1
|
García-Cruz G, Esparza-Perusquía M, Cruz-Cárdenas A, Cruz-Vilchis D, Flores-Herrera O. Kinetic characterization of respirasomes and free complex I from Yarrowia lipolytica. Mitochondrion 2025; 83:102035. [PMID: 40180170 DOI: 10.1016/j.mito.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The mitochondrion is a highly dynamic organelle capable of adapting to external stimuli and the energetic demands of the cell. As the primary source of cellular ATP, generating approximately 90 % of the total, mitochondrion facilitates the association of respiratory complexes I, III2, and IV into supramolecular structures called respirasomes. This supramolecular organization enhances protein density within the mitochondrial inner membrane, enabling homogenous energy production. In this study, we investigate the subunits composition and the kinetic characterization of digitonin-solubilized respirasomes and the free complex I from Yarrowia lipolytica as well as their role in reactive oxygen species (ROS) production. The NADH:DBQ oxido reductase activity of respirasome and free complex I was similar. Respiration by respirasome was inhibited with rotenone, antimycin A, or cyanide, simultaneously to an increase in the ROS production. A value of 1.6 ± 0.2 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity. The role of interaction between complexes in the function of the respirasome is discussed.
Collapse
Affiliation(s)
- Giovanni García-Cruz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Alejandro Cruz-Cárdenas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Diana Cruz-Vilchis
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
2
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
3
|
Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S, Cabrera-Orefice A. The mitochondrial respiratory chain from Rhodotorula mucilaginosa, an extremophile yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149035. [PMID: 38360260 DOI: 10.1016/j.bbabio.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Srikant S, Gaudet R, Murray AW. Extending the reach of homology by using successive computational filters to find yeast pheromone genes. Curr Biol 2023; 33:4098-4110.e3. [PMID: 37699395 PMCID: PMC10592104 DOI: 10.1016/j.cub.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in a small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are shorter than 100 amino acids long, and contain a proteolytic-processing motif upstream of the potential mature pheromone sequence and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 Saccharomycotina genomes, we identified strong candidate pheromone genes in 241 genomes, covering 13 clades that are each separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology among small pheromone genes. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Schiller J, Laube E, Wittig I, Kühlbrandt W, Vonck J, Zickermann V. Insights into complex I assembly: Function of NDUFAF1 and a link with cardiolipin remodeling. SCIENCE ADVANCES 2022; 8:eadd3855. [PMID: 36383672 PMCID: PMC9668296 DOI: 10.1126/sciadv.add3855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 06/02/2023]
Abstract
Respiratory complex I is a ~1-MDa proton pump in mitochondria. Its structure has been revealed in great detail, but the structural basis of its assembly, in humans involving at least 15 assembly factors, is essentially unknown. We determined cryo-electron microscopy structures of assembly intermediates associated with assembly factor NDUFAF1 in a yeast model system. Subunits ND2 and NDUFC2 together with assembly factors NDUFAF1 and CIA84 form the nucleation point of the NDUFAF1-dependent assembly pathway. Unexpectedly, the cardiolipin remodeling enzyme tafazzin is an integral component of this core complex. In a later intermediate, all 12 subunits of the proximal proton pump module have assembled. NDUFAF1 locks the central ND3 subunit in an assembly-competent conformation, and major rearrangements of central subunits are required for complex I maturation.
Collapse
Affiliation(s)
- Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Wright JJ, Biner O, Chung I, Burger N, Bridges HR, Hirst J. Reverse Electron Transfer by Respiratory Complex I Catalyzed in a Modular Proteoliposome System. J Am Chem Soc 2022; 144:6791-6801. [PMID: 35380814 PMCID: PMC9026280 DOI: 10.1021/jacs.2c00274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 02/02/2023]
Abstract
Respiratory complex I is an essential metabolic enzyme that uses the energy from NADH oxidation and ubiquinone reduction to translocate protons across an energy transducing membrane and generate the proton motive force for ATP synthesis. Under specific conditions, complex I can also catalyze the reverse reaction, Δp-linked oxidation of ubiquinol to reduce NAD+ (or O2), known as reverse electron transfer (RET). Oxidative damage by reactive oxygen species generated during RET underpins ischemia reperfusion injury, but as RET relies on several converging metabolic pathways, little is known about its mechanism or regulation. Here, we demonstrate Δp-linked RET through complex I in a synthetic proteoliposome system for the first time, enabling complete kinetic characterization of RET catalysis. We further establish the capability of our system by showing how RET in the mammalian enzyme is regulated by the active-deactive transition and by evaluating RET by complex I from several species in which direct assessment has not been otherwise possible. We thus provide new insights into the reversibility of complex I catalysis, an important but little understood mechanistic and physiological feature.
Collapse
Affiliation(s)
- John J. Wright
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| | | | - Injae Chung
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| | | | - Hannah R. Bridges
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| | - Judy Hirst
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| |
Collapse
|
7
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
8
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
9
|
Accessory Subunits of the Matrix Arm of Mitochondrial Complex I with a Focus on Subunit NDUFS4 and Its Role in Complex I Function and Assembly. Life (Basel) 2021; 11:life11050455. [PMID: 34069703 PMCID: PMC8161149 DOI: 10.3390/life11050455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.
Collapse
|
10
|
Jarman OD, Biner O, Wright JJ, Hirst J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci Rep 2021; 11:10143. [PMID: 33980947 PMCID: PMC8115037 DOI: 10.1038/s41598-021-89575-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.
Collapse
Affiliation(s)
- Owen D. Jarman
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Olivier Biner
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - John J. Wright
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Judy Hirst
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
11
|
A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I. J Biol Chem 2021; 296:100474. [PMID: 33640456 PMCID: PMC8042128 DOI: 10.1016/j.jbc.2021.100474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron–sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.
