1
|
Jose L, Hwang A, Lee C, Shim K, Song JK, An SSA, Paik HJ. Nitrilotriacetic acid-end-functionalized polycaprolactone as a template for polymer–protein nanocarriers. Polym Chem 2020; 11:1580-1588. [DOI: 10.1039/c9py01663e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Doxorubicin loaded Nickel-complexed nitrilotriacetic acid-end-functionalized polycaprolactone based biocompatible polymer–protein hybrid nanocarriers were developed in a one-pot process.
Collapse
Affiliation(s)
- Leeja Jose
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| | - Aran Hwang
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| | - Chaeyeon Lee
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| | - KyuHwan Shim
- Research Center for Bio-Based Chemistry
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon
- Korea 34114
| | - Jae Kwang Song
- Research Center for Bio-Based Chemistry
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon
- Korea 34114
| | - Seong Soo A. An
- Department of Bionano Technology
- Gachon University
- Sungnam 13120
- Republic of Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| |
Collapse
|
2
|
Morphology Control of Ni(II)-NTA-End-Functionalized Block Copolymer and Bio-Conjugation through Metal-Ligand Complex. Polymers (Basel) 2017; 9:polym9040144. [PMID: 30970824 PMCID: PMC6432091 DOI: 10.3390/polym9040144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022] Open
Abstract
This study demonstrates the synthesis of an amphiphilic block copolymer, Ni2+-nitrilotiracetic acid-end-functionalized-poly(poly(ethylene glycol)methyl ether methacrylate)-block-polystyrene (NTA-p(PEGMA-b-St)), morphology control via their self-assembly behavior and reversible bioconjugation of hexahistidine-tagged green fluorescent protein (His₆-GFP) onto the surfaces of polymeric vesicles through nitrilotriacetic acid (NTA)-Ni2+-His interaction. First, the t-boc-protected-NTA-p(PEGMA-b-St) was synthesized by atom transfer radical polymerization. After the removal of the t-boc protecting group, the NTA group of the polymer was complexed with Ni2+. To induce self-assembly, water was added as a selective solvent to the solution of the copolymer in tetrahydrofuran (THF). Varying the water content of the solution resulted in various morphologies including spheres, lamellas and vesicles. Finally, polymeric vesicles decorated with green fluorescent protein (GFP) on their surfaces were prepared by the addition of His₆-GFP into the vesicles solution. Reversibility of the binding between vesicles and His₆-GFP was confirmed with a fluorescent microscope.
Collapse
|
3
|
Santafé AAM, Blum LJ, Marquette CA, Girard-Egrot AP. Chelating Langmuir-Blodgett film: a new versatile chemiluminescent sensing layer for biosensor applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2160-2166. [PMID: 20000740 DOI: 10.1021/la902652d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The present study reports the achievement of a new chemiluminescent sensing layer able to simultaneously (i) play an active role on ligand immobilization and (ii) serve as a catalyst in detection processes for label-free biosensor applications. This new type of active Langmuir-Blodgett (LB) monolayer has been designed by using a chelating lipid (Ni-NTA-DOGS). Thanks to the chelated metallic cation, this peculiar lipid exhibits luminol chemiluminescence catalysis properties in the presence of hydrogen peroxide. Upon biomolecule interaction through imidazole ring chelation (mediated by the metallic cation bound to the lipid headgroup), the chemiluminescent signal can be modulated. The first chemiluminescent signal acquisition experiments have shown a strong and homogeneous signal of the chelating layer. Upon histamine interactions, a histidine derivative used as a marker of fresh food quality, we succeeded in obtaining as a proof of concept a chemiluminescent signal variation without any derivatization of the target molecule. This signal variation was shown to be directly correlated to the histamine concentration with a limit of detection of 2 microg/mL.
