1
|
Knox PP, Lukashev EP, Korvatovskiy BN, Strakhovskaya MG, Makhneva ZK, Bol'shakov MA, Paschenko VZ. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. PHOTOSYNTHESIS RESEARCH 2022; 153:103-112. [PMID: 35277801 DOI: 10.1007/s11120-022-00909-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).
Collapse
Affiliation(s)
- Peter P Knox
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Boris N Korvatovskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Marina G Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.
| | - Zoja K Makhneva
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Maxim A Bol'shakov
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Vladimir Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| |
Collapse
|
2
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
3
|
Pruchyathamkorn J, Kendrick WJ, Frawley AT, Mattioni A, Caycedo‐Soler F, Huelga SF, Plenio MB, Anderson HL. A Complex Comprising a Cyanine Dye Rotaxane and a Porphyrin Nanoring as a Model Light-Harvesting System. Angew Chem Int Ed Engl 2020; 59:16455-16458. [PMID: 32558120 PMCID: PMC7540489 DOI: 10.1002/anie.202006644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/03/2022]
Abstract
A nanoring-rotaxane supramolecular assembly with a Cy7 cyanine dye (hexamethylindotricarbocyanine) threaded along the axis of the nanoring was synthesized as a model for the energy transfer between the light-harvesting complex LH1 and the reaction center in purple bacteria photosynthesis. The complex displays efficient energy transfer from the central cyanine dye to the surrounding zinc porphyrin nanoring. We present a theoretical model that reproduces the absorption spectrum of the nanoring and quantifies the excitonic coupling between the nanoring and the central dye, thereby explaining the efficient energy transfer and demonstrating similarity with structurally related natural light-harvesting systems.
Collapse
Affiliation(s)
| | - William J. Kendrick
- Department of ChemistryOxford UniversityChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Andrew T. Frawley
- Department of ChemistryOxford UniversityChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Andrea Mattioni
- Institute of Theoretical Physics and IQSTUlm UniversityAlbert-Einstein-Allee 1189069UlmGermany
| | - Felipe Caycedo‐Soler
- Institute of Theoretical Physics and IQSTUlm UniversityAlbert-Einstein-Allee 1189069UlmGermany
| | - Susana F. Huelga
- Institute of Theoretical Physics and IQSTUlm UniversityAlbert-Einstein-Allee 1189069UlmGermany
| | - Martin B. Plenio
- Institute of Theoretical Physics and IQSTUlm UniversityAlbert-Einstein-Allee 1189069UlmGermany
| | - Harry L. Anderson
- Department of ChemistryOxford UniversityChemistry Research LaboratoryOxfordOX1 3TAUK
| |
Collapse
|
4
|
Pruchyathamkorn J, Kendrick WJ, Frawley AT, Mattioni A, Caycedo‐Soler F, Huelga SF, Plenio MB, Anderson HL. A Complex Comprising a Cyanine Dye Rotaxane and a Porphyrin Nanoring as a Model Light‐Harvesting System. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - William J. Kendrick
- Department of ChemistryOxford UniversityChemistry Research Laboratory Oxford OX1 3TA UK
| | - Andrew T. Frawley
- Department of ChemistryOxford UniversityChemistry Research Laboratory Oxford OX1 3TA UK
| | - Andrea Mattioni
- Institute of Theoretical Physics and IQSTUlm University Albert-Einstein-Allee 11 89069 Ulm Germany
| | - Felipe Caycedo‐Soler
- Institute of Theoretical Physics and IQSTUlm University Albert-Einstein-Allee 11 89069 Ulm Germany
| | - Susana F. Huelga
- Institute of Theoretical Physics and IQSTUlm University Albert-Einstein-Allee 11 89069 Ulm Germany
| | - Martin B. Plenio
- Institute of Theoretical Physics and IQSTUlm University Albert-Einstein-Allee 11 89069 Ulm Germany
| | - Harry L. Anderson
- Department of ChemistryOxford UniversityChemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
5
|
Ma F, Yu LJ, Hendrikx R, Wang-Otomo ZY, van Grondelle R. Direct Observation of Energy Detrapping in LH1-RC Complex by Two-Dimensional Electronic Spectroscopy. J Am Chem Soc 2017; 139:591-594. [DOI: 10.1021/jacs.6b11017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fei Ma
- Department
of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Long-Jiang Yu
- Faculty
of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
- Research
Institute for Interdisciplinary, Okayama University, Tsushima