Collapse
|
12
|
Mamaev D, Zvyagilskaya R. Yarrowia lipolytica: a multitalented yeast species of ecological significance. FEMS Yeast Res 2021; 21:6141120. [PMID: 33595651 DOI: 10.1093/femsyr/foab008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Yarrowia lipolytica is characterized by GRAS (Generally regarded as safe) status, the versatile substrate utilization profile, rapid utilization rates, metabolic diversity and flexibility, the unique abilities to tolerate to extreme environments (acidic, alkaline, hypersaline, heavy metal-pollutions and others) and elevated biosynthesis and secreting capacities. These advantages of Y. lipolytica allow us to consider it as having great ecological significance. Unfortunately, there is still a paucity of relevant review data. This mini-review highlights ecological ubiquity of Y. lipolytica species, their ability to diversify and colonize specialized niches. Different Y. lipolytica strains, native and engineered, are beneficial in degrading many environmental pollutants causing serious ecological problems worldwide. In agriculture has a potential to be a bio-control agent by stimulating plant defense response, and an eco-friendly bio-fertilizer. Engineered strains of Y. lipolytica have become a very promising platform for eco-friendly production of biofuel, commodities, chemicals and secondary metabolites of plant origin, obtaining which by other method were limited or economically infeasible, or were accompanied by stringent environmental problems. Perspectives to use potential of Y. lipolytica's capacities for industrial scale production of valuable compounds in an eco-friendly manner are proposed.
Collapse
Affiliation(s)
- Dmitry Mamaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| | - Renata Zvyagilskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| |
Collapse
|
13
|
da Veiga Moreira J, Jolicoeur M, Schwartz L, Peres S. Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction. Sci Rep 2021; 11:878. [PMID: 33441687 PMCID: PMC7807019 DOI: 10.1038/s41598-020-79577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Yarrowia lipolytica is a non-conventional yeast with promising industrial potentials for lipids and citrate production. It is also widely used for studying mitochondrial respiration due to a respiratory chain like those of mammalian cells. In this study we used a genome-scale model (GEM) of Y. lipolytica metabolism and performed a dynamic Flux Balance Analysis (dFBA) algorithm to analyze and identify metabolic levers associated with citrate optimization. Analysis of fluxes at stationary growth phase showed that carbon flux derived from glucose is rewired to citric acid production and lipid accumulation, whereas the oxidative phosphorylation (OxPhos) shifted to the alternative respiration mode through alternative oxidase (AOX) protein. Simulations of optimized citrate secretion flux resulted in a pronounced lipid oxidation along with reactive oxygen species (ROS) generation and AOX flux inhibition. Then, we experimentally challenged AOX inhibition by adding n-Propyl Gallate (nPG), a specific AOX inhibitor, on Y. lipolytica batch cultures at stationary phase. Our results showed a twofold overproduction of citrate (20.5 g/L) when nPG is added compared to 10.9 g/L under control condition (no nPG addition). These results suggest that ROS management, especially through AOX activity, has a pivotal role on citrate/lipid flux balance in Y. lipolytica. All taken together, we thus provide for the first time, a key for the understanding of a predominant metabolic mechanism favoring citrate overproduction in Y. lipolytica at the expense of lipids accumulation.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- grid.183158.60000 0004 0435 3292Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC Canada
| | - Mario Jolicoeur
- grid.183158.60000 0004 0435 3292Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC Canada
| | - Laurent Schwartz
- grid.50550.350000 0001 2175 4109Assistance Publique des Hôpitaux de Paris, 149 avenue Victoria, 75004 Paris, France
| | - Sabine Peres
- grid.4444.00000 0001 2112 9282LRI, Université Paris-Saclay, CNRS, 91405 Orsay, France ,grid.503376.4MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
14
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
15
|
Grba DN, Hirst J. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation. Nat Struct Mol Biol 2020; 27:892-900. [PMID: 32747785 PMCID: PMC7612091 DOI: 10.1038/s41594-020-0473-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from ubiquinone reduction by NADH to drive protons across the energy-transducing inner membrane. Recent cryo-EM analyses of mammalian and yeast complex I have revolutionized structural and mechanistic knowledge and defined structures in different functional states. Here, we describe a 2.7-Å-resolution structure of the 42-subunit complex I from the yeast Yarrowia lipolytica containing 275 structured water molecules. We identify a proton-relay pathway for ubiquinone reduction and water molecules that connect mechanistically crucial elements and constitute proton-translocation pathways through the membrane. By comparison with known structures, we deconvolute structural changes governing the mammalian 'deactive transition' (relevant to ischemia-reperfusion injury) and their effects on the ubiquinone-binding site and a connected cavity in ND1. Our structure thus provides important insights into catalysis by this enigmatic respiratory machine.