Collapse
Affiliation(s)
- Aurélie A-M Santafé
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS, CPE Lyon, INSA de Lyon, UMR 5246, Université Lyon 1, Villeurbanne, F-69622, Lyon, France
| | | | | | | |
Collapse
|
4
|
Zhao C, Hellman LM, Zhan X, Bowman WS, Whiteheart SW, Fried MG. Hexahistidine-tag-specific optical probes for analyses of proteins and their interactions. Anal Biochem 2009; 399:237-45. [PMID: 20036207 DOI: 10.1016/j.ab.2009.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/18/2022]
Abstract
The hexahistidine (His(6))/nickel(II)-nitrilotriacetic acid (Ni(2+)-NTA) system is widely used for affinity purification of recombinant proteins. The NTA group has many other applications, including the attachment of chromophores, fluorophores, or nanogold to His(6) proteins. Here we explore several applications of the NTA derivative, (Ni(2+)-NTA)(2)-Cy3. This molecule binds our two model His(6) proteins, N-ethylmaleimide sensitive factor (NSF) and O(6)-alklyguanine-DNA alkyltransferase (AGT), with moderate affinity (K approximately 1.5 x 10(6) M(-1)) and no effect on their activity. Its high specificity makes (Ni(2+)-NTA)(2)-Cy3 ideal for detecting His(6) proteins in complex mixtures of other proteins, allowing (Ni(2+)-NTA)(2)-Cy3 to be used as a probe in crude cell extracts and as a His(6)-specific gel stain. (Ni(2+)-NTA)(2)-Cy3 binding is reversible in 10mM ethylenediaminetetraacetic acid (EDTA) or 500 mM imidazole, but in their absence it exchanges slowly (k(exchange) approximately 5 x 10(-6) s(-1) with 0.2 microM labeled protein in the presence of 1 microM His(6) peptide). Labeling with (Ni(2+)-NTA)(2)-Cy3 allows characterization of hydrodynamic properties by fluorescence anisotropy or analytical ultracentrifugation under conditions that prevent direct detection of protein (e.g., high ADP absorbance). In addition, fluorescence resonance energy transfer (FRET) between (Ni(2+)-NTA)(2)-Cy3-labeled proteins and suitable donors/acceptors provides a convenient assay for binding interactions and for measurements of donor-acceptor distances.
Collapse
Affiliation(s)
- Chunxia Zhao
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
5
|
Hamzah J, Altin JG, Herringson T, Parish CR, Hämmerling GJ, O'Donoghue H, Ganss R. Targeted liposomal delivery of TLR9 ligands activates spontaneous antitumor immunity in an autochthonous cancer model. THE JOURNAL OF IMMUNOLOGY 2009; 183:1091-8. [PMID: 19561111 DOI: 10.4049/jimmunol.0900736] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accessibility of tumors for highly effective local treatment represents a major challenge for anticancer therapy. Immunostimulatory oligodeoxynucleotides (ODN) with CpG motifs are ligands of TLR9, which prime spontaneous antitumor immunity, but are less effective when applied systemically. We therefore developed a liposome-based agent for selective delivery of CpG-ODN into the tumor environment. A peptide that specifically targets angiogenic endothelial cells in a transgenic tumor model for islet cell carcinogenesis was engrafted into CpG-ODN containing liposomes. Intravenous injection of these liposomes resulted in specific accumulation around tumor vessels, increased uptake by tumor-resident macrophages, and retention over time. In contrast, nontargeted liposomes did not localize to the tumor vasculature. Consequently, only vascular targeting of CpG-ODN liposomes provoked a marked inflammatory response at vessel walls with enhanced CD8(+) and CD4(+) T cell infiltration and, importantly, activation of spontaneous, tumor-specific cytotoxicity. In a therapeutic setting, 40% of tumor-bearing, transgenic mice survived beyond week 45 after systemic administration of vascular-directed CpG-ODN liposomes. In contrast, control mice survived up to 30 wk. Therapeutic efficacy was further improved by increasing the frequency of tumor-specific effector cells through adoptive transfers. NK cells and CD8(+) T cells were major effectors which induced tumor cell death and acted in conjunction with antivascular effects. Thus, tumor homing with CpG-ODN-loaded liposomes is as potent as direct injection of free CpG-ODN and has the potential to overcome some major limitations of conventional CpG-ODN monotherapy.
