was negatively correlated in GC and that c-MYB was a direct target of miR-155. We next characterized the promotional effect of exosome-delivered miR-155 on angiogenesis and tumor growth in GC. We found that miR-155 could inhibit c-MYB but increase vascular endothelial growth factor (VEGF) expression and promote growth, metastasis, and tube formation of vascular cells, causing the occurrence and development of tumors. We also used a tumor implantation mouse model to show that exosomes containing miR-155 significantly augment the growth rate of the vasculature and tumors in vivo. Our results illustrate the potential mechanism between miR-155 and angiogenesis in GC. These findings contribute to our understanding of the function of miR-155 and exosomes for GC therapy.
Collapse
Affiliation(s)
- Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Haiou Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Huiya Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yiran Si
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dan Lin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shuang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
22
|
Liu W, Lin C, Wu G, Dai J, Chang TC, Yang D. Structures of 1:1 and 2:1 complexes of BMVC and MYC promoter G-quadruplex reveal a mechanism of ligand conformation adjustment for G4-recognition. Nucleic Acids Res 2019; 47:11931-11942. [PMID: 31740959 PMCID: PMC7145684 DOI: 10.1093/nar/gkz1015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BMVC is the first fluorescent probe designed to detect G-quadruplexes (G4s) in vivo. The MYC oncogene promoter forms a G4 (MycG4) which acts as a transcription silencer. Here, we report the high-affinity and specific binding of BMVC to MycG4 with unusual slow-exchange rates on the NMR timescale. We also show that BMVC represses MYC in cancer cells. We determined the solution structures of the 1:1 and 2:1 BMVC-MycG4 complexes. BMVC first binds the 5'-end of MycG4 to form a 1:1 complex with a well-defined structure. At higher ratio, BMVC also binds the 3'-end to form a second complex. In both complexes, the crescent-shaped BMVC recruits a flanking DNA residue to form a BMVC-base plane stacking over the external G-tetrad. Remarkably, BMVC adjusts its conformation to a contracted form to match the G-tetrad for an optimal stacking interaction. This is the first structural example showing the importance of ligand conformational adjustment in G4 recognition. BMVC binds the more accessible 5'-end with higher affinity, whereas sequence specificity is present at the weaker-binding 3'-site. Our structures provide insights into specific recognition of MycG4 by BMVC and useful information for design of G4-targeted anticancer drugs and fluorescent probes.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Clement Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA
| | - Guanhui Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA
| | - Jixun Dai
- College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan ROC
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, West Lafayette, IN 47906, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Mao Y, Chen X, Xia Y, Xie X. Repair Effects of KGF on Ischemia-Reperfusion–Induced Flap Injury via Activating Nrf2 Signaling. J Surg Res 2019; 244:547-557. [DOI: 10.1016/j.jss.2019.06.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
|
24
|
Gong S, Qu X, Yang S, Zhou S, Li P, Zhang Q. RFC3 induces epithelial‑mesenchymal transition in lung adenocarcinoma cells through the Wnt/β‑catenin pathway and possesses prognostic value in lung adenocarcinoma. Int J Mol Med 2019; 44:2276-2288. [PMID: 31661124 PMCID: PMC6844605 DOI: 10.3892/ijmm.2019.4386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is a malignant tumor responsible for the highest mortality rate in humans. The identification of novel functional genes is of great importance in the treatment of lung cancer. The reported roles of replication factor C subunit 3 (RFC3) in tumorigenesis are contradictory. The present study aimed to explore the role and mechanism of RFC3 in lung cancer cells. An immunohistochemical study of 165 lung cancer and adjacent tissues was conducted (123 lung adenocarcinoma tissues and 42 lung squamous cell carcinoma tissues). Kaplan-Meier analysis and Cox multivariate analysis were employed to explore the relationship between RFC3 and patient prognosis. In addition, the proliferation, cell cycle distribution and apoptosis of A549 and H1299 cells were determined by MTT assay and flow cytometry, respectively, following cell transfection to induce overexpression and knockdown of RFC3. A Boyden chamber assay and wound-healing assay were conducted to determine the invasive and migratory abilities of A549 and H1299 cells. Western blotting was used to analyze the effects of RFC3 overexpression and RFC3 small interfering RNA-induced knockdown, and to explore the potential mechanism and pathway underlying the effects of RFC3. Positive expression of RFC3 was detected in lung adenocarcinoma, and overexpression of RFC3 shortened the survival time of patients with lung adenocarcinoma. Furthermore, overexpression of RFC3 increased the invasion and migration of A549 cells, whereas knockdown of RFC3 significantly reduced the invasion and migration of H1299 cells. Ectopic expression of RFC3 induced epithelial-mesenchymal transition (EMT), as determined by downregulation of E-cadherin, and upregulation of N-cadherin, vimentin and Wnt signaling target genes, including c-MYC, Wnt1 and β-catenin, and the ratio of phosphorylated-glycogen synthase kinase 3 (GSK3)-β (Ser9)/GSK3-β. In conclusion, RFC3 may be considered a coactivator that promotes the Wnt/β-catenin signaling pathway, and induces EMT and metastasis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Shulei Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shize Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Siyu Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Peiwen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qigang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
25
|
Yuan Q, Zhang Z, Hu X, Liao J, Kuang J. miR-374a/Myc axis modulates iron overload-induced production of ROS and the activation of hepatic stellate cells via TGF-β1 and IL-6. Biochem Biophys Res Commun 2019; 515:499-504. [PMID: 31171361 DOI: 10.1016/j.bbrc.2019.05.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023]
Abstract
The transformation of hepatic stellate cells (HSCs) to activated myofibroblasts plays a critical role in the progression of hepatic fibrosis, while iron-catalyzed production of free radical, including reaction and active oxygen (ROS), and activation and transformation of HSC into a myofibroblasts has been regarded as a major mechanism. In the present study, we attempted to investigate the mechanism of iron overload in hepatic fibrosis from the perspective of regulating HSC activation via oxidative stress and miR-374a/Myc axis. FAC stimulation significantly increased ROS production and TGF-β1 and IL-6 release dose-dependently in hepatocytes. miR-374a could target Myc, a co-transcription factor of both TGF-β1 and IL-6, to negatively regulate Myc expression; FAC stimulation significantly suppressed miR-374a expression, whereas the suppressive effect of FAC stimulation on miR-374a expression could be reversed by ROS inhibitor NAC, indicating that miR-374a could be modulated by iron overload-induced ROS. Via targeting Myc, miR-374a overexpression significantly reduced FAC-induced increases in TGF-β1 and IL-6 levels within L02 cells, whereas the effects of miR-374a overexpression were significantly attenuated via Myc overexpression. Finally, miR-374a overexpression attenuated FAC-induced activity of HSCs by decreasing α-SMA and Collagen I levels whereas Myc overexpression enhanced FAC-induced activity of HSCs by increasing α-SMA and Collagen I levels; the effects of miR-374a overexpression could also be significantly reversed by Myc overexpression, indicating that miR-374a suppresses the activation of HSCs by inhibiting Myc to reduce FAC-induced increases in TGF-β1 and IL-6 release. In conclusion, we demonstrate a novel mechanism of miR-374a/Myc axis modulating iron overload-induced production of ROS and the activation of HSCs via TGF-β1 and IL-6.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheng Zhang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.
