1
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Dufourc EJ. Bicelles and nanodiscs for biophysical chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183478. [PMID: 32971065 DOI: 10.1016/j.bbamem.2020.183478] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023]
Abstract
Membrane nanoobjects are very important tools to study biomembrane properties. Two types are described herein: Bicelles and Nanodiscs. Bicelles are obtained by thorough water mixing of long chain and short chain lipids and may take the form of membranous discs of 10-50 nm. Temperature-composition-hydration diagrams have been established for Phosphatidylcholines and show limited domains of existence. Bicelles can be doped with charged lipids, surfactants or with cholesterol and offer a wide variety of membranous platforms for structural biology. Internal dynamics as measured by solid-state NMR is very similar to that of liposomes in their fluid phase. Because of the magnetic susceptibility anisotropy of the lipid chains, discs may be aligned along or perpendicular to the magnetic field. They may serve as weak orienting media to provide distance information in determining the 3D structure of soluble proteins. In different conditions they show strong orienting properties which may be used to study the 3D structure, topology and dynamics of membrane proteins. Lipid Bicelles with biphenyl chains or doped with lanthanides show long lasting remnant orientation after removing the magnetic field due to smectic-like properties. An alternative to pure lipid Bicelles is provided by nanodiscs where the half torus composed by short chain lipids is replaced by proteins. This renders the nano-objects less fragile as they can be used to stabilize membrane protein assemblies to be studied by electron microscopy. Internal dynamics is again similar to liposomes except that the phase transition is abolished, possibly due to lateral constrain imposed by the toroidal proteins limiting the disc size. Advantages and drawbacks of both nanoplatforms are discussed.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institute of Chemistry and Biology of membranes and Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Allée Geoffroy Saint Hilaire, 33600 Pessac, France.
| |
Collapse
|
3
|
Lo YJ, Pan YH, Lin CY, Chang WJ, Huang HM. Static Magnetic Field Increases Survival Rate of Thawed RBCs Frozen in DMSO-Free Solution. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0195-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Knight C, Rahmani A, Morrow MR. Effect of an Anionic Lipid on the Barotropic Behavior of a Ternary Bicellar Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10259-10267. [PMID: 27648612 DOI: 10.1021/acs.langmuir.6b02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dispersions of lipid mixtures comprising long- and short-chain phospholipids (bicellar mixtures) can form small isotropically reorienting particles (bilayered micelles), magnetically orientable stuctures, or unorientable lamellar structures. Application of hydrostatic pressure can also induce interdigitation of the long-chain lipid components. In this work, variable-pressure 2H NMR was used to study the effect of head group charge on the barotropic behavior of bicellar mixtures. Observations at pressures up to 152 MPa and temperatures up to 64 °C were combined with earlier observations at lower pressure and lower temperature to obtain a pressure-temperature phase diagram for DMPC-d54/DMPG/DHPC (3:1:1). In this phase diagram, a region corresponding to small, isotropically reorienting particles at lower temperature and higher pressure is separated from a region corresponding to unorientable lamellar organization, at higher temperature and lower pressure, by a band in which the magnetically orientable phase is stable below ∼100 MPa and in which an interdigitated gel phase is stable above ∼120 MPa. From ∼46 to ∼52 °C, the dispersion transforms directly from the unorientable lamellar to isotropically reorienting particle phases upon isothermal pressurization. The extent to which this behavior reflects the presence of anionic lipid in the long-chain fraction of this mixture is illustrated by comparison with spectral series obtained during isothermal pressurization of DMPC-d54/DHPC (4:1) and DMPC-d54/DMPG/DHPC (2.7:1.3:1) at selected temperatures. These observations show how electrostatic interactions at a bilayer surface can affect the balance between hydrophobic and hydrophilic interactions that is reflected by a dispersion's barotropic phase behavior.
Collapse
Affiliation(s)
- Collin Knight
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Ashkan Rahmani
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| |
Collapse
|
5
|
Martin RW, Kelly JE, Collier KA. Spatial reorientation experiments for NMR of solids and partially oriented liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:92-122. [PMID: 26592947 PMCID: PMC6936739 DOI: 10.1016/j.pnmrs.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Kelsey A Collier
- Department of Physics and Astronomy, University of California, Irvine 92697-4575, United States
| |
Collapse
|
6
|
|
7
|
Wallace M, Cardoso AZ, Frith WJ, Iggo JA, Adams DJ. Magnetically aligned supramolecular hydrogels. Chemistry 2014; 20:16484-7. [PMID: 25345918 PMCID: PMC4497324 DOI: 10.1002/chem.201405500] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 01/30/2023]
Abstract
The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2 , it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key.