Naka 3-1-1, Okayama 700-8530, Japan
| | - Ruud Hendrikx
- Department
of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | - Rienk van Grondelle
- Department
of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Beyer SR, Müller L, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The open, the closed, and the empty: time-resolved fluorescence spectroscopy and computational analysis of RC-LH1 complexes from Rhodopseudomonas palustris. J Phys Chem B 2015; 119:1362-73. [PMID: 25526393 DOI: 10.1021/jp510822k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the time-resolved fluorescence of isolated RC-LH1 complexes from Rhodopseudomonas palustris as a function of the photon fluence and the repetition rate of the excitation laser. Both parameters were varied systematically over 3 orders of magnitude. On the basis of a microstate description we developed a quantitative model for RC-LH1 and obtained very good agreement between experiments and elaborate simulations based on a global master equation approach. The model allows us to predict the relative population of RC-LH1 complexes with the special pair in the neutral state or in the oxidized state P(+) and those complexes that lack a reaction center.
Collapse
Affiliation(s)
- Sebastian R Beyer
- Experimental Physics IV and Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth , 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Schlau-Cohen GS, De Re E, Cogdell RJ, Fleming GR. Determination of Excited-State Energies and Dynamics in the B Band of the Bacterial Reaction Center with 2D Electronic Spectroscopy. J Phys Chem Lett 2012; 3:2487-92. [PMID: 26292138 DOI: 10.1021/jz300841u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photosynthetic organisms convert photoenergy to chemical energy with near-unity quantum efficiency. This occurs through charge transfer in the reaction center, which consists of two branches of pigments. In bacteria, both branches are energy-transfer pathways, but only one is also an electron transfer pathway. One barrier to a full understanding of the asymmetry is that the two branches contain excited states close in energy that produce overlapping spectroscopic peaks. We apply polarization-dependent, 2D electronic spectroscopy to the B band of the oxidized bacterial reaction center. The spectra reveal two previously unresolved peaks, corresponding to excited states localized on each of the two branches. Furthermore, a previously unknown interaction between these two states is observed on a time scale of ∼100 fs. This may indicate an alternative pathway to electron transfer for the oxidized reaction center and thus may be a mechanism to prevent energy from becoming trapped in local minima.
Collapse
Affiliation(s)
- Gabriela S Schlau-Cohen
- §Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California, United States
| | - Eleonora De Re
- §Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California, United States
| | | | - Graham R Fleming
- §Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California, United States
| |
Collapse
|
8
|
Sener M, Hsin J, Trabuco LG, Villa E, Qian P, Hunter CN, Schulten K. Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides. Chem Phys 2009; 357:188-197. [PMID: 20161332 DOI: 10.1016/j.chemphys.2009.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The light-harvesting apparatus of the purple bacterial photosynthetic unit consists of a pool of peripheral light-harvesting complexes that transfer excitation energy to a reaction center (RC) via the surrounding pigment-protein complex LH1. Recent electron microscopy and atomic force microscopy studies have revealed that RC-LH1 units of Rhodobacter sphaeroides form membrane-bending dimeric complexes together with the polypeptide PufX. We present a structural model for these RC-LH1-PufX dimeric complexes constructed using the molecular dynamics flexible fitting method based on an EM density map. The arrangement of the LH1 BChls displays a distortion near the proposed location of the PufX polypeptide. The resulting atomic model for BChl arrays is used to compute the excitonic properties of the dimeric RC-LH1 complex. A comparison is presented between the structural and excitonic features of the S-shaped dimeric BChl array of Rhodobacter sphaeroides and the circular BChl arrangement found in other purple bacteria.