Collapse
Affiliation(s)
- Daniel N Grba
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
17
|
Maclean AE, Kimonis VE, Balk J. Pathogenic mutations in NUBPL affect complex I activity and cold tolerance in the yeast model Yarrowia lipolytica. Hum Mol Genet 2019; 27:3697-3709. [PMID: 29982452 PMCID: PMC6196649 DOI: 10.1093/hmg/ddy247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
Complex I deficiency is a common cause of mitochondrial disease, resulting from mutations in genes encoding structural subunits, assembly factors or defects in mitochondrial gene expression. Advances in genetic diagnostics and sequencing have led to identification of several variants in NUBPL (nucleotide binding protein-like), encoding an assembly factor of complex I, which are potentially pathogenic. To help assign pathogenicity and learn more about the function of NUBPL, amino acid substitutions were recreated in the homologous Ind1 protein of the yeast model Yarrowia lipolytica. Leu102Pro destabilized the Ind1 protein, leading to a null-mutant phenotype. Asp103Tyr, Leu191Phe and Gly285Cys affected complex I assembly to varying degrees, whereas Gly136Asp substitution in Ind1 did not impact on complex I levels nor dNADH:ubiquinone activity. Blue-native polyacrylamide gel electrophoresis and immunolabelling of the structural subunits NUBM and NUCM revealed that all Ind1 variants accumulated a Q module intermediate of complex I. In the Ind1 Asp103Tyr variant, the matrix arm intermediate was virtually absent, indicating a dominant effect. Dysfunction of Ind1, but not absence of complex I, rendered Y. lipolytica sensitive to cold. The Ind1 Gly285Cys variant was able to support complex I assembly at 28°C, but not at 10°C. Our results indicate that Ind1 is required for progression of assembly from the Q module to the full matrix arm. Cold sensitivity could be developed as a phenotype assay to demonstrate pathogenicity of NUBPL mutations and other complex I defects.
Collapse
Affiliation(s)
- Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Virginia E Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, USA.,Children's Hospital of Orange County, Orange, CA, USA
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
18
|
Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps. Nat Commun 2018; 9:4500. [PMID: 30374105 PMCID: PMC6206036 DOI: 10.1038/s41467-018-06955-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain and a significant source of reactive oxygen species (ROS). We hypothesized that during energy conversion by complex I, electron transfer onto ubiquinone triggers the concerted rearrangement of three protein loops of subunits ND1, ND3, and 49-kDa thereby generating the power-stoke driving proton pumping. Here we show that fixing loop TMH1-2ND3 to the nearby subunit PSST via a disulfide bridge introduced by site-directed mutagenesis reversibly disengages proton pumping without impairing ubiquinone reduction, inhibitor binding or the Active/Deactive transition. The X-ray structure of mutant complex I indicates that the disulfide bridge immobilizes but does not displace the tip of loop TMH1-2ND3. We conclude that movement of loop TMH1-2ND3 located at the ubiquinone-binding pocket is required to drive proton pumping corroborating one of the central predictions of our model for the mechanism of energy conversion by complex I proposed earlier. Proton pumping of mitochondrial complex I depends on the reduction of ubiquinone but the molecular mechanism of energy conversion is unclear. Here, the authors provide structural and biochemical evidence showing that movement of loop TMH1-2 in complex I subunit ND3 is required to drive proton pumping.
Collapse
|
19
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
20
|
Siebels I, Dröse S. Charge translocation by mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica measured on solid-supported membranes. Biochem Biophys Res Commun 2016; 479:277-282. [PMID: 27639643 DOI: 10.1016/j.bbrc.2016.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
The charge translocation by purified reconstituted mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica was investigated after adsorption of proteoliposomes to solid-supported membranes. In presence of n-decylubiquinone (DBQ), pulses of NADH provided by rapid solution exchange induced charge transfer reflecting steady-state pumping activity of the reconstituted enzyme. The signal amplitude increased with time, indicating 'deactive→active' transition of the Yarrowia complex I. Furthermore, an increase of the membrane-conductivity after addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) was detected which questiones the use of EIPA as an inhibitor of the Na+/H+-antiporter-like subunits of complex I. This investigation shows that electrical measurements on solid-supported membranes are a suitable method to analyze transport events and 'active/deactive' transition of mitochondrial complex I.
Collapse
Affiliation(s)
- Ilka Siebels
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Goethe University Frankfurt, Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Protein Reaction Control Group, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Berrisford JM, Baradaran R, Sazanov LA. Structure of bacterial respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:892-901. [PMID: 26807915 DOI: 10.1016/j.bbabio.2016.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
| | - Rozbeh Baradaran
- Memorial Sloan-Kettering Cancer Center, 430 E 67th Street, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
22
|
Varghese F, Atcheson E, Bridges HR, Hirst J. Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system. Hum Mol Genet 2015; 24:6350-60. [PMID: 26345448 PMCID: PMC4614703 DOI: 10.1093/hmg/ddv344] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023] Open
Abstract
Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Febin Varghese
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Erwan Atcheson
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
23
|
Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I. Proc Natl Acad Sci U S A 2015; 112:5685-90. [PMID: 25902503 DOI: 10.1073/pnas.1424353112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial proton-pumping NADH:ubiquinone oxidoreductase (respiratory complex I) comprises more than 40 polypeptides and contains eight canonical FeS clusters. The integration of subunits and insertion of cofactors into the nascent complex is a complicated multistep process that is aided by assembly factors. We show that the accessory NUMM subunit of complex I (human NDUFS6) harbors a Zn-binding site and resolve its position by X-ray crystallography. Chromosomal deletion of the NUMM gene or mutation of Zn-binding residues blocked a late step of complex I assembly. An accumulating assembly intermediate lacked accessory subunit N7BM (NDUFA12), whereas a paralog of this subunit, the assembly factor N7BML (NDUFAF2), was found firmly bound instead. EPR spectroscopic analysis and metal content determination after chromatographic purification of the assembly intermediate showed that NUMM is required for insertion or stabilization of FeS cluster N4.
Collapse
|
24
|
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015; 347:44-9. [PMID: 25554780 DOI: 10.1126/science.1259859] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.