Collapse
Affiliation(s)
- Matthew Wallace
- Department of Chemistry, University of LiverpoolCrown Street, Liverpool, L69 7ZD (UK)
| | - Andre Zamith Cardoso
- Department of Chemistry, University of LiverpoolCrown Street, Liverpool, L69 7ZD (UK)
| | - William J Frith
- Unilever R&D Colworth, Colworth Science ParkSharnbrook, Bedfordshire, MK44 1 LQ (UK)
| | - Jonathan A Iggo
- Department of Chemistry, University of LiverpoolCrown Street, Liverpool, L69 7ZD (UK)
| | - Dave J Adams
- Department of Chemistry, University of LiverpoolCrown Street, Liverpool, L69 7ZD (UK)
| |
Collapse
|
8
|
Lin SL, Chang WJ, Lin CY, Hsieh SC, Lee SY, Fan KH, Lin CT, Huang HM. Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation. Electromagn Biol Med 2014; 34:302-8. [PMID: 24856869 DOI: 10.3109/15368378.2014.919588] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful and efficient cryopreservation of living cells and organs is a key clinical application of regenerative medicine. Recently, magnetic cryopreservation has been reported for intact tooth banking and cryopreservation of dental tissue. The aim of this study was to assess the cryoprotective effects of static magnetic fields (SMFs) on human dental pulp stem cells (DPSCs) during cryopreservation. Human DPSCs isolated from extracted teeth were frozen with a 0.4-T or 0.8-T SMF and then stored at -196 °C for 24 h. During freezing, the cells were suspended in freezing media containing with 0, 3 or 10% DMSO. After thawing, the changes in survival rate of the DPSCs were determined by flow cytometry. To understand the possible cryoprotective mechanisms of the SMF, the membrane fluidity of SMF-exposed DPSCs was tested. The results showed that when the freezing medium was DMSO-free, the survival rates of the thawed DPSCs increased 2- or 2.5-fold when the cells were exposed to 0.4-T or 0.8-T SMFs, respectively (p < 0.01). In addition, after exposure to the 0.4-T SMF, the fluorescence anisotropy of the DPSCs increased significantly (p < 0.01) in the hydrophilic region. These results show that SMF exposure improved DMSO-free cryopreservation. This phenomenon may be due to the improvement of membrane stability for resisting damage caused by ice crystals during the freezing procedure.
Collapse
Affiliation(s)
- Shu-Li Lin
- a Dental Department , Cathay General Hospital , Taipei , Taiwan
| | - Wei-Jen Chang
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Chun-Yen Lin
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Sung-Chih Hsieh
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Sheng-Yang Lee
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Kang-Hsin Fan
- c Dental Department , En-Chu-Kong Hospital , Taipei , Taiwan , and
| | - Che-Tong Lin
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Haw-Ming Huang
- d Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
9
|
Zahedi Y, Zaun G, Maderwald S, Orzada S, Pütter C, Scherag A, Winterhager E, Ladd ME, Grümmer R. Impact of repetitive exposure to strong static magnetic fields on pregnancy and embryonic development of mice. J Magn Reson Imaging 2013; 39:691-9. [PMID: 24123601 DOI: 10.1002/jmri.24209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/12/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate possible risks of strong static magnetic fields for embryo implantation, gestation, organogenesis, and embryonic development. MATERIALS AND METHODS Pregnant mice were exposed for 75 minutes daily during the entire course of pregnancy at the bore entrance, representing the position of medical staff, and at the isocenter, representing the position of patients, of a 1.5 T and a 7 T human MRI scanner. RESULTS No effect of static magnetic field strength was observed with regard to pregnancy rate, duration of pregnancy, litter size, still births, malformations, sex distribution, or postpartum death of offspring. During the first 8 weeks postnatal, mice exposed in utero to a magnetic field strength of 1.5 T or stronger showed a slight delay in weight gain and in time to eye opening compared to controls. CONCLUSION Daily exposure to strong magnetic fields during pregnancy had no deleterious effect on offspring; however, a developmental retardation could be observed postnatally with regard to weight gain and eye opening.
Collapse
Affiliation(s)
- Yasmin Zahedi
- Institute of Molecular Biology, University Hospital, University Duisburg-Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin CY, Wei PL, Chang WJ, Huang YK, Feng SW, Lin CT, Lee SY, Huang HM. Slow freezing coupled static magnetic field exposure enhances cryopreservative efficiency--a study on human erythrocytes. PLoS One 2013; 8:e58988. [PMID: 23520546 PMCID: PMC3592815 DOI: 10.1371/journal.pone.0058988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/09/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to assess the cryoprotective effect of static magnetic fields (SMFs) on human erythrocytes during the slow cooling procedure. Human erythrocytes suspended in 20% glycerol were slowly frozen with a 0.4-T or 0.8-T SMF and then moved to a -80°C freezer for 24 hr. The changes in survival rate, morphology, and metabolites of the thawed erythrocytes were examined. To understand possible cryoprotective mechanisms of SMF, membrane fluidity and dehydration stability of SMF-exposed erythrocytes were tested. For each test, sham-exposed erythrocytes were used as controls. Our results showed that freezing coupled with 0.4-T or 0.8-T SMFs significantly increased the relative survival ratios of the frozen-thawed erythrocytes by 10% and 20% (p<0.001), respectively. The SMFs had no effect on erythrocyte morphology and metabolite levels. However, membrane fluidity of the samples exposed to 0.8-T SMF decreased significantly (p<0.05) in the hydrophobic regions. For the dehydration stability experiments, the samples exposed to 0.8-T SMF exhibited significantly lower (p<0.05) hemolysis. These results demonstrate that a 0.8-T SMF decreases membrane fluidity and enhances erythrocyte membrane stability to resist dehydration damage caused by slow cooling procedures.