Collapse
Affiliation(s)
- Juliana Hamzah
- Western Australian Institute for Medical Research, University of Western Australia Centre for Medical Research, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Krzyzanski W, Wyska E. Pharmacokinetics and pharmacodynamics of erythropoietin receptor in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:637-45. [PMID: 18071675 DOI: 10.1007/s00210-007-0225-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 11/17/2007] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to apply the target-mediated drug disposition (TMDD) pharmacokinetic (PK) model to describe binding, internalization, and turnover of erythropoietin receptor (EPOR). This model allows one to determine from free drug (C) PK data not only parameters describing linear disposition of EPO such as the elimination rate constant (kel) and volume of distribution (Vc), but also the total receptor concentration (Rtot0), drug-receptor complex (RC) internalization rate constant (kint), as well as synthesis and degradation rate constants (ksyn and kdeg) for the receptor turnover. The previously published data on PK of recombinant EPO (rHuEPO) in humans and the results of EPOR binding studies were used for analysis. The estimated PK parameters were used to simulate time courses of free and bound EPOR after IV administration of clinically relevant rHuEPO doses. The estimates of kel=0.106 h(-1) and Vc=0.032 l/kg are consistent with reported in the literature values of rHuEPO linear disposition parameters. The determined value of Rtot0 was 66.35 pM and the half-life for EPOR degradation was 8.8 h. Computer simulations showed a very rapid binding phase in the EPOR time profile followed by a decline to a nadir, and a subsequent return to the baseline. The nadir values decreased with increasing doses and resulted in the maximum values of the bound fractions of the total EPOR in the ranges 33-99%. At the baseline conditions, only 3.1% of EPOR were occupied. The saturation of EPOR was correlated with the time C remained above the KD level. In conclusion, the time courses of serum rHuEPO concentrations contain information about internalization and turnover of EPOR. Kinetics of EPOR can be utilized to determine the relationship between the pharmacologic effect and exposure to rHuEPO.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | | |
Collapse
|
7
|
Pfeiffer I, Höök F. Quantification of oligonucleotide modifications of small unilamellar lipid vesicles. Anal Chem 2007; 78:7493-8. [PMID: 17073417 DOI: 10.1021/ac061280p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new method for quantification of the coupling efficiency between amphiphilic oligonucleotides and suspended small unilamellar lipid vesicles (SUVs). The method employs a supported (phospho)lipid bilayer (SLB)-modified sensor template, which upon exposure to a mixture of SUVs and amphiphilic DNA reacts neither with free SUVs nor with DNA-modified SUVs, but with free DNA only. Using calibration curves obtained by recording the concentration dependence of the initial binding rate of free amphiphilic DNA (in the absence of SUVs), it is demonstrated how concentration determinations of both free and bound DNA in the two-component mixture (amphiphilic DNA and lipid vesicles) can be obtained. The calibration curves and the binding analysis were obtained using a quartz crystal microbalance with dissipation (QCM-D) monitoring. The binding efficiency of DNA coupled to SUVs (Ø approximately 50 nm) with two cholesterol moieties revealed that the bivalent coupling is essentially 100% in the range of approximately 1 to approximately 35 oligonucleotides per vesicle, whereas reversible coupling was confirmed in the case of monovalent coupling. Coupling of DNA via two cholesterol moieties was obtained by prehybridization of two single-stranded DNA strands modified with single cholesterol moieties in their 3' and 5' ends, respectively, and the monovalent coupling was obtained using single-stranded DNA. In the latter case, the analysis of the amount of free DNA at different DNA-SUV ratios also allowed for a determination of the maximum number of available binding sites on the SUVs, shown to be in good agreement with data obtained for DNA coupling on planar surfaces. With the only requirement that the SLB-modified sensor template react with one of the components in the two-component mixture only, as verified through fingerprint analysis of frequency, f, and energy dissipation, D, QCM-D measurements, it is emphasized that the method is generic and offers a fast and reliable method for evaluations of biomolecular modifications of any type of colloidal nanoparticles.