Collapse
Affiliation(s)
- Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany.
| | - Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Hamid Nasiri
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Karin Siegmund
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Ulrich Brandt
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
25
|
Metabolism of Hydrophobic Carbon Sources and Regulation of It inn-Alkane-Assimilating YeastYarrowia lipolytica. Biosci Biotechnol Biochem 2014; 77:1149-54. [DOI: 10.1271/bbb.130164] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Zinjarde S, Apte M, Mohite P, Kumar AR. Yarrowia lipolytica and pollutants: Interactions and applications. Biotechnol Adv 2014; 32:920-33. [PMID: 24780156 DOI: 10.1016/j.biotechadv.2014.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/21/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
Abstract
Yarrowia lipolytica is a dimorphic, non-pathogenic, ascomycetous yeast species with distinctive physiological features and biochemical characteristics that are significant in environment-related matters. Strains naturally present in soils, sea water, sediments and waste waters have inherent abilities to degrade hydrocarbons such as alkanes (short and medium chain) and aromatic compounds (biphenyl and dibenzofuran). With the application of slow release fertilizers, design of immobilization techniques and development of microbial consortia, scale-up studies and in situ applications have been possible. In general, hydrocarbon uptake in this yeast is mediated by attachment to large droplets (via hydrophobic cell surfaces) or is aided by surfactants and emulsifiers. Subsequently, the internalized hydrocarbons are degraded by relevant enzymes innately present in the yeast. Some wild-type or recombinant strains also detoxify nitroaromatic (2,4,6-trinitrotoluene), halogenated (chlorinated and brominated hydrocarbons) and organophosphate (methyl parathion) compounds. The yeast can tolerate some metals and detoxify them via different biomolecules. The biomass (unmodified, in combination with sludge, magnetically-modified and in the biofilm form) has been employed in the biosorption of hexavalent chromium ions from aqueous solutions. Yeast cells have also been applied in protocols related to nanoparticle synthesis. The treatment of oily and solid wastes with this yeast reduces chemical oxygen demand or value-added products (single cell oil, single cell protein, surfactants, organic acids and polyalcohols) are obtained. On account of all these features, the microorganism has established a place for itself and is of considerable value in environment-related applications.
Collapse
Affiliation(s)
- Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India.
| | - Mugdha Apte
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | - Pallavi Mohite
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| |
Collapse
|
27
|
The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity. Proc Natl Acad Sci U S A 2014; 111:5207-12. [PMID: 24706851 DOI: 10.1073/pnas.1322438111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial complex I is the largest and most complicated enzyme of the oxidative phosphorylation system. It comprises a number of so-called accessory subunits of largely unknown structure and function. Here we studied subunit NB4M [NDUFA6, LYR motif containing protein 6 (LYRM6)], a member of the LYRM family of proteins. Chromosomal deletion of the corresponding gene in the yeast Yarrowia lipolytica caused concomitant loss of the mitochondrial acyl carrier protein subunit ACPM1 from the enzyme complex and paralyzed ubiquinone reductase activity. Exchanging the LYR motif and an associated conserved phenylalanine by alanines in subunit NB4M also abolished the activity and binding of subunit ACPM1. We show, by single-particle electron microscopy and structural modeling, that subunits NB4M and ACPM1 form a subdomain that protrudes from the peripheral arm in the vicinity of central subunit domains known to be involved in controlling the catalytic activity of complex I.
Collapse
|
28
|
Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases. Biochimie 2014; 102:124-36. [PMID: 24657599 DOI: 10.1016/j.biochi.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos.
Collapse
|
29
|
Dröse S, Brandt U, Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1344-54. [PMID: 24561273 DOI: 10.1016/j.bbapap.2014.02.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 02/06/2023]
Abstract
The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ulrich Brandt
- Radboud University Medical Centre, Nijmegen Centre for Mitochondrial Disorders, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands; Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany.
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Investigating the function of [2Fe-2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential. Biochem J 2013; 456:139-46. [PMID: 23980528 PMCID: PMC3898324 DOI: 10.1042/bj20130606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NADH:quinone oxidoreductase (complex I) couples NADH oxidation and quinone reduction to proton translocation across an energy-transducing membrane. All complexes I contain a flavin to oxidize NADH, seven iron–sulfur clusters to transfer electrons from the flavin to quinone and an eighth cluster (N1a) on the opposite side of the flavin. The role of cluster N1a is unknown, but Escherichia coli complex I has an unusually high-potential cluster N1a and its reduced flavin produces H2O2, not superoxide, suggesting that cluster N1a may affect reactive oxygen species production. In the present study, we combine protein film voltammetry with mutagenesis in overproduced N1a-binding subunits to identify two residues that switch N1a between its high- (E. coli, valine and asparagine) and low- (Bos taurus and Yarrowia lipolytica, proline and methionine) potential forms. The mutations were incorporated into E. coli complex I: cluster N1a could no longer be reduced by NADH, but H2O2 and superoxide production were unaffected. The reverse mutations (that increase the potential by ~0.16 V) were incorporated into Y. lipolytica complex I, but N1a was still not reduced by NADH. We conclude that cluster N1a does not affect reactive oxygen species production by the complex I flavin; it is probably required for enzyme assembly or stability. Two residues that determine the potential of cluster N1a in respiratory complex I were identified, and their effects on its flavin-site reactions were determined. Reduction of cluster N1a by NADH does not affect reactive oxygen species production by the flavin.