Collapse
Affiliation(s)
- Chun-Yen Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kai Huang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (SL); (HH)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (SL); (HH)
| |
Collapse
|
11
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
12
|
Lin CY, Chang WJ, Lee SY, Feng SW, Lin CT, Fan KS, Huang HM. Influence of a static magnetic field on the slow freezing of human erythrocytes. Int J Radiat Biol 2012; 89:51-6. [PMID: 22862742 DOI: 10.3109/09553002.2012.717731] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study was to test whether or not a strong static magnetic field (SMF) had a positive effect on the survival rate of frozen erythrocytes. MATERIALS AND METHODS Human erythrocytes were slow freezing at a rate of -1°C/min, to a final temperature of -20°C. During the freezing process, the cells were simultaneously exposed to an SMF with a magnetic induction of 0.2 or 0.4 T. After the cells were thawed, the survival rate, morphology, and function of the thawed erythrocytes were evaluated. Furthermore, tests of membrane fluidity were performed to assess the effect of the SMF on the cell membrane. RESULTS The slow freezing process coupled with an SMF increased the survival rate of frozen erythrocytes, without any negative effect on the cell morphology or function. The increases in relative survival rates of frozen erythrocytes were 5.7% and 9.1% when the cells were frozen in 0.2 T and 0.4 T groups, respectively. In addition, the 0.4 T group significantly increased the membrane rigidity of the erythrocytes. CONCLUSIONS Slow freezing coupled with a strong SMF produced positive effects on the survival rate of thawed erythrocytes, without changing their normal function.
Collapse
Affiliation(s)
- Chun-Yen Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Hoyer C, Vogt MA, Richter SH, Zaun G, Zahedi Y, Maderwald S, Ladd ME, Winterhager E, Grümmer R, Gass P. Repetitive exposure to a 7 Tesla static magnetic field of mice in utero does not cause alterations in basal emotional and cognitive behavior in adulthood. Reprod Toxicol 2012; 34:86-92. [DOI: 10.1016/j.reprotox.2012.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/10/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
14
|
Nieh MP, Dolinar P, Kučerka N, Kline SR, Debeer-Schmitt LM, Littrell KC, Katsaras J. Formation of kinetically trapped nanoscopic unilamellar vesicles from metastable nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14308-14316. [PMID: 21951150 DOI: 10.1021/la2023314] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Zwitterionic long-chain lipids (e.g., dimyristoyl phosphatidylcholine, DMPC) spontaneously form onion-like, thermodynamically stable structures in aqueous solutions (commonly known as multilamellar vesicles, or MLVs). It has also been reported that the addition of zwitterionic short-chain (i.e., dihexanoyl phosphatidylcholine, DHPC) and charged long-chain (i.e., dimyristoyl phosphatidylglycerol, DMPG) lipids to zwitterionic long-chain lipid solutions results in the formation of unilamellar vesicles (ULVs). Here, we report a kinetic study on lipid mixtures composed of DMPC, DHPC, and DMPG. Two membrane charge densities (i.e., [DMPG]/[DMPC] = 0.01 and 0.001) and two solution salinities (i.e., [NaCl] = 0 and 0.2 M) are investigated. Upon dilution of the high-concentration samples at 50 °C, thermodynamically stable MLVs are formed, in the case of both weakly charged and high salinity solution mixtures, implying that the electrostatic interactions between bilayers are insufficient to cause MLVs to unbind. Importantly, in the case of these samples small angle neutron scattering (SANS) data show that, initially, nanodiscs (also known as bicelles) or bilayered ribbons form at low temperatures (i.e., 10 °C), but transform into uniform size, nanoscopic ULVs after incubation at 10 °C for 20 h, indicating that the nanodisc is a metastable structure. The instability of nanodiscs may be attributed to low membrane rigidity due to a reduced charge density and high salinity. Moreover, the uniform-sized ULVs persist even after being heated to 50 °C, where thermodynamically stable MLVs are observed. This result clearly demonstrates that these ULVs are kinetically trapped, and that the mechanical properties (e.g., bending rigidity) of 10 °C nanodiscs favor the formation of nanoscopic ULVs over that of MLVs. From a practical point of view, this method of forming uniform-sized ULVs may lend itself to their mass production, thus making them economically feasible for medical applications that depend on monodisperse lipid-based systems for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Mu-Ping Nieh
- Department of Chemical, Materials & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ujwal R, Bowie JU. Crystallizing membrane proteins using lipidic bicelles. Methods 2011; 55:337-41. [PMID: 21982781 PMCID: PMC3264687 DOI: 10.1016/j.ymeth.2011.09.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022] Open
Abstract
Crystallization of membrane proteins remains a significant challenge. For proteins resistant to the traditional approach of directly crystallizing from detergents, lipidic phase crystallization can be a powerful tool. Bicelles are an excellent medium for crystallizing membrane proteins in a lipidic environment. They can be described as bilayer discs formed by the mixture of a long-chain phospholipid and an amphiphile in an aqueous medium. Membrane proteins can be readily reconstituted into bicelles, where they are maintained in a native-like bilayer environment. Importantly, membrane proteins have been shown to be fully functional in bicelles under physiological conditions. Protein-bicelle mixtures can be manipulated with almost the same ease as detergent-solubilized membrane proteins, making bicelles compatible with standard equipment including high-throughput crystallization robots. A number of membrane proteins have now been successfully crystallized using the bicelle method, including bacteriorhodopsin, β2 adrenergic receptor, voltage-dependent anion channel, xanthorhodopsin and rhomboid protease. Because of the success with a variety of membrane proteins and the ease of implementation, bicelles should be a part of every membrane protein crystallographer's arsenal.