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | | | | | | | |
Collapse
|
9
|
Bina D, Litvin R, Vacha F. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. PHOTOSYNTHESIS RESEARCH 2009; 99:115-125. [PMID: 19199074 DOI: 10.1007/s11120-009-9408-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/14/2009] [Indexed: 05/27/2023]
Abstract
The light-induced electron transport in purple bacterium Rhodobacter sphaeroides was studied in vivo by means of kinetic difference absorption spectroscopy and kinetics of bacteriochlorophyll fluorescence yield. Measurements of redox state of the oxidised primary donor and cytochrome c and the membrane potential revealed a complex pattern of changes of the electron flow. Effects of the membrane potential on the fluorescence yield were also analysed, and a model for the fluorescence induction curve is presented. The data indicate substantial positive effect of the membrane potential on the fluorescence emission in vivo. Moreover, light-induced changes in light scattering were observed, which suggests occurrence of structural changes on the level of the photosynthetic membrane.
Collapse
Affiliation(s)
- David Bina
- Biology Centre of AVCR, v.v.i, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
10
|
From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Şener MK, Olsen JD, Hunter CN, Schulten K. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci U S A 2007; 104:15723-8. [PMID: 17895378 PMCID: PMC2000399 DOI: 10.1073/pnas.0706861104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll-protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, approximately 70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC-LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC-LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC-LH1 dimer arrays.
Collapse
Affiliation(s)
- Melih K. Şener
- *Beckman Institute and
- Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, NY 10021; and
- To whom correspondence may be addressed. E-mail: or
| | - John D. Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Klaus Schulten
- *Beckman Institute and
- Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
12
|
Kiang NY, Siefert J, Blankenship RE. Spectral signatures of photosynthesis. I. Review of Earth organisms. ASTROBIOLOGY 2007; 7:222-51. [PMID: 17407409 DOI: 10.1089/ast.2006.0105] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem II with the peak surface incident photon flux density at approximately 685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.
Collapse
Affiliation(s)
- Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York 10025, USA.
| | | | | |
Collapse
|
13
|
Prakash S, Alia, Gast P, Jeschke G, de Groot HJ, Matysik J. Photochemically induced dynamic nuclear polarisation in entire bacterial photosynthetic units observed by 13C magic-angle spinning NMR. J Mol Struct 2003. [DOI: 10.1016/j.molstruc.2003.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Katiliene Z, Katilius E, Woodbury NW. Energy trapping and detrapping in reaction center mutants from Rhodobacter sphaeroides. Biophys J 2003; 84:3240-51. [PMID: 12719253 PMCID: PMC1302884 DOI: 10.1016/s0006-3495(03)70048-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved fluorescence of chromatophores isolated from strains of Rhodobacter sphaeroides containing light harvesting complex I (LHI) and reaction center (RC) (no light harvesting complex II) was measured at several temperatures between 295 K and 10 K. Measurements were performed to investigate energy trapping from LHI to the RC in RC mutants that have a P/P(+) midpoint potential either above or below wild-type (WT). Six different strains were investigated: WT + LHI, four mutants with altered RC P/P(+) midpoint potentials, and an LHI-only strain. In the mutants with the highest P/P(+) midpoint potentials, the electron transfer rate decreases significantly, and at low temperatures it is possible to directly observe energy transfer from LHI to the RC by detecting the fluorescence kinetics from both complexes. In all mutants, fluorescence kinetics are multiexponential. To explain this, RC + LHI fluorescence kinetics were analyzed using target analysis in which specific kinetic models were compared. The kinetics at all temperatures can be well described with a model which accounts for the energy transfer between LHI and the RC and also includes the relaxation of the charge separated state P(+)H(A)(-), created in the RC as a result of the primary charge separation.
Collapse
Affiliation(s)
- Zivile Katiliene
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.
| | | | | |
Collapse
|