| | - Xiaoxuan Hu
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Jinmao Liao
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Jia Kuang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| |
Collapse
|
26
|
Pinto LC, Mesquita FP, Soares BM, da Silva EL, Puty B, de Oliveira EHC, Burbano RR, Montenegro RC. Mebendazole induces apoptosis via C-MYC inactivation in malignant ascites cell line (AGP01). Toxicol In Vitro 2019; 60:305-312. [PMID: 31207347 DOI: 10.1016/j.tiv.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The objective of study was to examine the role of MBZ on malignant ascites cells and the involvement of C-MYC. Comet assay was used to assess the genotoxic effects of MBZ in AGP01 cells and human lymphocytes; differential staining by ethidium bromide and acridine orange, caspase 3/7 and flow cytometry assay was done to access the mechanisms of apoptosis and cell cycle analysis of MBZ in AGP01 cells. C-MYC amplification, C-MYC mRNA and C-MYC protein expression were evaluated by FISH, RT-qPCR and Western blotting, respectively. In addition, cytotoxicity of MBZ was evaluated in AGP01 and AGP01 shRNA MYC by MTT. MBZ significantly increased the damage index and no produced in human lymphocytes. MBZ caused remarkable cell cycle arrest in G0/G1 and G2/M phases at 0.5μM and 1.0 μM, respectively and induced significantly apoptosis in higher concentrations. Additionally, MBZ (0.5 μM and 1.0 μM) increased caspase 3 and 7 activities. MBZ decreased signals, C-MYC mRNA and C-MYC protein expression in AGP01 cells. MBZ induced lower cell viability in AGP01 cells compared AGP01 shRNA MYC in the same concentration. Therefore, our results show the evidence of C-MYC gene as one of the pathways by which MBZ induces cell death in gastric cancer cells.
Collapse
Affiliation(s)
- Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus street, 4487 - Guamá, Belém, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Bruno Moreira Soares
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01 - Guamá, Belém, Brazil
| | - Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Bruna Puty
- Laboratory of Structural and Functional Biology Science, Federal University of Pará, Augusto Correa Avenue, 01 - Guamá, Belém, Brazil; Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Rodovia BR-316 km 7 - s/n, Levilândia, Ananindeua, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Rodovia BR-316 km 7 - s/n, Levilândia, Ananindeua, Brazil
| | - Rommel Rodriguez Burbano
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01 - Guamá, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
27
|
Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep 2019; 39:BSR20190381. [PMID: 31072916 PMCID: PMC6549211 DOI: 10.1042/bsr20190381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
A novel oncogene CCNE1 (cyclin E) is considered to be associated with the development of various tumor types, its role in gastric carcinoma (GC) is little studied and the effect of CCNE1 on chemotherapy also remains unclear. We recruited 55 cases of GC tissues and corresponding normal tissues. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the expression of CCNE1. We also examined the expression of CCNE1 in gastric mucosal GES-1 cells and five GC cell lines. Silencing CCNE1 was used to assess its effect on proliferation and cell cycle in MGC-803 and NCI-N87 cells, as performed by Cell counting kit-8 (CCK-8) and flow cytometry assay. Meanwhile, cell cycle related genes were also detected through qRT-PCR and Western blot. The results showed CCNE1 up-regulation mainly expressed in GC tissues and GC cell lines, also was associated with tumor node metastasis (TNM) stage and lymphatic invasion. Three-year survival curve analysis showed CCNE1 with high expression had a poor prognosis. Silencing CCNE1 significantly reduced cell viability in 48 h, cultured and arrested cell cycle in G1 phase, moreover, Cyclin A, D1 and C-myc all revealed down-regulation in both MGC-803 and NCI-N87 cells. CCNE1 expression was significantly increased at low and moderate concentrations of Cisplatin. Down-regulation of CCNE1 expression would remarkably promote cell apoptosis induced by Cisplatin, and regulate the rate of Bax/Bcl-2. Down-regulation of CCNE1 expression could inhibit cell proliferation and enhance GC cells sensibility to Cisplatin, possibly involving the regulation of Bcl-2 family.
Collapse
|
28
|
Targeting the MYC Oncogene in Burkitt Lymphoma through HSP90 Inhibition. Cancers (Basel) 2018; 10:cancers10110448. [PMID: 30453475 PMCID: PMC6266960 DOI: 10.3390/cancers10110448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the MYC oncogene is a key feature of many human malignancies including Burkitt lymphoma. While MYC is widely regarded to be a promising therapeutic target, a clinically effective MYC inhibitor is still elusive. Here, we report an alternative strategy, targeting MYC indirectly through inhibition of the HSP90 machinery. We found that inhibition of HSP90 function reduces MYC expression in human Burkitt lymphoma through suppression of MYC transcription and destabilization of MYC protein, thereby diminishing the proliferation of tumor cells. Consistently, treatment of Burkitt lymphoma cell lines with HSP90 inhibitors (17-AAG or 17-DMAG) was accompanied by downregulation of canonical MYC target genes. Combination treatment with 17-DMAG and the proteasome inhibitor, MG-132, led to accumulation of MYC protein, indicating that upon HSP90 inhibition, MYC is degraded by the proteasome. Using co-immunoprecipitation, we furthermore demonstrated a direct interaction between MYC and HSP90, indicating that MYC is an HSP90 client protein in Burkitt lymphoma. Together, we report here the use of HSP90 inhibitors as an alternative approach to target the MYC oncogene and its network in Burkitt lymphoma.