Collapse
Affiliation(s)
- Rachna Ujwal
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1570
| | - James U. Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1570
| |
Collapse
|
16
|
Structural Versatility of Bicellar Systems and Their Possibilities as Colloidal Carriers. Pharmaceutics 2011; 3:636-64. [PMID: 24310601 PMCID: PMC3857087 DOI: 10.3390/pharmaceutics3030636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/21/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueous solution. The morphological transitions of bicellar aggregates due to temperature, composition and time variations have been revised in this work. To this end, two bicellar systems have been considered; one formed by dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC) and another formed by dipalmitoyl-phosphatidylcholine (DPPC) and DHPC. The relationship between the magnetic alignment, the morphology of the aggregates and the phase transition temperature (Tm) of lipids is discussed. In general terms, the non-alignable samples present rounded objects at temperature below the Tm. Above this temperature, an increase of viscosity is followed by the formation of large elongated aggregates. Alignable samples presented discoidal objects below the Tm. The best alignment was achieved above this temperature with large areas of lamellar stacked bilayers and some multilamellar vesicles. The effect of the inclusion of ceramides with different chain lengths in the structure of bicelles is also revised in the present article. A number of physical techniques show that the bicellar structures are affected by both the concentration and the type of ceramide. Systems are able to incorporate 10% mol of ceramides that probably are organized forming domains. The addition of 20% mol of ceramides promotes destabilization of bicelles, promoting the formation of mixed systems that include large structures. Bicellar systems have demonstrated to be morphologically stable with time, able to encapsulate different actives and to induce specific effects on the skin. These facts make bicellar systems good candidates as colloidal carriers for dermal delivery. However, water dilution induces structural changes and formation of vesicular structures in the systems; stabilization strategies have been been explored in recent works and are also updated here.
Collapse
|
17
|
Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1957-74. [DOI: 10.1016/j.bbamem.2011.03.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
|
18
|
Chu S, Maltsev S, Emwas AH, Lorigan GA. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:89-94. [PMID: 20851650 PMCID: PMC2978330 DOI: 10.1016/j.jmr.2010.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 05/20/2023]
Abstract
A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T₁) times of ³¹P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The ³¹P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τ(c), the r⁻⁶-weighted, time-averaged distances between the spin-labels and the ³¹P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - A-H Emwas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| |
Collapse
|
19
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| |
Collapse
|
20
|
Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grélard A, Opella SJ, Marassi FM, Dufourc EJ. Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes. Biochimie 2009; 91:744-51. [PMID: 19248817 PMCID: PMC2899883 DOI: 10.1016/j.biochi.2009.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Major biological processes occur at the biological membrane. One of the great challenges is to understand the function of chemical or biological molecules inside the membrane; as well of those involved in membrane trafficking. This requires obtaining a complete picture of the in situ structure and dynamics as well as the topology and orientation of these molecules in the membrane lipid bilayer. These led to the creation of several innovative models of biological membranes in order to investigate the structure and dynamics of amphiphilic molecules, as well as integral membrane proteins having single or multiple transmembrane segments. Because the determination of the structure, dynamics and topology of molecules in membranes requires a macroscopic alignment of the system, a new membrane model called 'bicelles' that represents a crossover between lipid vesicles and classical micelles has become very popular due to its property of spontaneous self-orientation in magnetic fields. In addition, crucial factors involved in mimicking natural membranes, such as sample hydration, pH and salinity limits, are easy to control in bicelle systems. Bicelles are composed of mixtures of long chain (14-18 carbons) and short chain phospholipids (6-8 carbons) hydrated up to 98% with buffers and may adopt various morphologies depending on lipid composition, temperature and hydration. We have been developing bicelle systems under the form of nano-discs made of lipids with saturated or biphenyl-containing fatty acyl chains. Depending on the lipid nature, these membranous nano-discs may be macroscopically oriented with their normal perpendicular or parallel to the magnetic field, providing a natural 'molecular goniometer' for structural and topological studies, especially in the field of NMR. Bicelles can also be spun at the magic angle and lead to the 3D structural determination of molecules in membranes.