Collapse
Affiliation(s)
- Indriati Pfeiffer
- Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | |
Collapse
|
8
|
Altin JG, Parish CR. Liposomal vaccines--targeting the delivery of antigen. Methods 2007; 40:39-52. [PMID: 16997712 DOI: 10.1016/j.ymeth.2006.05.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/05/2006] [Indexed: 01/05/2023] Open
Abstract
Vaccines that can prime the adaptive immune system for a quick and effective response against a pathogen or tumor cells, require the generation of antigen (Ag)-specific memory T and B cells. The unique ability of dendritic cells (DCs) to activate naïve T cells, implies a key role for DCs in this process. The generation of tumor-specific CD8(+) cytotoxic T cells (CTLs) is dependent on both T cell stimulation with Ag (peptide-MHC-complexes) and costimulation. Interestingly, tumor cells that lack expression of T cell costimulatory molecules become highly immunogenic when transfected to express such molecules on their surface. Adoptive immunotherapy with Ag-pulsed DCs also is a strategy showing promise as a treatment for cancer. The use of such cell-based vaccines, however, is cumbersome and expensive to use clinically, and/or may carry risks due to genetic manipulations. Liposomes are particulate vesicular lipid structures that can incorporate Ag, immunomodulatory factors and targeting molecules, and hence can serve as potent vaccines. Similarly, Ag-containing plasma membrane vesicles (PMV) derived from tumor cells can be modified to incorporate a T cell costimulatory molecule to provide both TCR stimulation, and costimulation. PMVs also can be modified to contain IFN-gamma and molecules for targeting DCs, permitting delivery of both Ag and a DC maturation signal for initiating an effective immune response. Our results show that use of such agents as vaccines can induce potent anti-tumor immune responses and immunotherapeutic effects in tumor models, and provide a strategy for the development of effective vaccines and immunotherapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Joseph G Altin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
9
|
Nielsen UB, Kirpotin DB, Pickering EM, Drummond DC, Marks JD. A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunol 2006; 7:24. [PMID: 17014727 PMCID: PMC1633733 DOI: 10.1186/1471-2172-7-24] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 10/02/2006] [Indexed: 01/16/2023] Open
Abstract
Background Discovery of tumor-selective antibodies or antibody fragments is a promising approach for delivering therapeutic agents to antigen over-expressing cancers. Therefore it is important to develop methods for the identification of target- and function specific antibodies for effective drug delivery. Here we describe a highly selective and sensitive method for characterizing the internalizing potential of multivalently displayed antibodies or ligands conjugated to liposomes into tumor cells. The assay requires minute amounts of histidine-tagged ligand and relies on the non-covalent coupling of these antibodies to fluorescent liposomes containing a metal ion-chelating lipid. Following incubation of cells with antibody-conjugated liposomes, surface bound liposomes are gently removed and the remaining internalized liposomes are quantitated based on fluorescence in a high throughput manner. We have termed this methodology "Chelated Ligand Internalization Assay", or CLIA. Results The specificity of the assay was demonstrated with different antibodies to the ErbB-2 and EGF receptors. Antibody-uptake correlated with receptor expression levels in tumor cell lines with a range of receptor expression. Furthermore, Ni-NTA liposomes containing doxorubicin were used to screen for the ability of antibodies to confer target-specific cytotoxicity. Using an anti-ErbB2 single chain Fv (scFv) (F5) antibody, cytotoxicity could be conferred to ErbB2-overexpressing cells; however, a poly(ethylene glycol)-linked lipid (DSPE-PEG-NTA-Ni) was necessary to allow for efficient loading of the drug and to reduce nonspecific drug leakage during the course of the assay. Conclusion The CLIA method we describe here represents a rapid, sensitive and robust assay for the identification and characterization of tumor-specific antibodies capable of high drug-delivery efficiency when conjugated to liposomal nanocarriers.
Collapse
Affiliation(s)
- Ulrik B Nielsen
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94110 (UBN, JDM, EMP), USA
- Merrimack Pharmaceuticals, Inc., One Kendall Square, Cambridge, MA 02139, USA
| | | | - Edward M Pickering
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94110 (UBN, JDM, EMP), USA
| | - Daryl C Drummond
- Hermes Biosciences, South San Francisco, CA 94080 (DCD, DK), USA
| | - James D Marks
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94110 (UBN, JDM, EMP), USA
| |
Collapse
|
10
|
Lud SQ, Nikolaides MG, Haase I, Fischer M, Bausch AR. Field Effect of Screened Charges: Electrical Detection of Peptides and Proteins by a Thin-Film Resistor. Chemphyschem 2006; 7:379-84. [PMID: 16404758 DOI: 10.1002/cphc.200500484] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For many biotechnological applications the label-free detection of biomolecular interactions is becoming of outstanding importance. In this Article we report the direct electrical detection of small peptides and proteins by their intrinsic charges using a biofunctionalized thin-film resistor. The label-free selective and quantitative detection of small peptides and proteins is achieved using hydrophobized silicon-on-insulator (SOI) substrates functionalized with lipid membranes that incorporate metal-chelating lipids. The response of the nanometer-thin conducting silicon film to electrolyte screening effects is taken into account to determine quantitatively the charges of peptides. It is even possible to detect peptides with a single charge and to distinguish single charge variations of the analytes even in physiological electrolyte solutions. As the device is based on standard semiconductor technologies, parallelization and miniaturization of the SOI-based biosensor is achievable by standard CMOS technologies and thus a promising basis for high-throughput screening or biotechnological applications.