Collapse
|
29
|
Ansari S, Gantuya B, Tuan VP, Yamaoka Y. Diffuse Gastric Cancer: A Summary of Analogous Contributing Factors for Its Molecular Pathogenicity. Int J Mol Sci 2018; 19:2424. [PMID: 30115886 PMCID: PMC6121269 DOI: 10.3390/ijms19082424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths and ranks as the fifth most common cancer worldwide. Incidence and mortality differ depending on the geographical region and gastric cancer ranks first in East Asian countries. Although genetic factors, gastric environment, and Helicobacter pylori infection have been associated with the pathogenicity and development of intestinal-type gastric cancer that follows the Correa's cascade, the pathogenicity of diffuse-type gastric cancer remains mostly unknown and undefined. However, genetic abnormalities in the cell adherence factors, such as E-cadherin and cellular activities that cause impaired cell integrity and physiology, have been documented as contributing factors. In recent years, H. pylori infection has been also associated with the development of diffuse-type gastric cancer. Therefore, in this report, we discuss the host factors as well as the bacterial factors that have been reported as associated factors contributing to the development of diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
| | - Boldbaatar Gantuya
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Internal Medicine, Gastroenterology unit, Mongolian National University of Medical Sciences, Ulaanbaatar-14210, Mongolia.
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Choi A, Nam SA, Kim WY, Park SH, Kim H, Yang CW, Kim J, Kim YK. Notch signaling in the collecting duct regulates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction in mice. Korean J Intern Med 2018; 33:774-782. [PMID: 28602064 PMCID: PMC6030409 DOI: 10.3904/kjim.2016.230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/24/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Mind bomb-1 (Mib1) encodes an E3 ubiquitin ligase, which is required for the initiation of Notch signaling. Recently, it was demonstrated that the renal collecting duct plays an important role in renal fibrosis. Here, we investigated the role of Notch signaling in renal fibrosis using conditional knockout mice with the specific ablation of Mib1 in renal collecting duct principal cells. METHODS Mib1-floxed mice (Mib1f/f) were crossed with aquaporin 2 (AQP2)-Cre mice in order to generate principal cell-specific Mib1 knockout mice (Mib1f/f :AQP2-Cre+). Unilateral ureteral obstruction (UUO) was performed, and mice were sacrificed 7 days after UUO. RESULTS After performing the UUO, renal tubulointerstitial fibrosis and the expression of transforming growth factor β were markedly enhanced in the obstructed kidneys of Mib1f/f mice compared with the sham-operated kidney of Mib1f/f mice. These changes were shown to be even more pronounced in the obstructed kidneys of Mib1f/f :AQP2-Cre+ mice than in those of the Mib1f/f mice . Furthermore, the number of TUNNEL-positive cells in renal collecting duct was higher in the obstructed kidneys of Mib1f/f :AQP2-Cre+ mice than in the kidneys of Mib1f/f mice. CONCLUSIONS Notch signaling in the renal collecting duct plays an important role in the regulation of renal tubulointerstitial fibrosis and apoptosis after UUO.
Collapse
Affiliation(s)
- Arum Choi
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Ah Nam
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Wan-Young Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hee Park
- Institute of Clinical Medicine Research of Bucheon St. Mary’s Hospital, Bucheon, Korea
| | - Hyang Kim
- Division of Nephrology, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Woo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Jin Kim, M.D. Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-7258 Fax: +82-2-2536-3110 E-mail:
| | - Yong Kyun Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
31
|
Khan F, Ricks-Santi LJ, Zafar R, Kanaan Y, Naab T. Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women. Ann Diagn Pathol 2018; 34:170-174. [PMID: 29715580 PMCID: PMC6008231 DOI: 10.1016/j.anndiagpath.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/30/2017] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Proteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women. MATERIALS AND METHODS Tissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1-3) and percentage of reactive cells; an H-score was derived from the product of these measurements. RESULTS Loss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p < 0.0001), PR negative (p < 0.0001), triple negative (TN) (p < 0.0001), grade 3 (p = 0.038), and overall survival (p = 0.047). There was no statistical significant association between c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes. CONCLUSION In our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Farhan Khan
- Department of Pathology, Howard University College of Medicine, Washington, DC, United States.
| | - Luisel J Ricks-Santi
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Rabia Zafar
- Department of Pathology, Howard University College of Medicine, Washington, DC, United States
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC, United States
| | - Tammey Naab
- Department of Pathology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
32
|
Ranjbar R, Hesari A, Ghasemi F, Sahebkar A. Expression of microRNAs and IRAK1 pathway genes are altered in gastric cancer patients with Helicobacter pylori infection. J Cell Biochem 2018; 119:7570-7576. [PMID: 29797599 DOI: 10.1002/jcb.27067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is among the most common cancer types in the world and one of the most lethal gastrointestinal cancers. MicroRNAs (miRNAs) can be of great importance in the early detection of GC. This study aimed to investigate some miRNAs and the genes involved in IRAK1 pathways in the serum of GC patients with Helicobacter pylori (H. pylori) infections compared to the control group. Total RNA was extracted from the serum of GC patients with H. pylori infection and healthy volunteers. The expression levels of miRNAs and the genes were assessed using Real time RT-PCR with specific primers. Our data showed that miR-146, miR-375, and Let-7 were down-regulated and miR-19 and miR-21 were up-regulated in GC patients with H. pylori infection. Other genes involved in the pathways such as RAS, MYC, NFKB, JUN, TRAF6, and IRAK4 were overexpressed; while the expression of PTEN gene was decreased compared to the control group. Expression of miRNAs and IRAK1 pathway genes are altered in patients with GC and H. pylori infection. This suggests a potential role for the above-mentioned miRNAs and genes in the diagnosis of GC.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - AmirReza Hesari
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ji F, Zhang ZH, Zhang Y, Shen SL, Cao QH, Zhang LJ, Li SQ, Peng BG, Liang LJ, Hua YP. Low expression of c-Myc protein predicts poor outcomes in patients with hepatocellular carcinoma after resection. BMC Cancer 2018; 18:460. [PMID: 29690860 PMCID: PMC5926532 DOI: 10.1186/s12885-018-4379-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/16/2018] [Indexed: 01/22/2023] Open
Abstract
Background Embryonic Liver Fodrin (ELF) is an adaptor protein of transforming growth factor (TGF-β) signaling cascade. Disruption of ELF results in mislocalization of Smad3 and Smad4, leading to compromised TGF-β signaling. c-Myc is an important oncogenic transcription factor, and the disruption of TGF-β signaling promotes c-Myc-induced hepatocellular carcinoma (HCC) carcinogenesis. However, the prognostic significance of c-Myc in HCC is less understood Methods The expression of c-Myc protein and mRNA were measured by immunohistochemistry (IHC) and qRT- PCR, respectively. IHC was performed to detect TGF-β1 and ELF expression in HCC tissues. Their relationship with clinicopathological factors and overall survival (OS) and disease free survival (DFS) were examined. Results The expression of c-Myc protein and mRNA in HCC tissues were significantly higher in HCC area than those in normal liver tissues. However, the expression were low compared with those adjacent to HCC area. c-Myc protein was independently predictive of DFS and OS, and it was negatively correlated with tumor size (P = 0.031), tumor number (P = 0.038), and recurrence (P = 0.001). Low c-Myc expression was associated with short-term recurrence and poor prognosis. The predictive value of c-Myc combined with TGF-β1 or/and ELF was higher than that of any other single marker. Low c-Myc, high TGF-β1 or/and low ELF expression was associated with the worst DFS and OS. Conclusions Low expression of c-Myc protein predicts poor outcomes in patients with HCC with hepatectomy. The combination of the expression of c-Myc, TGF-β1, and ELF can be used to accurately predict outcomes of patients with HCC.