Collapse
|
31
|
NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation. Appl Biochem Biotechnol 2013; 171:403-16. [PMID: 23846800 DOI: 10.1007/s12010-013-0373-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
NADP(+)-dependent isocitrate dehydrogenase from Yarrowia lipolytica CLIB122 (YlIDP) was overexpressed and purified. The molecular mass of YlIDP was estimated to be about 81.3 kDa, suggesting its homodimeric structure in solution. YlIDP was divalent cation dependent and Mg(2+) was found to be the most favorable cofactor. The purified recombinant YlIDP displayed maximal activity at 55 °C and its optimal pH for catalysis was found to be around 8.5. Heat inactivation studies revealed that the recombinant YlIDP was stable below 45 °C, but its activity dropped quickly above this temperature. YlIDP was absolutely dependent on NADP(+) and no NAD-dependent activity could be detected. The K m values displayed for NADP(+) and isocitrate were 59 and 31 μM (Mg(2+)), 120 μM and 58 μM (Mn(2+)), respectively. Mutant enzymes were constructed to tentatively alter the coenzyme specificity of YlIDP. The K m values for NADP(+) of R322D mutant was 2,410 μM, being about 41-fold higher than that of wild type enzyme. NAD(+)-dependent activity was detected for R322D mutant and the K m and k cat values for NAD(+) were 47,000 μM and 0.38 s(-1), respectively. Although the R322D mutant showed low activity with NAD(+), it revealed the feasibility of engineering an eukaryotic IDP to a NAD(+)-dependent one.
Collapse
|
32
|
Wydro MM, Balk J. Insights into the pathogenic character of a common NUBPL branch-site mutation associated with mitochondrial disease and complex I deficiency using a yeast model. Dis Model Mech 2013; 6:1279-84. [PMID: 23828044 PMCID: PMC3759347 DOI: 10.1242/dmm.012682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Complex I deficiencies are the most common causes of mitochondrial disorders. They can result from mutations not only in the structural subunits but also in a growing number of known assembly factors. A branch-site mutation in the human gene encoding assembly factor NUBPL has recently been associated with mitochondrial encephalopathy and complex I deficiency in seven independent cases. Moreover, the mutation is present in 1.2% of European haplotypes. To investigate its pathogenicity, we have reconstructed the altered C-terminus that results from the branch-site mutation and frameshift in the homologous Ind1 protein in the respiratory yeast Yarrowia lipolytica. We demonstrate that the altered sequence did not affect IND1 mRNA stability, yet it led to a decrease in Ind1 protein level. The instability of mutant Ind1 resulted in a strong decrease in complex I activity and caused slow growth, resembling the phenotype of the deletion strain of IND1. The presented data confirms the deleterious impact of the altered C-terminus resulting from the branch-site mutation. Furthermore, our approach demonstrates the great potential of Y. lipolytica as a model to investigate complex I deficiencies, especially in cases with genetic complexity.
Collapse
Affiliation(s)
- Mateusz M Wydro
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
33
|
Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei. Parasitology 2012; 140:328-37. [PMID: 23111000 DOI: 10.1017/s003118201200162x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The respiratory chain of the procyclic stage of Trypanosoma brucei contains the standard complexes I through IV, as well as several alternative enzymes contributing to electron flow. In this work, we studied the function of an alternative NADH : ubiquinone oxidoreductase (NDH2). Depletion of target mRNA was achieved using RNA interference (RNAi). In the non-induced and RNAi-induced cell growth, membrane potential change, alteration in production of reactive oxygen species, overall respiration, enzymatic activities of complexes I, III and/or IV and distribution of NADH : ubiquinone oxidoreductase activities in glycerol gradient fractions were measured. Finally, respiration using different substrates was tested on digitonin-permeabilized cells. The induced RNAi cell line exhibited slower growth, decreased mitochondrial membrane potential and lower sensitivity of respiration to inhibitors. Mitochondrial glycerol-3-phosphate dehydrogenase was the only enzymatic activity that has significantly changed in the interfered cells. This elevation as well as a decrease of respiration using NADH was confirmed on digitonin-permeabilized cells. The data presented here together with previously published findings on complex I led us to propose that NDH2 is the major NADH : ubiquinone oxidoreductase responsible for cytosolic and not for mitochondrial NAD+ regeneration in the mitochondrion of procyclic T. brucei.
Collapse
|
34
|
Gaillardin C, Neuvéglise C, Kerscher S, Nicaud JM. Mitochondrial genomes of yeasts of the Yarrowia clade. FEMS Yeast Res 2012; 12:317-31. [PMID: 22188421 DOI: 10.1111/j.1567-1364.2011.00782.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 12/13/2022] Open
Abstract
Candida alimentaria, Candida deformans, Candida galli, and Candida phangngensis have been recently reported to be the close relatives of Yarrowia lipolytica. To explore this clade of yeasts, we sequenced the mitochondrial genome (mtDNA) of these four species and compared it with the mtDNA of Y. lipolytica. The five mtDNAs exhibit a similar architecture and a high level of similarity of protein coding sequences. Genome sizes are variable, ranging from 28 017 bp in C. phangngensis to 48 508 bp in C. galli, mainly because of the variations in intron size and number. All introns are of group I, except for a group II intron inserted in the cob gene of a single species, C. galli. Putative endonuclease coding sequences were present in most group I introns, but also twice as free-standing ORFs in C. galli. Phylogenetic relationships of the five species were explored using protein alignments. No close relative of the Yarrowia clade could be identified, but protein and rRNA gene orders were partially conserved in the mtDNA of Candida salmanticensis.
Collapse
|
35
|
Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species. J Bioenerg Biomembr 2011; 43:323-31. [PMID: 21556887 DOI: 10.1007/s10863-011-9356-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.
Collapse
|
36
|
Bridges HR, Bill E, Hirst J. Mössbauer spectroscopy on respiratory complex I: the iron-sulfur cluster ensemble in the NADH-reduced enzyme is partially oxidized. Biochemistry 2011; 51:149-58. [PMID: 22122402 PMCID: PMC3254188 DOI: 10.1021/bi201644x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In mitochondria, complex I (NADH:quinone oxidoreductase)
couples
electron transfer to proton translocation across an energy-transducing
membrane. It contains a flavin mononucleotide to oxidize NADH, and
an unusually long series of iron–sulfur (FeS) clusters that
transfer the electrons to quinone. Understanding electron transfer
in complex I requires spectroscopic and structural data to be combined
to reveal the properties of individual clusters and of the ensemble.