Collapse
Affiliation(s)
- Anna Diller
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Cécile Loudet
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Gérard Raffard
- RMSB UMR 5536, CNRS, Université Bordeaux, Bordeaux, France
| | - Sylvie Fournier
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Michel Laguerre
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Axelle Grélard
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | - Erick J. Dufourc
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
21
|
Faham S, Ujwal R, Abramson J, Bowie JU. Chapter 5 Practical Aspects of Membrane Proteins Crystallization in Bicelles. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Barbosa-Barros L, de la Maza A, Estelrich J, Linares AM, Feliz M, Walther P, Pons R, López O. Penetration and growth of DPPC/DHPC bicelles inside the stratum corneum of the skin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5700-5706. [PMID: 18471002 DOI: 10.1021/la703732h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of dipalmitoyl phosphatidylcholine (DPPC)/dihexanoyl phosphatidylcholine (DHPC) bicelles on the microstructure of pig stratum corneum (SC) in vitro was evaluated. The physicochemical characterization of these nanoaggregates revealed small disks with diameters around 15 nm and a thickness of 5.4 nm. Upon dilution, the bicelles grow and transform into vesicles. Cryogenic scanning electron microscopy (cryo-SEM) images of the SC pieces treated with this system showed vesicles of about 200 nm and lamellar-like structures in the intercellular lipid areas. These vesicles probably resulted from the growth and molecular rearrangement of the DPPC/DHPC bicelles after penetrating the SC. The presence of lamellar-like structures is ascribed to the interaction of the lipids from bicelles with the SC lipids. The bicellar system used is suitable to penetrate the skin SC and to reinforce the intercellular lipid areas, constituting a promising tool for skin applications.
Collapse
Affiliation(s)
- L Barbosa-Barros
- Departamento de Tecnología de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona, Consejo Superior de Investigaciones Científicas, Calle Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kajiya K, Kumazawa S, Naito A, Nakayama T. Solid-state NMR analysis of the orientation and dynamics of epigallocatechin gallate, a green tea polyphenol, incorporated into lipid bilayers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:174-177. [PMID: 18098154 DOI: 10.1002/mrc.2157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Catechins are the principle polyphenolic compounds in green tea; the four major compounds identified are epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg). Tea catechins tend to attach externally to their targets, such as viral envelopes, cell membranes, or the surface of low-density lipoproteins. In order to further our understanding of the molecular mobility of these compounds in cells, we examined the interaction of tea catechins with lipid membranes using solid-state NMR techniques. Our previous work indicated that the EGCg molecule is incorporated into lipid bilayers in a unique orientation. However, the detailed configuration, orientation, and dynamics of EGCg in lipid bilayers have not been well-characterized. Here, we investigated the orientation and dynamics of EGCg incorporated into multi-lamellar vesicles (MLVs) and bicelles using solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Katsuko Kajiya
- Department of Molecular Physiology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | | | | | | |
Collapse
|
24
|
Tiburu EK, Bass CE, Struppe JO, Lorigan GA, Avraham S, Avraham HK. Structural divergence among cannabinoids influences membrane dynamics: A 2H Solid-State NMR analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2049-59. [PMID: 17555706 DOI: 10.1016/j.bbamem.2007.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 04/14/2007] [Accepted: 04/24/2007] [Indexed: 11/16/2022]
Abstract
Cannabinoids are compounds that can modulate neuronal functions and immune responses via their activity at the CB(1) receptor. We used (2)H NMR order parameters and relaxation rate determination to delineate the behavior of magnetically aligned phospholipid bilayers in the presence of several structurally distinct cannabinoid ligands. THC (Delta(9)-Tetrahydrocannabinol) and WIN-55,212-2 were found to lower the phase transition temperature of the DMPC and to destabilize their acyl chains leading to a lower average S(CD) ( approximately 0.13), while methanandamide and CP-55,940 exhibited unusual properties within the lipid bilayer resulting in a greater average S(CD) ( approximately 0.14) at the top of the phospholipid upper chain. The CB(1) antagonist AM281 had average S(CD) values that were higher than the pure DMPC lipids, indicating a stabilization of the lipid bilayer. R(1Z) versus |S(CD)|(2) plots indicated that the membrane fluidity is increased in the presence of THC and WIN-55,212-2. The interaction of CP-55,940 with a variety of zwitterionic and charged membranes was also assessed. The unusual effect of CP-55,940 was present only in bicelles composed of DMPC. These studies strongly suggest that cannabinoid action on the membrane depends upon membrane composition as well as the structure of the cannabinoid ligands.