Collapse
Affiliation(s)
- Fei Ji
- Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhi-Heng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shun-Li Shen
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qing-Hua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Long-Juan Zhang
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Shao-Qiang Li
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Bao-Gang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Li-Jian Liang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yun-Peng Hua
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
34
|
Gong L, Xia Y, Qian Z, Shi J, Luo J, Song G, Xu J, Ye Z. Overexpression of MYC binding protein promotes invasion and migration in gastric cancer. Oncol Lett 2018; 15:5243-5249. [PMID: 29552163 PMCID: PMC5840499 DOI: 10.3892/ol.2018.7944] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-associated mortality worldwide. Although the mortality rate of patients with GC has improved, it remains a significant health issue. The MYC proto-oncogene protein serves key roles in cellular proliferation, differentiation, transformation and apoptosis. Previous studies have identified the abnormal expression of MYC-binding protein (MYCBP) during tumorigenesis in multiple types of cancer. Furthermore, evidence demonstrates that the abnormal expression of MYCBP contributes to the invasion and migration of human cancer types, including colon cancer and glioma; however, its influence on GC remains unclear. In the present study, the expression of MYCBP in GC cells and tissues was analyzed by reverse transcription-quantitative polymerase chain reaction. Additionally, GC cell lines were transfected with small interfering RNAs against MYCBP or lymphoid enhancer-binding factor 1 (LEF-1) and assessed by in vitro transwell migration and invasion assays. The results indicated that the expression of MYCBP in GC cells and tissues was markedly increased compared with a normal gastric epithelial cell line and adjacent normal gastric mucosal tissues, respectively. Furthermore, MYCBP downregulation notably inhibited the metastatic capacity of GC cells, and LEF-1 knockdown was found to downregulate the expression of MYCBP. On the basis of the findings of the present study, MYCBP may be a direct target of the β-catenin/LEF-1 pathway via binding LEF-1, and could potentially be used as a biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Lijie Gong
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yingjie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhenyuan Qian
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Department of Gastrointestinal and Pancreatic Surgery, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ji Shi
- Department of Breast and Thyroid Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Jungang Luo
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Guangyuan Song
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ji Xu
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Department of Gastrointestinal and Pancreatic Surgery, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zaiyuan Ye
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
35
|
YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process. Oncotarget 2018; 7:85393-85410. [PMID: 27863420 PMCID: PMC5356744 DOI: 10.18632/oncotarget.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
We previously observed reduced YWHAE (14-3-3ε) protein expression in a small set of gastric cancer samples. YWHAE may act as a negative regulator of the cyclin CDC25B, which is a transcriptional target of MYC oncogene. The understanding of YWHAE role and its targets is important for the better knowledge of gastric carcinogenesis. Thus, we aimed to evaluate the relationship among YWHAE, CDC25B, and MYC in vitro and in vivo. For this, we analyzed the YWHAE, CDC25B, and MYC expression in YWHA-silenced, CDC25B-silenced, and MYC-silenced gastric cancer cell lines, as well as in gastric cancer and non-neoplastic gastric samples. In gastric cancer cell lines, YWHAE was able to inhibit the cell proliferation, invasion and migration through the reduction of MYC and CDC25B expression. Conversely, MYC induced the cell proliferation, invasion and migration through the induction of CDC25B and the reduction of YWHAE. Most of the tumors presented reduced YWHAE and increased CDC25B expression, which seems to be important for tumor development. Increased MYC expression was a common finding in gastric cancer and has a role in poor prognosis. In the tumor initiation, the opposite role of YWHAE and CDC25B in gastric carcinogenesis seems to be independent of MYC expression. However, the inversely correlation between YWHAE and MYC expression seems to be important for gastric cancer cells invasion and migration. The interaction between YWHAE and MYC and the activation of the pathways related to this interaction play a role in the metastasis process.
Collapse
|
36
|
Wang Z, Lin S, Zhang J, Xu Z, Xiang Y, Yao H, Ge L, Xie D, Kung HF, Lu G, Poon WS, Liu Q, Lin MCM. Loss of MYC and E-box3 binding contributes to defective MYC-mediated transcriptional suppression of human MC-let-7a-1~let-7d in glioblastoma. Oncotarget 2018; 7:56266-56278. [PMID: 27409345 PMCID: PMC5302913 DOI: 10.18632/oncotarget.10517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers.