Collapse
Affiliation(s)
- Simon Q Lud
- Lehrstuhl für Biophysik--E22, Technische Universität München, James Franck Str. 1, 85747 Garching (Germany)
| | | | | | | | | |
Collapse
|
11
|
Altin JG, Banwell MG, Coghlan PA, Easton CJ, Nairn MR, Offermann DA. Synthesis of NTA3-DTDA — A Chelator-Lipid that Promotes Stable Binding of His-Tagged Proteins to Membranes. Aust J Chem 2006. [DOI: 10.1071/ch06112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A six-step reaction sequence is described for the preparation of compound 1 (NTA3-DTDA), a membrane-penetrating and potent chelator that can be incorporated into liposomes and plasma membrane vesicles containing antigens and thus allowing targeted delivery of such assemblies to a variety of cells for the purposes of eliciting anti-tumour responses. Full spectroscopic characterization of this dendritic-type compound as well as certain of its precursors is reported.
Collapse
|
12
|
Altin JG, van Broekhoven CL, Parish CR. Targeting dendritic cells with antigen-containing liposomes: antitumour immunity. Expert Opin Biol Ther 2005; 4:1735-47. [PMID: 15500402 DOI: 10.1517/14712598.4.11.1735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells that play an important role in the body's immune defence against cancer. Strategies using antigen-primed DCs as tumour vaccines show promise in patients, but the approach is cumbersome to use clinically. Soluble tumour antigens can be targeted to DCs in vivo, but this often induces antigenic tolerance rather than immunity. Liposomes are vesicular lipid structures with adjuvant-like properties. Importantly, liposomes can encapsulate antigen and immunomodulatory factors, thus serving as potent delivery vehicles. Different strategies are being explored to target liposomal antigens to DCs in vivo. One approach has employed single-chain antibody fragments to the DC surface molecules CD11c and DEC-205, attached to the vesicle surface by metal-chelating linkage, to target liposomal membranes containing antigen and either interferon-gamma or lipopolysaccharide to DCs. Such membranes induce dramatic antitumour responses and immunotherapeutic effects when used as a vaccine in the murine tumour model B16-OVA melanoma. Liposomal targeting of antigen and maturation signals directly to DCs in vivo, therefore, represents a much simpler strategy for cancer immunotherapy than antigen loading DCs ex vivo.
Collapse
Affiliation(s)
- Joseph G Altin
- The Australian National University, School of Biochemistry and Molecular Biology, Faculty of Science, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
13
|
Larsson C, Bramfeldt H, Wingren C, Borrebaeck C, Höök F. Gravimetric antigen detection utilizing antibody-modified lipid bilayers. Anal Biochem 2005; 345:72-80. [PMID: 16139234 DOI: 10.1016/j.ab.2005.05.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/12/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Lipid bilayers containing 5% nitrilotriacetic acid (NTA) lipids supported on SiO2 have been used as a template for immobilization of oligohistidine-tagged single-chained antibody fragments (scFvs) directed against cholera toxin. It was demonstrated that histidine-tagged scFvs could be equally efficiently coupled to an NTA-Ni2+-containing lipid bilayer from a purified sample as from an expression supernatant, thereby providing a coupling method that eliminates time-consuming protein prepurification steps. Irrespective of whether the coupling was made from the unpurified or purified antibody preparation, the template proved to be efficient for antigen (cholera toxin) detection, verified using quartz crystal microbalance with dissipation monitoring. In addition, via a secondary amplification step using lipid vesicles containing GM1 (the natural membrane receptor for cholera toxin), the detection limit of cholera toxin was less than 750 pM. To further strengthen the coupling of scFvs to the lipid bilayer, scFvs containing two histidine tags, instead of just one tag, were also evaluated. The increased coupling strength provided via the bivalent anchoring significantly reduced scFv displacement in complex solutions containing large amounts of histidine-containing proteins, verified via cholera toxin detection in serum.