Collapse
Affiliation(s)
- Elvis K Tiburu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Loudet C, Khemtémourian L, Aussenac F, Gineste S, Achard MF, Dufourc EJ. Bicelle membranes and their use for hydrophobic peptide studies by circular dichroism and solid state NMR. Biochim Biophys Acta Gen Subj 2005; 1724:315-23. [PMID: 15961233 DOI: 10.1016/j.bbagen.2005.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/23/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Mixtures of dicaproyl- (DC), dimyristoyl- (DM) and 1-tetradecanoyl-2-biphenylbutanoyl-(TBB) phosphatidylcholine (PC) in water produce bicelle membranes that are oriented by magnetic fields. DMPC/DCPC systems orient such that their membrane plane is parallel to the magnetic field, whereas for TBBPC/DCPC, the plane is perpendicular to the field. Partial temperature-composition-hydration diagrams are established using solid-state 31P-NMR. DMPC/DCPC bicelles exist on a large range of composition but on a narrow temperature domain (25-45 degrees C). At converse, TBBPC/DCPC form bicelles on a narrow compositional range but over a large temperature span (10-70 degrees C). The TBBPC/DCPC bicelles are shown to be a very powerful potential tool to study the orientation of hydrophobic helices in membranes using wide line 15N-NMR. The DMPC/DCPC system that undergoes a micelle-to-bicelle transition on going from 10 degrees C to 40 degrees C may be used with circular dichroism to study the state of association of hydrophobic helices within the membrane. Results suggest that the transmembrane fragment of the neu/erbB-2 receptor is monomeric in micellar medium and dimeric/multimeric in bicelle membranes.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR5144 MOBIOS, CNRS-UBx1, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | | | | | | | | | | |
Collapse
|
26
|
Dave PC, Nusair NA, Inbaraj JJ, Lorigan GA. Electron paramagnetic resonance studies of magnetically aligned phospholipid bilayers utilizing a phospholipid spin label: The effect of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:141-51. [PMID: 16061199 DOI: 10.1016/j.bbamem.2005.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 11/16/2022]
Abstract
X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056, USA
| | | | | | | |
Collapse
|
27
|
Nusair NA, Lorigan GA. Investigating the structural and dynamic properties of n-doxylstearic acid in magnetically-aligned phospholipid bilayers by X-band EPR spectroscopy. Chem Phys Lipids 2005; 133:151-64. [PMID: 15642584 DOI: 10.1016/j.chemphyslip.2004.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/20/2022]
Abstract
X-band electron paramagnetic resonance (EPR) spectroscopy has been employed to investigate the dynamic properties of magnetically-aligned phospholipid bilayers (bicelles) based on the molecular order parameters (S(mol)), the hyperfine splitting values and the line shapes of the EPR spectra. For the first time, a series of EPR spectra of n-doxylstearic acid spin-labels (n = 5, 7, 12, and 16) incorporated into Tm3+-doped parallel-aligned, Dy3+-doped perpendicular-aligned, and randomly dispersed 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DMPC/DHPC) bicelles with respect to the direction of the static magnetic field have been investigated as a function of cholesterol content and temperature variation to characterize the orientational aspects along the hydrocarbon acyl chains. Important general observations are that under conditions for which the bicelle is poised in the liquid crystalline phase, the degree of ordering decreases as the nitroxide moiety is transferred toward the end of the stearic acid acyl chains. The addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC phospholipid bilayers and increases the chain order. However, increasing the temperature of the bicelle system decreases the chain order. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other biological and model membrane systems. The results indicate that magnetically-aligned phospholipid bilayers are an excellent model membrane system.