Collapse
Affiliation(s)
- Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sheng Lin
- Laboratory of Medical Genetics, Shenzhen Research Institute of Population and Family Planning, Shenzhen, China
| | - Ji Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenhua Xu
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yu Xiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong Yao
- Jiangsu Key Laboratory of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Lei Ge
- Department of Gastrointestinal Surgery, Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hsiang-Fu Kung
- School of Biomedical Science, and State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Lu
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Wai Sang Poon
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Marie Chia-Mi Lin
- Shenzhen Key Laboratory of Translational Medicine of Tumor, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Poole CJ, Zheng W, Lodh A, Yevtodiyenko A, Liefwalker D, Li H, Felsher DW, van Riggelen J. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt's lymphoma. Oncotarget 2017; 8:76898-76920. [PMID: 29100357 PMCID: PMC5652751 DOI: 10.18632/oncotarget.20176] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant DNA methylation is a hallmark of cancer. However, our understanding of how tumor cell-specific DNA methylation patterns are established and maintained is limited. Here, we report that in T-cell acute lymphoblastic leukemia (T-ALL) and Burkitt's lymphoma the MYC oncogene causes overexpression of DNA methyltransferase (DNMT) 1 and 3B, which contributes to tumor maintenance. By utilizing a tetracycline-regulated MYC transgene in a mouse T-ALL (EμSRα-tTA;tet-o-MYC) and human Burkitt's lymphoma (P493-6) model, we demonstrated that DNMT1 and DNMT3B expression depend on high MYC levels, and that their transcription decreased upon MYC-inactivation. Chromatin immunoprecipitation indicated that MYC binds to the DNMT1 and DNMT3B promoters, implicating a direct transcriptional regulation. Hence, shRNA-mediated knock-down of endogenous MYC in human T-ALL and Burkitt's lymphoma cell lines downregulated DNMT3B expression. Knock-down and pharmacologic inhibition of DNMT3B in T-ALL reduced cell proliferation associated with genome-wide changes in DNA methylation, indicating a tumor promoter function during tumor maintenance. We provide novel evidence that MYC directly deregulates the expression of both de novo and maintenance DNMTs, showing that MYC controls DNA methylation in a genome-wide fashion. Our finding that a coordinated interplay between the components of the DNA methylating machinery contributes to MYC-driven tumor maintenance highlights the potential of specific DNMTs for targeted therapies.
Collapse
Affiliation(s)
- Candace J. Poole
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Wenli Zheng
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Atul Lodh
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Aleksey Yevtodiyenko
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Daniel Liefwalker
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Honglin Li
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Dean W. Felsher
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Jan van Riggelen
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| |
Collapse
|
38
|
Bellio MA, Pinto MT, Florea V, Barrios PA, Taylor CN, Brown AB, Lamondin C, Hare JM, Schulman IH, Rodrigues CO. Hypoxic Stress Decreases c-Myc Protein Stability in Cardiac Progenitor Cells Inducing Quiescence and Compromising Their Proliferative and Vasculogenic Potential. Sci Rep 2017; 7:9702. [PMID: 28851980 PMCID: PMC5575078 DOI: 10.1038/s41598-017-09813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac progenitor cells (CPCs) have been shown to promote cardiac regeneration and improve heart function. However, evidence suggests that their regenerative capacity may be limited in conditions of severe hypoxia. Elucidating the mechanisms involved in CPC protection against hypoxic stress is essential to maximize their cardioprotective and therapeutic potential. We investigated the effects of hypoxic stress on CPCs and found significant reduction in proliferation and impairment of vasculogenesis, which were associated with induction of quiescence, as indicated by accumulation of cells in the G0-phase of the cell cycle and growth recovery when cells were returned to normoxia. Induction of quiescence was associated with a decrease in the expression of c-Myc through mechanisms involving protein degradation and upregulation of p21. Inhibition of c-Myc mimicked the effects of severe hypoxia on CPC proliferation, also triggering quiescence. Surprisingly, these effects did not involve changes in p21 expression, indicating that other hypoxia-activated factors may induce p21 in CPCs. Our results suggest that hypoxic stress compromises CPC function by inducing quiescence in part through downregulation of c-Myc. In addition, we found that c-Myc is required to preserve CPC growth, suggesting that modulation of pathways downstream of it may re-activate CPC regenerative potential under ischemic conditions.
Collapse
Affiliation(s)
- Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mariana T Pinto
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paola A Barrios
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Christy N Taylor
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ariel B Brown
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Courtney Lamondin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Claudia O Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
| |
Collapse
|
39
|
Ritorto MS, Rhode H, Vogel A, Borlak J. Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC. Biol Chem 2017; 397:1147-1162. [PMID: 27232633 DOI: 10.1515/hsz-2016-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 01/13/2023]
Abstract
Recent research implicated glycosylphosphatidylinositol-anchored proteins (GPI-AP) and GPI-specific phospholipase D (GPI-PLD) in the pathogenesis of fatty liver disease and hepatocellular carcinoma (HCC). Given that c-Myc is frequently amplified in HCC, we investigated their regulation in a c-Myc transgenic disease model of liver cancer and HCC patient samples. Whole genome scans defined 54 significantly regulated genes coding for GPI-AP of which 29 and 14 were repressed in expression in transgenic tumors and steatotic human hepatocyte cultures, respectively, to influence lipid-mediated signal transduction, extracellular matrix and immunity pathways. Analysis of gene specific promoter revealed >95% to carry c-Myc binding sites thus establishing a link between c-Myc activity and transcriptional response. Alike, serum GPI-PLD activity was increased 4-fold in transgenic mice; however its tissue activity was reduced by 70%. The associated repression of the serine/threonine phosphatase 2A (PP2A), i.e. a key player of c-Myc proteolysis, indicates co-ordinate responses aimed at impairing tissue GPI-PLD anti-proliferative activities. Translational research identified >4-fold increased GPI-PLD serum protein expression though enzyme activities were repressed by 60% in NASH and HCC patients. Taken collectively, c-Myc influences GPI-AP signaling transcriptionally and posttranslational and represses GPI-AP anti-proliferative signaling in tumors. The findings broaden the perspective of molecular targeted therapies and disease monitoring.