Collapse
Affiliation(s)
- Charlotte Larsson
- Department of Applied Physics, Chalmers University of Technology and Göteborg University, 41296 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
14
|
van Broekhoven CL, Altin JG. The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA3-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: Potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1716:104-16. [PMID: 16225839 DOI: 10.1016/j.bbamem.2005.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 09/01/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022]
Abstract
Recent studies indicate that the chelator lipid nitrilotriacetic acid ditetradecylamine (NTA-DTDA) can be used to engraft T cell costimulatory molecules onto tumor cell membranes, potentially circumventing the need for genetic manipulation of the cells for development of cell- or membrane-based tumor vaccines. Here, we show that a related lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA, which has three NTA moieties in its headgroup instead of one) is several-fold more effective than NTA-DTDA at promoting stable His-tagged protein engraftment. IAsys biosensor studies show that binding of His-tagged B7.1 (B7.1-6H) to NTA(3)-DTDA-containing membranes, exhibit a faster on-rate and a slower off-rate, compared to membranes containing NTA-DTDA. Also, NTA(3)-DTDA-containing liposomes and plasma membrane vesicles (PMV) engrafted with B7.1-6H and CD40-6H exhibit greater binding to T cells, in vitro and in vivo. Engrafted NTA(3)-DTDA-containing PMV encapsulated cytokines such as IL-2, IL-12, GM-CSF and IFN-gamma, allowing targeted delivery of both antigen and cytokine to T cells, and stimulation of antigen-specific T cell proliferation and cytotoxicity. Importantly, use of B7.1-CD40-engrafted PMV containing IL-2 and IL-12 as a vaccine in DBA/2J mice induced protection against challenge with syngeneic tumor cells (P815 mammary mastocytoma), and regression of established tumors. The results show that stable protein engraftment onto liposomal membranes using NTA(3)-DTDA can be used to simultaneously target associated antigen, costimulatory molecules and cytokines to T cells in vivo, inducing strong anti-tumor responses and immunotherapeutic effect.
Collapse
Affiliation(s)
- Christina L van Broekhoven
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
15
|
van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting Dendritic Cells with Antigen-Containing Liposomes. Cancer Res 2004; 64:4357-65. [PMID: 15205352 DOI: 10.1158/0008-5472.can-04-0138] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) are potent stimulators of immunity, and DCs pulsed with tumor antigen ex vivo have applications in tumor immunotherapy. However, DCs are a small population of cells, and their isolation and pulsing with antigen can be impractical. Here we show that a crude preparation of plasma membrane vesicles (PMV) from the highly metastatic murine melanoma (B16-OVA) and a surrogate tumor antigen (OVA) can be targeted directly to DCs in vivo to elicit functional effects. A novel metal-chelating lipid, 3(nitrilotriacetic acid)-ditetradecylamine, was incorporated into B16-OVA-derived PMV, allowing recombinant hexahistidine-tagged forms of single chain antibody fragments to the DC surface molecules CD11c and DEC-205, to be conveniently "engrafted" onto the vesicle surface by metal-chelating linkage. The modified PMV, or similarly engrafted synthetic stealth liposomes containing OVA or OVA peptide antigen, were found to target DCs in vitro and in vivo, in experiments using flow cytometry and fluorescence confocal microscopy. When used as vaccines in syngeneic mice, the preparations stimulated strong B16-OVA-specific CTL responses in splenic T cells and a marked protection against tumor growth. Protection was dependent on the simultaneous delivery of both antigen and a DC maturation or "danger signal" signal (IFN-gamma or lipopolysaccharide). Administration of the DC-targeting vaccine to mice challenged with B16-OVA cells induced a dramatic immunotherapeutic effect and prolonged disease-free survival. The results show that the targeting of antigen to DCs in this way is highly effective at inducing immunity and protection against the tumor, with protection being at least partially dependent on the eosinophil chemokine eotaxin.