EPR studies on complex I from Bos taurus have established
that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster
chain extending from the flavin) are (at least partially) reduced
by NADH. The other three clusters, positions 4 and 6 plus a cluster
on the other side of the flavin, are not observed in EPR spectra from
the NADH-reduced enzyme: they may remain oxidized, have unusual or
coupled spin states, or their EPR signals may be too fast relaxing.
Here, we use Mössbauer spectroscopy on 57Fe-labeled
complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the
NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and
only the terminal 4Fe cluster (position 7) is fully reduced. Together
with the EPR analyses, our results reveal an alternating profile of
higher and lower potential clusters between the two active sites in
complex I; they are not consistent with the consensus picture of a
set of isopotential clusters. The implications for intramolecular
electron transfer along the extended chain of cofactors in complex
I are discussed.
Collapse
Affiliation(s)
- Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | | | | |
Collapse
|
37
|
Trendeleva T, Sukhanova E, Ural’skaya L, Saris NE, Zvyagilskaya R. Effect of prooxidants on yeast mitochondria. J Bioenerg Biomembr 2011; 43:633-44. [DOI: 10.1007/s10863-011-9403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/25/2011] [Indexed: 01/08/2023]
|
38
|
Guerrero-Castillo S, Cabrera-Orefice A, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S. During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:353-62. [PMID: 22138628 DOI: 10.1016/j.bbabio.2011.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/01/2022]
Abstract
In the branched mitochondrial respiratory chain from Yarrowia lipolytica there are two alternative oxido-reductases that do not pump protons, namely an external type II NADH dehydrogenase (NDH2e) and the alternative oxidase (AOX). Direct electron transfer between these proteins is not coupled to ATP synthesis and should be avoided in most physiological conditions. However, under low energy-requiring conditions an uncoupled high rate of oxygen consumption would be beneficial, as it would prevent overproduction of reactive oxygen species (ROS). In mitochondria from high energy-requiring, logarithmic-growth phase cells, most NDH2e was associated to cytochrome c oxidase and electrons from NADH were channeled to the cytochromic pathway. In contrast, in the low energy requiring, late stationary-growth phase, complex IV concentration decreased, the cells overexpressed NDH2e and thus a large fraction of this enzyme was found in a non-associated form. Also, the NDH2e-AOX uncoupled pathway was activated and the state IV external NADH-dependent production of ROS decreased. Association/dissociation of NDH2e to/from complex IV is proposed to be the switch that channels electrons from external NADH to the coupled cytochrome pathway or allows them to reach an uncoupled, alternative, ΔΨ-independent pathway.
Collapse
|
39
|
Fickers P, Marty A, Nicaud JM. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 2011; 29:632-44. [DOI: 10.1016/j.biotechadv.2011.04.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/29/2022]
|
40
|
Postmus J, Tuzun I, Bekker M, Müller WH, Teixeira de Mattos MJ, Brul S, Smits GJ. Dynamic regulation of mitochondrial respiratory chain efficiency in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2011; 157:3500-3511. [PMID: 21964735 DOI: 10.1099/mic.0.050039-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To adapt to changes in the environment, cells have to dynamically alter their phenotype in response to, for instance, temperature and oxygen availability. Interestingly, mitochondrial function in Saccharomyces cerevisiae is inherently temperature sensitive; above 37 °C, yeast cells cannot grow on respiratory carbon sources. To investigate this phenomenon, we studied the effect of cultivation temperature on the efficiency (production of ATP per atom of oxygen consumed, or P/O) of the yeast respiratory chain in glucose-limited chemostats. We determined that even though the specific oxygen consumption rate did not change with temperature, oxygen consumption no longer contributed to mitochondrial ATP generation at temperatures higher than 37 °C. Remarkably, between 30 and 37 °C, we observed a linear increase in respiratory efficiency with growth temperature, up to a P/O of 1.4, close to the theoretical maximum that can be reached in vivo. The temperature-dependent increase in efficiency required the presence of the mitochondrial glycerol-3-phosphate dehydrogenase GUT2. Respiratory chain efficiency was also altered in response to changes in oxygen availibility. Our data show that, even in the absence of alternative oxidases or uncoupling proteins, yeast has retained the ability to dynamically regulate the efficiency of coupling of oxygen consumption to proton translocation in the respiratory chain in response to changes in the environment.
Collapse
Affiliation(s)
- Jarne Postmus
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Işil Tuzun
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martijn Bekker
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wally H Müller
- Department of Biology, Biomolecular Imaging, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - M Joost Teixeira de Mattos
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
41
|
Dröse S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N, Heide H, Steger M, Nübel E, Zickermann V, Kerscher S, Brutschy B, Radermacher M, Brandt U. Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 2011; 9:e1001128. [PMID: 21886480 PMCID: PMC3160329 DOI: 10.1371/journal.pbio.1001128] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022] Open
Abstract
A catalytically active subcomplex of respiratory chain complex I lacks 14 of its 42 subunits yet retains half of its proton-pumping capacity, indicating that its membrane arm has two pump modules. Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na+/H+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis. Mitochondria—the power plants of eukaryotic cells—produce energy in the form of ATP. More than one-third of this energy production is driven by a gradient of protons across the mitochondrial membrane created by the pumping action of a very large enzyme called complex I. Defects in complex I are implicated in numerous pathological processes like neurodegeneration and biological aging. Recent X-ray structural analyses revealed that complex I is an L-shaped molecule with one arm integrated into the membrane and the other sticking into the aqueous interior of the mitochondrion; the chemical reactions of the enzyme take place in this hydrophilic arm, clearly separated from proton pumping that must occur somewhere in the membrane arm. To assign the pump function to structural domains, we created a stable subcomplex of complex I by deleting the gene encoding one of its small subunits in a yeast called Yarrowia lipolytica. This subcomplex lacked half of the membrane arm; it was still catalytically active but it pumped only half the number of protons as the full complex. This indicates that complex I has two functionally distinct pump modules operating in its membrane arm.