Collapse
|
40
|
Wu F, Tian F, Zeng W, Liu X, Fan J, Lin Y, Zhang Y. Role of peroxiredoxin2 downregulation in recurrent miscarriage through regulation of trophoblast proliferation and apoptosis. Cell Death Dis 2017; 8:e2908. [PMID: 28661480 PMCID: PMC5520946 DOI: 10.1038/cddis.2017.301] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023]
Abstract
Peroxiredoxin (Prdx) 2 is an antioxidant protein that utilizes its redox-sensitive cysteine groups to reduce hydrogen peroxide molecules and protect cells against oxidative damage from reactive oxygen species (ROS). However, its function in trophoblasts at the maternal-fetal interface has not been clarified yet. In this study, significantly lower Prdx2 expression was found in the first-trimester villous cytotrophoblasts of patients with recurrent miscarriage (RM) than in cytotrophoblasts from healthy controls. Further, Prdx2 knockdown inhibited proliferation and increased apoptosis of trophoblast cells. The reason for this may be an increase in the level of cellular ROS after knockdown of Prdx2, which may subsequently lead to an increase in the expression of phosphorylated p53 (p-p53) and p38-MAPK/p21. Prdx2 knockdown also impaired the fusion of BeWo cells induced by forskolin. Bioinformatics analysis identified a c-Myc-binding site in the Prdx2 promoter region, and chromatin immunoprecipitation verified that c-Myc directly bound to a site in this locus. Suppression and overexpression of c-Myc resulted in reduction and increase of Prdx2 expression respectively. Furthermore, we demonstrated that c-Myc was downregulated in the first-trimester cytotrophoblasts of patients with RM, and its downregulation is also related with inhibited cell proliferation, increased apoptosis, as well as upregulated p21 expression and p-p53/p53 ratio. Our findings indicate that Prdx2 might have an important role in the regulation of trophoblast proliferation and apoptosis during early pregnancy, and that its expression is mediated by c-Myc. Thus, these two proteins may be involved in the pathogenesis of RM and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Kim KM, Park SH, Bae JS, Noh SJ, Tao GZ, Kim JR, Kwon KS, Park HS, Park BH, Lee H, Chung MJ, Moon WS, Sylvester KG, Jang KY. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC. Sci Rep 2017; 7:3274. [PMID: 28607447 PMCID: PMC5468291 DOI: 10.1038/s41598-017-03639-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023] Open
Abstract
Recently, the roles of FAM83H in tumorigenesis have been interested and increased expression of FAM83H and MYC in hepatocellular carcinoma (HCC) have been reported. Therefore, we investigated the expression and role of FAM83H in 163 human HCCs and further investigated the relationship between FAM83H and oncogene MYC. The expression of FAM83H is elevated in liver cancer cells, and nuclear expression of FAM83H predicted shorter survival of HCC patients. In HLE and HepG2 HCC cells, knock-down of FAM83H inhibited proliferation and invasive activity of HCC cells. FAM83H induced expression of cyclin-D1, cyclin-E1, snail and MMP2 and inhibited the expression of P53 and P27. In hepatic tumor cells derived from Tet-O-MYC mice, the expression of mRNA and protein of FAM83H were dependent on MYC expression. Moreover, a chromatin immunoprecipitation assay demonstrated that MYC binds to the promotor of FAM83H and that MYC promotes the transcription of FAM83H, which was supported by the results of a dual-luciferase reporter assay. In conclusion, we present an oncogenic role of FAM83H in liver cancer, which is closely associated with the oncogene MYC. In addition, our results suggest FAM83H expression as a poor prognostic indicator of HCC patients.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Sang Jae Noh
- Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Guo-Zhong Tao
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jung Ryul Kim
- Orthopedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Preventive Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Biochemistry, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Lee
- Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Karl G Sylvester
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
42
|
Yarushkin AA, Kazantseva YA, Kobelev VS, Pustylnyak YA, Pustylnyak VO. Peroxisome proliferator-activated receptor γ activation inhibits liver growth through miR-122-mediated downregulation of cMyc. Eur J Pharmacol 2017; 797:39-44. [PMID: 28095325 DOI: 10.1016/j.ejphar.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
Although NR1C3 agonists inhibit cell growth, the molecular mechanism of their action has not been thoroughly characterized to date. A recent study demonstrated that NR1C3 can regulate miR-122 by binding to its promoter. Given that miR-122 can indirectly regulate cMyc-mediated promitogenic signaling by targeting E2f1, we hypothesized that NR1C3 activation inhibits hepatocyte proliferation through miR-122-mediated cMyc downregulation. In the present study, we examined if liver hyperplasia induced by a strong chemical mitogen for the liver, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of NR1I3, can be repressed by NR1C3 activation through miR-122 upregulation. Acute TCPOBOP treatment caused a significant increase in liver-to-body weight ratio. The liver mass increase was accompanied with miR-122 downregulation. ChIP assays demonstrated that TCPOBOP-activated NR1I3 accumulated on the DR1 site in the pri-miR-122 promoter; and the NR1I3 accumulation is accompanied by a decrease in miR-122 and an increase in E2f1 and its transcription target cMyc. Rosiglitazone (Ros) treatment, which is an agonist of NR1C3, caused an opposite effect on liver-to-body weight ratio. When Ros was given with TCPOBOP, it attenuated the inhibitory effect of TCPOBOP on miR-122. Moreover, Ros treatment inhibited the NR1I3 binding with the DR1 site in the pri-miR-122 promoter. Furthermore, the increase of miR-122 produced by Ros was correlated with the downregulation of its targets, E2f1 and cMyc. Thus, our finding demonstrated that the liver growth inhibitory effect of NR1C3 activation was at least partly related to the decrease of cMyc though the activation of miR-122 and the downregulation of E2f1.
Collapse
Affiliation(s)
- Andrei A Yarushkin
- The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117, Russia
| | - Yuliya A Kazantseva
- The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117, Russia
| | - Vyacheslav S Kobelev
- The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117, Russia
| | - Yuliya A Pustylnyak
- The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogova str., 1, Novosibirsk 630090, Russia
| | - Vladimir O Pustylnyak
- The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogova str., 1, Novosibirsk 630090, Russia.
| |
Collapse
|
43
|
Bryson BL, Junk DJ, Cipriano R, Jackson MW. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle 2016; 16:319-334. [PMID: 27892764 DOI: 10.1080/15384101.2016.1259037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokines in the developing tumor microenvironment (TME) can drive transformation and subsequent progression toward metastasis. Elevated levels of the Interleukin-6 (IL-6) family cytokine Oncostatin M (OSM) in the breast TME correlate with aggressive, metastatic cancers, increased tumor recurrence, and poor patient prognosis. Paradoxically, OSM engages a tumor-suppressive, Signal Transducer and Activator of Transcription 3 (STAT3)-dependent senescence response in normal and non-transformed human mammary epithelial cells (HMEC). Here, we identify a novel link between OSM-activated STAT3 signaling and the Transforming Growth Factor-β (TGF-β) signaling pathway that engages senescence in HMEC. Inhibition of functional TGF-β/SMAD signaling by expressing a dominant-negative TGF-β receptor, treating with a TGF-β receptor inhibitor, or suppressing SMAD3 expression using a SMAD3-shRNA prevented OSM-induced senescence. OSM promoted a protein complex involving activated-STAT3 and SMAD3, induced the nuclear localization of SMAD3, and enhanced SMAD3-mediated transcription responsible for senescence. In contrast, expression of MYC (c-MYC) from a constitutive promoter abrogated senescence and strikingly, cooperated with OSM to promote a transformed phenotype, epithelial-mesenchymal transition (EMT), and invasiveness. Our findings suggest that a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence that is coopted during the transformation process to confer aggressive cancer cell properties. Understanding how developing cancer cells bypass OSM/STAT3/SMAD3-mediated senescence may help identify novel targets for future "pro-senescence" therapies aiming to reengage this hidden tumor-suppressive response.