Collapse
Affiliation(s)
- Nisreen A Nusair
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
28
|
Inbaraj JJ, Nusair NA, Lorigan GA. Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at Q-band (35 GHz): optimization and comparison with X-band (9 GHz). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 171:71-79. [PMID: 15504684 DOI: 10.1016/j.jmr.2004.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/30/2004] [Indexed: 05/24/2023]
Abstract
This paper presents the improvement and advantages of investigating magnetically aligned phospholipid bilayers (bicelles) utilizing electron paramagnetic resonance (EPR) spectroscopy at a microwave frequency of 35 GHz (Q-band) and at a high magnetic field strength of 1.25 T when compared to weaker magnetic fields for X-band EPR studies. The nitroxide spin label 3beta-doxyl-5alpha-cholestane (cholestane or CLS) was inserted into the bicelles and utilized to demonstrate the effects of macroscopic bilayer alignment through the measurement of orientational dependent hyperfine splittings. The effects of different lanthanide ions with varying degree of magnetic susceptibility anisotropy were examined. The requirement of minimal amounts of the Tm3+ and Dy3+ lanthanide ions for well-aligned bicelles were examined for Q-band and compared with amounts required for X-band bicelle alignment studies. At a magnetic field of 1.25 T (when compared to 0.63 T at X-band), the perpendicular and parallel orientation were aligned with lower concentrations of Dy3+ and Tm3+, respectively, and thereby eliminating/minimizing the unwanted effects associated with lanthanide-protein interactions. Thus, it is much easier to magnetically align phospholipid bilayers at Q-band when compared to X-band.
Collapse
Affiliation(s)
- Johnson J Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
29
|
Minto RE, Adhikari PR, Lorigan GA. A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing cholesterol and polyunsaturated phosphatidylcholine. Chem Phys Lipids 2004; 132:55-64. [PMID: 15530448 DOI: 10.1016/j.chemphyslip.2004.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deuterium solid-state NMR spectroscopy was used to qualitatively study the effects of both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLiPC) and cholesterol on magnetically aligned phospholipid bilayers (bicelles) as a function of temperature utilizing the chain-perdeuterated probe 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC-d54) in DMPC/dihexanoylPC (DHPC) phospholipid bilayers. The results demonstrate that polyunsaturated PC and cholesterol were successfully incorporated into DMPC/DHPC phospholipid bilayers, leading to a bicelle that will be useful for investigations of eukaryotic membrane protein-lipid interactions. The data indicate that polyunsaturated PC increases membrane fluidity and decreases the minimum magnetic alignment temperature for DMPC/DHPC bicelles. Conversely, the introduction of cholesterol into aligned DMPC/DHPC bilayers decreases fluidity in the membrane and increases the minimum temperature necessary to magnetically align the phospholipid bilayers. Finally, the addition of Tm3+ to magnetically aligned DMPC/DMPC-d54/PLiPC/DHPC bilayers doubles the quadrupolar splittings, indicating that this unique bicelle system can be aligned with the bilayer normal parallel to the static magnetic field.
Collapse
Affiliation(s)
- Robert E Minto
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
30
|
Nusair NA, Tiburu EK, Dave PC, Lorigan GA. Investigating fatty acids inserted into magnetically aligned phospholipid bilayers using EPR and solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:228-237. [PMID: 15140432 DOI: 10.1016/j.jmr.2004.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/05/2004] [Indexed: 05/24/2023]
Abstract
This is the first time (2)H solid-state NMR spectroscopy and spin-labeled EPR spectroscopy have been utilized to probe the structural orientation and dynamics of a stearic acid incorporated into magnetically aligned phospholipid bilayers or bicelles. The data gleaned from the two different techniques provide a more complete description of the bilayer membrane system. Both methods provided similar qualitative information on the phospholipid bilayer, high order, and low motion for the hydrocarbon segment close to the carboxyl groups of the stearic acid and less order and more rapid motion at the end towards the terminal methyl groups. However, the segmental order parameters differed markedly due to the different orientations that the nitroxide and C-D bond axes transform with the various stearic acid acyl chain conformations, and because of the difference in dynamic sensitivity between NMR and EPR over the timescales examined. 5-, 7-, 12-, and 16-doxylstearic acids spin-labels were used in the EPR experiments and stearic acid-d(35) was used in the solid-state NMR experiments. The influence of the addition of cholesterol and the variation of temperature on the fatty acid hydrocarbon chain ordering in the DMPC/DHPC phospholipid bilayers was also studied. Cholesterol increased the degree of ordering of the hydrocarbon chains. Conversely, as the temperature of the magnetically aligned phospholipid bilayers increased, the order parameters decreased due to the higher random motion of the acyl chain of the stearic acid. The results indicate that magnetically aligned phospholipid bilayers are an excellent model membrane system and can be used for both NMR and EPR studies.