Collapse
Affiliation(s)
- Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stephanie Krack
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Lucie Sokolova
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Klaus Zwicker
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Hans-Dieter Barth
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Mirco Steger
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Esther Nübel
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Volker Zickermann
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stefan Kerscher
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Bernhard Brutschy
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Michael Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, Vermont, United States of America
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
42
|
Abstract
Mitochondria are the structures that produce the bulk part of the cellular energy currency ATP, which drives numerous energy requiring processes in the cell. This process involves a series of large enzyme complexes—the respiratory chain—that couples the transfer of electrons to the creation of a concentration gradient of protons across the inner mitochondrial membrane, which drives ATP synthesis. Complex I (or NADH-quinone oxidoreductase) is the largest and by far the most complicated of the respiratory chain enzyme complexes. The molecular mechanism whereby it couples electron transfer to proton extrusion has remained mysterious until very recently. Low-resolution X-ray structures of complex I have, surprisingly, suggested that electron transfer in the hydrophilic arm, protruding into the mitochondrial matrix, causes movement of a coupling rod that influences three putative proton pumps within the hydrophobic arm embedded in the inner mitochondrial membrane. In this Primer, we will briefly introduce the recent progress made in this area and highlight the road ahead that likely will unravel the detailed molecular mechanisms of complex I function.
Collapse
|
43
|
The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: II. Comparison of the proposed working hypothesis with literature data. J Bioenerg Biomembr 2010; 42:279-92. [PMID: 20632077 DOI: 10.1007/s10863-010-9302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
The first purification of bovine NADH:ubiquinone oxidoreductase (Complex I) was reported nearly half a century ago (Hatefi et al. J Biol Chem 237:1676-1680, 1962). The pathway of electron-transfer through the enzyme is still under debate. A major obstacle is the assignment of EPR signals to the individual iron-sulfur clusters in the subunits. The preceding paper described a working model based on the kinetics with NADPH. This model is at variance with current views in the field. The present paper provides a critical overview on the possible causes for the discrepancies. It is concluded that the stability of all purified preparations described thus far, including Hatefi's Complex I, is compromised due to removal of the enzyme from the protective membrane environment. In addition, most preparations described during the last two decades are purified by methods involving synthetic detergents and column chromatography. This results in delipidation, loss of endogenous quinones and loss of reactions with (artificial) quinones in a rotenone-sensitive way. The Fe:FMN ratio's indicate that FMN-a is absent, but that all Fe-S clusters may be present. In contrast to the situation in bovine SMP and Hatefi's Complex I, three of the six expected [4Fe-4S] clusters are not detected in EPR spectra. Qualitatively, the overall EPR lineshape of the remaining three cubane signals may seem similar to that of Hatefi's Complex I, but quantitatively it is not. It is further proposed that point mutations in any of the TYKY, PSST, 49-kDa or 30-kDa subunits, considered to make up the delicate structural heart of Complex I, may have unpredictable effects on any of the other subunits of this quartet. The fact that most point mutations led to inactive enzymes makes a correct interpretation of such mutations even more ambiguous. In none of the Complex-I-containing membrane preparations from non-bovine origin, the pH dependencies of the NAD(P)H-->O(2) reactions and the pH-dependent reduction kinetics of the Fe-S clusters with NADPH have been determined. This excludes a proper discussion on the absence or presence of FMN-a in native Complex I from other organisms.
Collapse
|
44
|
Hunte C, Zickermann V, Brandt U. Functional Modules and Structural Basis of Conformational Coupling in Mitochondrial Complex I. Science 2010; 329:448-51. [PMID: 20595580 DOI: 10.1126/science.1191046] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Carola Hunte
- Institute for Biochemistry and Molecular Biology, Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
45
|
Zickermann V, Angerer H, Ding MG, Nübel E, Brandt U. Small single transmembrane domain (STMD) proteins organize the hydrophobic subunits of large membrane protein complexes. FEBS Lett 2010; 584:2516-25. [PMID: 20398659 DOI: 10.1016/j.febslet.2010.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/30/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
The large membrane protein complexes of mitochondrial oxidative phosphorylation are composed of central subunits that are essential for their bioenergetic core function and accessory subunits that may assist in regulation, assembly or stabilization. Although sequence conservation is low, a significant proportion of the accessory subunits is characterized by a common single transmembrane (STMD) topology. The STMD signature is also found in subunits of other membrane protein complexes. We hypothesize that the general function of STMD subunits is to organize the hydrophobic subunits of large membrane protein complexes in specialized environments like the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Volker Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, Cluster of Excellence Frankfurt "Macromolecular Complexes", Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
46
|