Collapse
Affiliation(s)
- Benjamin L Bryson
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Damian J Junk
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Rocky Cipriano
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Mark W Jackson
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
44
|
Hu L, Liu J, Li Z, Wang C, Nawshad A. Transforming growth factor-β1 activates ΔNp63/c-Myc to promote oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:460-482.e4. [PMID: 27567435 DOI: 10.1016/j.oooo.2016.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE During the development of oral squamous cell carcinoma (OSCC), the transformed epithelial cells undergo increased proliferation resulting in tumor growth and invasion. Interestingly, throughout all phases of differentiation and progression to OSCC, transforming growth factor-β1 (TGF)-β1 induces cell cycle arrest or apoptosis; however, the role of TGF-β1 in promoting cancer cell proliferation has not been explored in detail. The purpose of this study was to identify the effect of TGF-β1 on OSCC cell proliferation. STUDY DESIGN Using both human OSCC samples and cell lines (UMSCC38 and UMSCC11B), we assessed protein, mRNA, gene expression, and protein-DNA interactions during OSCC progression. RESULTS Our results showed that TGF-β1 increased OSCC cell proliferation by upregulating the expression of ΔNp63 and c-Myc oncogenes. Although the basal OSCC cell proliferation is sustained by activating ΔNp63, increased induction of c-Myc causes unregulated OSCC cell proliferation. Following induction of the cell cycle by ΔNp63 and c-Myc, cancer cells that halt c-Myc activity undergo epithelial mesenchymal transition or invasion while those that continue to express ΔNp63/c-Myc undergo unlimited progression through the cell cycle. CONCLUSIONS OSCC proliferation is manifested by the induction of c-Myc in response to TGF-β1 signaling, which is essential for OSCC growth. Our data highlight the potential role of TGF-β1 in the induction of cancer progression and invasion of OSCC.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA; Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong, P.R. China
| | - Jingpeng Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Zhi Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong, P.R. China
| | - Ali Nawshad
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA.
| |
Collapse
|
45
|
Lima C, Faleiro M, Rabelo R, Vulcani V, Rubini M, Torres F, Moura V. Insertion of the LINE-1 element in the C-MYC gene and immunoreactivity of C-MYC, p53, p21 and p27 proteins in different morphological patterns of the canine TVT. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT The canine transmissible venereal tumor (TVT) affects the external genitalia of dogs by the natural transplant of viable tumor cells. Thus, this research aimed to diagnose and characterize TVT morphological patterns, identify the insertion of the LINE-1 element in C-MYC gene, by means of the polymerase chain reaction (PCR), and evaluate the immunohistochemical expression of C-MYC, p53, p21 and p27 proteins. The relationship between C-MYC and p53 proteins and their interference on the expression of p21 and p27 were also studied. For that, 20 samples of naturally occurring TVT were used, subjected to cytopathological, histopathological and immunohistochemical analysis, and to molecular diagnosis of neoplasia. The increased tissue expression and the correlation among C-MYC, p53, p21 and p27 proteins indicate reduction and/or loss of their functionality in the TVT microenvironment, with consequent apoptotic suppression, maintenance of cell growth and progression of neoplasia.
Collapse
|
46
|
Shaat H, Mostafa A, Moustafa M, Gamal-Eldeen A, Emam A, El-Hussieny E, Elhefnawi M. Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. Int J Pharm 2016; 504:125-33. [PMID: 27036397 DOI: 10.1016/j.ijpharm.2016.03.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 11/25/2022]
Abstract
To overcome the rapid enzymatic degradation and low transfection efficiency of siRNA, the delivery carriers for siRNA is a therapeutic demand to increase its stability. Gold nanoparticles (AuNPs) modified by branched polyethyleneimine (bPEI) were developed as an efficient and safe intracellular delivery carriers for siRNA. The current study implied that siRNA designed against an oncogene c-Myc could be delivered by a modified AuNPs complex without significant cytotoxicity. The comparative semi-quantitative and quantitative real time PCR were used to measure the c-Myc gene expression after transfection with naked siRNA and siRNA/bPEI/AuNPs, but AuNPs interfered with PCR. However, the c-Myc protein translation was successfully detected in the transfected HuH7 cells with naked siRNA and siRNA/bPEI/AuNPs and it was found to be inhibited by siRNA/bPEI/AuNPs more than naked siRNA. The results validate the successful silencing of c-Myc gene. Accordingly, it may confirm the promising and effective delivery of siRNA by bPEI/AuNPs. The complex enhances the cellular uptake of siRNA without significant cytotoxicity and confirms that bPEI modified AuNPs could be used as a good candidate for safe cellular delivery of siRNA.
Collapse
Affiliation(s)
- Hanan Shaat
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt; Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt
| | - Amany Mostafa
- Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt; Ceramics Department, NRC, Dokki, Cairo, Egypt,.
| | - Moustafa Moustafa
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Amira Gamal-Eldeen
- Cancer Biology and Genetics Laboratory Centre of Excellence for Advanced Sciences, NRC, Cairo, Egypt; Biochemistry Department, NRC, Dokki, Cairo, Egypt
| | - Ahmed Emam
- Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt; Ceramics Department, NRC, Dokki, Cairo, Egypt
| | - Enas El-Hussieny
- Zoology Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Laboratory, Center of Excellence for advanced Sciences, NRC, Dokki, Cairo, Egypt,; Informatics and System Department, NRC, Dokki, Cairo, Egypt.
| |
Collapse
|
47
|
Wang H, Yan X, Ji LY, Ji XT, Wang P, Guo SW, Li SZ. miR-139 Functions as An Antioncomir to Repress Glioma Progression Through Targeting IGF-1 R, AMY-1, and PGC-1β. Technol Cancer Res Treat 2016; 16:497-511. [PMID: 26868851 DOI: 10.1177/1533034616630866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumor with poor prognosis, characterized by a highly heterogeneous cell population, extensive proliferation, and migration. A lot of molecular mechanisms regulate gliomas development and invasion, including abnormal expression of oncogenes and variation of epigenetic modification. MicroRNAs could affect cell growth and functions. Several reports have demonstrated that miR-139 plays multifunctions in kinds of solid tumors through different pathways. However, the antitumor mechanisms of this miR-139 are not unveiled in detail. In this study, we not only validated the low expression level of miR-139 in glioma tissues and cell lines but also detected the effect of miR-139 on modulating gliomas proliferation and invasion both in vitro and in vivo. We identified insulin-like growth factor 1 receptor, associate of Myc 1, and peroxisome proliferator-activated receptor γ coactivator 1β as direct targets of miR-139 and the levels of them were all inversely correlated with miR-139 in gliomas. Insulin like growth factor 1 receptor promoted gliomas invasion through Akt signaling and increased proliferation in the peroxisome proliferator-activated receptor γ coactivator 1β-dependent way. Associate of Myc 1 also facilitated gliomas progression by activating c-Myc pathway. Overexpression of the target genes could retrieve the antitumor function of miR-139, respectively, in different degrees. The nude mice transplantation tumor experiment displayed that glioma cells stably expressed miR-139 growth much slower in vivo than the negative control cells. Taken together, these findings suggested miR-139 acted as a favorable factor against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new evidenced prognostic marker and therapeutic target for gliomas.