Collapse
Affiliation(s)
- Nisreen A Nusair
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
31
|
Lu JX, Caporini MA, Lorigan GA. The effects of cholesterol on magnetically aligned phospholipid bilayers: a solid-state NMR and EPR spectroscopy study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:18-30. [PMID: 15082245 DOI: 10.1016/j.jmr.2004.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/20/2004] [Indexed: 05/24/2023]
Abstract
This paper presents the first time that both solid-state NMR spectroscopy and EPR spectroscopy are used to study the effects of cholesterol on magnetically aligned phospholipid bilayers (bicelles). Solid-state deuterium NMR spectroscopy was carried out using both chain perdeuterated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC-d(54)) and a partially deuterated beta-[2,2,3,4,4,6-(2)H(6)]cholesterol (cholesterol-d(6)). Also, EPR spectroscopy was carried out utilizing a 3 beta-doxyl-5 alpha-cholestane (cholestane) spin probe incorporated into magnetically aligned bilayers to provide a more complete picture about the ordering and dynamics of the phospholipid and cholesterol molecules in the bicelle membrane system. The results demonstrate that cholesterol was successfully incorporated into the phospholipid bilayers. The molecular order parameters extracted directly from the (2)H NMR spectra of both DMPC-d(54) and cholesterol-d(6) were compared to that from the EPR study of cholestane. The order parameters indicate that the sterol was motionally restricted, and that the DMPC had high order and low motion for the hydrocarbon segments close to the head groups of the phospholipids and less order and more rapid motion toward the terminal methyl groups. Both methods clearly indicate an overall increase in the degree of ordering of the molecules in the presence of cholesterol and a decrease in the degree of ordering at higher temperatures. However, EPR spectroscopy and (2)H NMR spectroscopy exhibit different degrees of sensitivity in detecting the phospholipid molecular motions in the membrane. Finally, cholesterol increases the minimum alignment temperature necessary to magnetically align the phospholipid bilayers.
Collapse
Affiliation(s)
- Jun-Xia Lu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
32
|
Dave PC, Tiburu EK, Nusair NA, Lorigan GA. Calculating order parameter profiles utilizing magnetically aligned phospholipid bilayers for 2H solid-state NMR studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2003; 24:137-149. [PMID: 12943910 DOI: 10.1016/s0926-2040(03)00052-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Solid-state deuterium NMR spectroscopy was used to study the structural and dynamic properties of stearic acid-d(35) in magnetically aligned phospholipid bilayers as a function of temperature. Magnetically aligned phospholipid bilayers or bicelles are model systems, which mimic biological membranes for magnetic resonance studies. Paramagnetic lanthanide ions (Yb(3+)) were added to align the bicelles such that the bilayer normal is colinear with the direction of the static magnetic field. The corresponding order parameters of the stearic acid-d(35) probe were calculated and compared with values obtained from unoriented samples in the literature. The addition of cholesterol to the bicelle system decreases the fluidity of the phospholipid bilayers and increases the ordering of the acyl chains of stearic acid-d(35). This study demonstrates the feasibility of utilizing magnetically aligned bicelles for calculating 2H order parameter profiles for non-biological systems such as polymer-grafted membranes and Schiff's base complexes.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
33
|
Marcotte I, Dufourc EJ, Ouellet M, Auger M. Interaction of the neuropeptide met-enkephalin with zwitterionic and negatively charged bicelles as viewed by 31P and 2H solid-state NMR. Biophys J 2003; 85:328-39. [PMID: 12829487 PMCID: PMC1303088 DOI: 10.1016/s0006-3495(03)74477-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The interaction of the neuropeptide methionine-enkephalin (Menk) with bicelles was investigated by solid-state NMR. Bicelles composed of dimyristoylphosphatidylcholine (DMPC) and dicaproylphosphatidylcholine (DCPC) were modified to investigate the effect of the lipid headgroup and electrostatic charges on the association with Menk. A total of 10 mol % of DMPC was replaced by zwitterionic phosphatidylethanolamine (DMPE), anionic phosphatidylglycerol (DMPG), or phosphatidylserine (DMPS). The preparation of DMPE-doped bicelles (Bic/PE) is reported for the first time. The (31)P and (2)H NMR results revealed changes in the lipid dynamics when Menk interacts with the bicellar systems. (2)H NMR experiments showed a disordering effect of Menk on the lipid chains in all the bicelles except Bic/PG, whereas the study of the choline headgroups indicated a decreased order of the lipids only in Bic/PE and Bic/PG. Our results suggest that the insertion depth of Menk into bicelles is modulated by their composition, more specifically by the balance between hydrophobic and electrostatic interactions. Menk would be buried at the lipid polar/apolar interface, the depth of penetration into the hydrophobic membrane core following the scaling Bic > Bic/PE > Bic/PS at the slightly acidic pH used in this study. The peptide would not insert into the bilayer core of Bic/PG and would rather remain at the surface.
Collapse
Affiliation(s)
- Isabelle Marcotte
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
34
|
Cardon TB, Tiburu EK, Lorigan GA. Magnetically aligned phospholipid bilayers in weak magnetic fields: optimization, mechanism, and advantages for X-band EPR studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 161:77-90. [PMID: 12660114 DOI: 10.1016/s1090-7807(02)00109-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).
Collapse
Affiliation(s)
- Thomas B Cardon
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|