Collapse
Affiliation(s)
- Christina L van Broekhoven
- School of Biochemistry and Molecular Biology, Faculty of Science, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
16
|
Gizeli E, Glad J. Single-Step Formation of a Biorecognition Layer for Assaying Histidine-Tagged Proteins. Anal Chem 2004; 76:3995-4001. [PMID: 15253634 DOI: 10.1021/ac034855g] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this work was to develop a simple procedure for the creation of a specific biorecognition layer for histidine-tagged (His-tagged) molecules. Such a layer was prepared by the spontaneous fusion of vesicles containing readily available plain (DOPC) and iminodiacetic acid (DOGS-NTA) phospholipids on a silica surface resulting in the formation of an NTA-containing supported lipid bilayer. The frequency surface acoustic waveguide device which supports Love waves was used to follow the real-time formation of the biorecognition layer. The mole percent of the DOGS-NTA phospholipids in the supported bilayer was optimized by following the kinetics of the fusion for the different NTA-containing lipids. Fluorescently labeled lipids were used with observations of the fluorescence recovery after photobleaching to confirm the presence of lipid bilayers. After saturating all NTA-molecules with Ni(2+), the binding of a His-tagged protein fragment within the concentration range of 0.04 and 0.4 mM to a 5 mol % DOGS-NTA/DOPC was detected; binding curves were used to calculate the apparent association constant k(on) = 2.56 x 10(4) M(-)(1) s(-)(1), dissociation constant k(off) = 1.3 x 10(-)(3) s(-)(1), and equilibrium constant k(eq) = 1.97 x 10(7) M(-)(1). The described method could find significant applications as a generic technique for preparing biorecognition layers for His-tagged proteins. In addition, the acoustic waveguide device, which provides high sensitivity together with flexibility in terms of the substrate material used, is shown to be an attractive alternative to direct optical biosensors.
Collapse
Affiliation(s)
- Electra Gizeli
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Crete, Greece 71110.
| | | |
Collapse
|
17
|
Sapsford KE, Shubin YS, Delehanty JB, Golden JP, Taitt CR, Shriver-Lake LC, Ligler FS. Fluorescence-based array biosensors for detection of biohazards. J Appl Microbiol 2004; 96:47-58. [PMID: 14678158 DOI: 10.1046/j.1365-2672.2003.02115.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K E Sapsford
- Center for Bioresource Development, George Mason University, Fairfax, VA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
19
|
van Broekhoven CL, Altin JG. A novel approach for modifying tumor cell-derived plasma membrane vesicles to contain encapsulated IL-2 and engrafted costimulatory molecules for use in tumor immunotherapy. Int J Cancer 2002; 98:63-72. [PMID: 11857387 DOI: 10.1002/ijc.10157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genetic modification of tumor cells and delivery of cytokines have been proposed as useful strategies in the development of anti-tumor vaccines; however, a number of factors limit their use in clinical settings. To facilitate vaccine development, we explored the possibility of modifying plasma membrane vesicles (PMV) by using a novel chelator lipid, nitrilotriacetic acid ditetradecylamine (NTA-DTDA). Our analyses by flow cytometry show that NTA-DTDA can be incorporated into PMV prepared from murine P815 mastocytoma and that the incorporated NTA-DTDA permits anchoring or "engraftment" onto the vesicle surface of hexahistidine-tagged proteins such as recombinant forms of the costimulatory molecules B7.1 and CD40. The engrafted PMV also can incorporate and deliver the immunostimulatory cytokine Interleukin-2 (IL-2). Our results show that modified PMV derived from P815 cells bind the murine T cell clone D10 in a receptor-ligand dependent manner, inducing cell adhesion and promoting cell survival in vitro. The modified PMV can bind syngeneic T cells, stimulating T cell proliferation and cytotoxic T cell responses. Moreover, when used as vaccines in syngeneic animals, the modified vesicles induce significant protection against challenge with the native P815 tumor. The results indicate that PMV modified by engraftment of recombinant forms of B7.1 and CD40 and incorporation of IL-2 can be used to modulate immune responses, which provides a novel approach for the development of anti-tumor vaccines and cancer immunotherapies.
Collapse
Affiliation(s)
- Christina L van Broekhoven
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|