Collapse
Affiliation(s)
- Hong Wang
- 1 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China.,2 Department of Neurosurgery, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xi Yan
- 3 Department of Internal Medicine, Xi'an Dongfang Hospital
| | - Li-Ya Ji
- 4 Department of Neurology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China
| | - Xi-Tuan Ji
- 5 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Wang
- 2 Department of Neurosurgery, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Shi-Wen Guo
- 1 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China
| | - San-Zhong Li
- 5 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Shimada I, Kubota A, Katoh M, Suzuki F. Hyperoxia causes diffuse alveolar damage through mechanisms involving upregulation of c-Myc/Bax and enhanced production of reactive oxygen species. Respir Investig 2016; 54:59-68. [PMID: 26718146 DOI: 10.1016/j.resinv.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/04/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Hyperoxia is a known cause of diffuse alveolar damage (DAD). We previously reported the transcript profiling of DAD induced by hyperoxia exposure in mouse lungs and showed that the gene expression of myelocytomatosis oncogene (c-Myc) was significantly upregulated whereas that of surfactant-associated protein (SP)-C was downregulated. However, the mechanism underlying hyperoxia-induced DAD is not well understood. METHODS The hyperoxia-induced changes in SP-A/B/C/D, c-Myc, B-cell chronic lymphocytic leukemia/lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) expression in mouse lungs were examined by cDNA microarray analysis. The expression levels of the above mentioned genes, cell viability, caspase activity, and reactive oxygen species (ROS) production were also examined in the human lung adenocarcinoma cell line A549 and mouse fibroblast-like cell line NIH/3T3. RESULTS Hyperoxia induced a decrease in SP-C/A expression in mouse lungs, and SP-C downregulation was also confirmed in A549 cells. In addition to enhanced c-Myc expression, Bax expression also increased following exposure of the mice to hyperoxia. In vitro analysis showed that expression of these genes is regulated in a cell-type-dependent manner, i.e., upregulation of c-Myc in NIH/3T3 cells and Bax in A549 cells occurred regardless of whether there was a similar decrease in cell viability and increase in caspase-3/7 activation in response to hyperoxia. ROS production and caspase-8 activation were also observed in both cells. CONCLUSIONS We concluded that hyperoxia induces ROS production and cell death in lung tissues through a cell-type specific mechanism involving the upregulation of c-Myc/Bax, and caspase-8 and -3/7 activation-dependent pathways, thereby leading to the development of DAD.
Collapse
Affiliation(s)
- Ichiroh Shimada
- Department of Forensic Medicine and Human Genetics, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.
| | - Ayumi Kubota
- Department of Forensic Medicine and Human Genetics, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.
| | - Masataka Katoh
- Department of Forensic Medicine and Human Genetics, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.
| | - Fumiko Suzuki
- Department of Forensic Medicine and Human Genetics, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.
| |
Collapse
|
49
|
Nakayama K, Rahman MT, Rahman M, Nakamura K, Ishikawa M, Katagiri H, Sato E, Ishibashi T, Iida K, Ishikawa N, Kyo S. CCNE1 amplification is associated with aggressive potential in endometrioid endometrial carcinomas. Int J Oncol 2015; 48:506-16. [PMID: 26647729 PMCID: PMC4725452 DOI: 10.3892/ijo.2015.3268] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The clinicopathological significance of amplification was investigated of the gene encoding cyclin E (CCNE1) and we assessed whether CCNE1 was a potential target in endometrioid endometrial carcinomas. CCNE1 amplification and CCNE1 or F-box and WD repeat domain-containing 7 (FBXW7) expression in endometrial endometrioid carcinoma was assessed by immunohistochemistry and fluorescence in situ hybridization. CCNE1 knockdown by small interfering RNA (siRNA) was used to assess the CCNE1 function. The results showed that CCNE1 amplification was present in 9 (8.3%) of 108 endometrial carcinomas. CCNE1 amplification was correlated with high histological grade (Grade 3; P=0.0087) and lymphovascular space invasion (P=0.0258). No significant association was observed between CCNE1 amplification and FIGO stage (P=0.851), lymph node metastasis (P=0.078), body mass index (P=0.265), deep myometrial invasion (P=0.256), menopausal status (P=0.289) or patient age (P=0.0817). CCNE1 amplification was significantly correlated with shorter progression-free and overall survival (P=0.0081 and 0.0073, respectively). CCNE1 protein expression or loss of FBXW7 expression in endometrial endometrioid carcinoma tended to be correlated with shorter progression-free and overall survival; however, this difference was not statistically significant. Multivariate analysis showed that CCNE1 amplification was an independent prognostic factor for overall survival but not for progression-free survival (P=0.0454 and 0.2175, respectively). Profound growth inhibition was observed in siRNA-transfected cancer cells with endogenous CCNE1 overexpression compared with that in cancer cells having low CCNE1 expression. CCNE1 amplification was independent of p53, HER2, MLH1 and ARID1A expression but dependent on PTEN expression in endometrial carcinomas. These findings indicated that CCNE1 amplification was critical for the survival of endometrial endometrioid carcinomas. Furthermore, the effects of CCNE1 knockdown were dependent on the CCNE1 expression status, suggesting that CCNE1-targeted therapy may be beneficial for patients with endometrial endometrioid carcinoma having CCNE1 amplification.
Collapse
Affiliation(s)
- Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Mohammed Tanjimur Rahman
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Munmun Rahman
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kohei Nakamura
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Hiroshi Katagiri
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Emi Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Noriyuki Ishikawa
- Department of Organ Pathology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| |
Collapse
|
50
|
Tong L, Chuang CC, Wu S, Zuo L. Reactive oxygen species in redox cancer therapy. Cancer Lett 2015; 367:18-25. [DOI: 10.1016/j.canlet.2015.07.008] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022]
|