Lyubenova S, Maly T, Zwicker K, Brandt U, Ludwig B, Prisner T. Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Acc Chem Res 2010; 43:181-9. [PMID: 19842617 DOI: 10.1021/ar900050d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloproteins often contain metal centers that are paramagnetic in some functional state of the protein; hence electron paramagnetic resonance (EPR) spectroscopy can be a powerful tool for studying protein structure and function. Dipolar spectroscopy allows the determination of the dipole-dipole interactions between metal centers in protein complexes, revealing the structural arrangement of different paramagnetic centers at distances of up to 8 nm. Hyperfine spectroscopy can be used to measure the interaction between an unpaired electron spin and nuclear spins within a distance of 0.8 nm; it therefore permits the characterization of the local structure of the paramagnetic center's ligand sphere with very high precision. In this Account, we review our laboratory's recent applications of both dipolar and hyperfine pulsed EPR methods to metalloproteins. We used pulsed dipolar relaxation methods to investigate the complex of cytochrome c and cytochrome c oxidase, a noncovalent protein-protein complex involved in mitochondrial electron-transfer reactions. Hyperfine sublevel correlation spectroscopy (HYSCORE) was used to study the ligand sphere of iron-sulfur clusters in complex I of the mitochondrial respiratory chain and substrate binding to the molybdenum enzyme polysulfide reductase. These examples demonstrate the potential of the two techniques; however, they also highlight the difficulties of data interpretation when several paramagnetic species with overlapping spectra are present in the protein. In such cases, further approaches and data are very useful to enhance the information content. Relaxation filtered hyperfine spectroscopy (REFINE) can be used to separate the individual components of overlapping paramagnetic species on the basis of differences in their longitudinal relaxation rates; it is applicable to any kind of pulsed hyperfine or dipolar spectroscopy. Here, we show that the spectra of the iron-sulfur clusters in complex I can be separated by this method, allowing us to obtain hyperfine (and dipolar) information from the individual species. Furthermore, performing pulsed EPR experiments at different magnetic fields is another important tool to disentangle the spectral components in such complex systems. Despite the fact that high magnetic fields do not usually lead to better spectral separation for metal centers, they provide additional information about the relative orientation of different paramagnetic centers. Our high-field EPR studies on cytochrome c oxidase reveal essential information regarding the structural arrangement of the binuclear Cu(A) center with respect to both the manganese ion within the enzyme and the cytochrome in the protein-protein complex with cytochrome c.
Collapse
Affiliation(s)
- Sevdalina Lyubenova
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten Maly
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Zwicker
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Ulrich Brandt
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Bernd Ludwig
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thomas Prisner
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
47
|
Dobrynin K, Abdrakhmanova A, Richers S, Hunte C, Kerscher S, Brandt U. Characterization of two different acyl carrier proteins in complex I from Yarrowia lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:152-9. [DOI: 10.1016/j.bbabio.2009.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
|
48
|
Nübel E, Wittig I, Kerscher S, Brandt U, Schägger H. Two-dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica. Proteomics 2009; 9:2408-18. [PMID: 19343715 DOI: 10.1002/pmic.200800632] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mitochondria of the strictly aerobic yeast Yarrowia lipolytica contain respiratory complex I with close functional and structural similarity to the mammalian enzyme. Unlike mammalian mitochondria, however, Yarrowia mitochondria have been thought not to contain supercomplexes. Here, we identify respiratory supercomplexes composed of complexes I, III and IV also in Y. lipolytica. Evidence for dimeric complex I suggests further association of respiratory supercomplexes into respiratory strings or patches. Similar supercomplex organization in Yarrowia and mammalian mitochondria further makes this aerobic yeast a useful model for the human oxidative phosphorylation system. The analysis of supercomplexes and their constituent complexes was made possible by 2-D native electrophoresis, i.e. by using native electrophoresis for both dimensions. Digitonin and blue-native electrophoresis were generally applied for the initial separation of supercomplexes followed by less mild native electrophoresis variants in the second dimension to release the individual complexes from the supercomplexes. Such 2-D native systems are useful means to identify the constituent proteins and their copy numbers in detergent-labile physiological assemblies, since they can reduce the complexity of supramolecular systems to the level of individual complexes.
Collapse
Affiliation(s)
- Esther Nübel
- Cluster of Excellence Macromolecular Complexes, Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Goethe-Universität Frankfurt, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
NADH:ubiquinone oxidoreductase (complex I) is an entry point for electrons into the respiratory chain in many eukaryotes. It couples NADH oxidation and ubiquinone reduction to proton translocation across the mitochondrial inner membrane. Because complex I deficiencies occur in a wide range of neuromuscular diseases, including Parkinson's disease, there is a clear need for model eukaryotic systems to facilitate structural, functional and mutational studies. In the present study, we describe the purification and characterization of the complexes I from two yeast species, Pichia pastoris and Pichia angusta. They are obligate aerobes which grow to very high cell densities on simple medium, as yeast-like, spheroidal cells. Both Pichia enzymes catalyse inhibitor-sensitive NADH:ubiquinone oxidoreduction, display EPR spectra which match closely to those from other eukaryotic complexes I, and show patterns characteristic of complex I in SDS/PAGE analysis. Mass spectrometry was used to identify several canonical complex I subunits. Purified P. pastoris complex I has a particularly high specific activity, and incorporating it into liposomes demonstrates that NADH oxidation is coupled to the generation of a protonmotive force. Interestingly, the rate of NADH-induced superoxide production by the Pichia enzymes is more than twice as high as that of the Bos taurus enzyme. Our results both resolve previous disagreement about whether Pichia species encode complex I, furthering understanding of the evolution of complex I within dikarya, and they provide two new, robust and highly active model systems for study of the structure and catalytic mechanism of eukaryotic complexes I.
Collapse
|
50
|
Kovaleva MV, Sukhanova EI, Trendeleva TA, Zyl'kova MV, Ural'skaya LA, Popova KM, Saris NEL, Zvyagilskaya RA. Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. J Bioenerg Biomembr 2009; 41:239-49. [PMID: 19609656 DOI: 10.1007/s10863-009-9227-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca(2+) uptake and is differently regulated compared to the mPTP of animal mitochondria.
Collapse
Affiliation(s)
- Mariya V Kovaleva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|