1
|
Abbasi H, Kouchak M, Mirveis Z, Hajipour F, Khodarahmi M, Rahbar N, Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv Pharm Bull 2023; 13:7-23. [PMID: 36721822 PMCID: PMC9871273 DOI: 10.34172/apb.2023.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the "first-generation" liposomes.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Mirveis
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| |
Collapse
|
2
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
3
|
Ji J, Greenberg ML. Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome. J Inherit Metab Dis 2022; 45:60-71. [PMID: 34626131 PMCID: PMC8755574 DOI: 10.1002/jimd.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Cardiolipin (CL) is the signature phospholipid (PL) of mitochondria and plays a pivotal role in mitochondrial and cellular function. Disruption of the CL remodeling gene tafazzin (TAZ) causes the severe genetic disorder Barth syndrome (BTHS). Our current understanding of the function of CL and the mechanism underlying the disease has greatly benefited from studies utilizing the powerful yeast model Saccharomyces cerevisiae. In this review, we discuss important findings on the function of CL and its remodeling from yeast studies and the implications of these findings for BTHS, highlighting the potential physiological modifiers that may contribute to the disparities in clinical presentation among BTHS patients.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Ralph-Epps T, Onu CJ, Vo L, Schmidtke MW, Le A, Greenberg ML. Studying Lipid-Related Pathophysiology Using the Yeast Model. Front Physiol 2021; 12:768411. [PMID: 34777024 PMCID: PMC8581491 DOI: 10.3389/fphys.2021.768411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes perturbation of CL metabolism, resulting in many downstream cellular consequences and clinical pathologies that are discussed herein. The influence of yeast research in the lipid-related pathophysiologies of Alzheimer's and Parkinson's diseases is also summarized.
Collapse
Affiliation(s)
- Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom J. Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W. Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anh Le
- Muskegon Catholic Central High School, Muskegon, MI, United States
| | - Miriam L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
5
|
Samp EJ, Foster RT, Edelen C. Influence of Cardiolipin on Lager Beer Dimethyl Sulfide Levels: A Possible Role Involving Mitochondria? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0803-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
The yeast vacuolar Rab GTPase Ypt7p has an activity beyond membrane recruitment of the homotypic fusion and protein sorting-Class C Vps complex. Biochem J 2012; 443:205-11. [PMID: 22417749 DOI: 10.1042/bj20110687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A previous report described lipid mixing of reconstituted proteoliposomes made using lipid mixtures that mimic the composition of yeast vacuoles. This lipid mixing required SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor)-attachment protein] receptor} proteins, Sec18p and Sec17p (yeast NSF and α-SNAP) and the HOPS (homotypic fusion and protein sorting)-Class C Vps (vacuole protein sorting) complex, but not the vacuolar Rab GTPase Ypt7p. The present study investigates the activity of Ypt7p in proteoliposome lipid mixing. Ypt7p is required for the lipid mixing of proteoliposomes lacking cardiolipin [1,3-bis-(sn-3'-phosphatidyl)-sn-glycerol]. Omission of other lipids with negatively charged and/or small head groups does not cause Ypt7p dependence for lipid mixing. Yeast vacuoles made from strains disrupted for CRD1 (cardiolipin synthase) fuse to the same extent as vacuoles from strains with functional CRD1. Disruption of CRD1 does not alter dependence on Rab GTPases for vacuole fusion. It has been proposed that the recruitment of the HOPS complex to membranes is the main function of Ypt7p. However, Ypt7p is still required for lipid mixing even when the concentration of HOPS complex in lipid-mixing reactions is adjusted such that cardiolipin-free proteoliposomes with or without Ypt7p bind to equal amounts of HOPS. Ypt7p therefore must stimulate membrane fusion by a mechanism that is in addition to recruitment of HOPS to the membrane. This is the first demonstration of such a stimulatory activity--that is, beyond bulk effector recruitment--for a Rab GTPase.
Collapse
|
7
|
Abstract
The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Thibaud T Renault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, F-33000 Bordeaux, France
| | | |
Collapse
|
8
|
Zhang X, Tamot B, Hiser C, Reid GE, Benning C, Ferguson-Miller S. Cardiolipin deficiency in Rhodobacter sphaeroides alters the lipid profile of membranes and of crystallized cytochrome oxidase, but structure and function are maintained. Biochemistry 2011; 50:3879-90. [PMID: 21476578 PMCID: PMC3097902 DOI: 10.1021/bi101702c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many recent studies highlight the importance of lipids in membrane proteins, including in the formation of well-ordered crystals. To examine the effect of changes in one lipid, cardiolipin, on the lipid profile and the production, function, and crystallization of an intrinsic membrane protein, cytochrome c oxidase, we mutated the cardiolipin synthase (cls) gene of Rhodobacter sphaeroides, causing a >90% reduction in cardiolipin content in vivo and selective changes in the abundances of other lipids. Under these conditions, a fully native cytochrome c oxidase (CcO) was produced, as indicated by its activity, spectral properties, and crystal characteristics. Analysis by MALDI tandem mass spectrometry (MS/MS) revealed that the cardiolipin level in CcO crystals, as in the membranes, was greatly decreased. Lipid species present in the crystals were directly analyzed for the first time using MS/MS, documenting their identities and fatty acid chain composition. The fatty acid content of cardiolipin in R. sphaeroides CcO (predominantly 18:1) differs from that in mammalian CcO (18:2). In contrast to the cardiolipin dependence of mammalian CcO activity, major depletion of cardiolipin in R. sphaeroides did not impact any aspect of CcO structure or behavior, suggesting a greater tolerance of interchange of cardiolipin with other lipids in this bacterial system.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Banita Tamot
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Gavin E. Reid
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
9
|
Abstract
Understanding the mechanisms that underlie the organization of bacterial cells has become a significant challenge in the field of bacterial cytology. Of specific interest are early macromolecular sorting events that establish cellular non-uniformity and provide chemical landmarks for later localization events. In this review, we will examine specific examples of lipids and proteins that appear to exploit differences in membrane curvature to drive their localization to particular regions of a bacterial cell. We will also discuss the physical limits of curvature-mediated localization within bacteria, and the use of modelling to infer biophysical properties of curvature-sensing macromolecules.
Collapse
Affiliation(s)
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Kitagaki H, Cowart LA, Matmati N, Montefusco D, Gandy J, de Avalos SV, Novgorodov SA, Zheng J, Obeid LM, Hannun YA. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 2009; 284:10818-30. [PMID: 19179331 PMCID: PMC2667769 DOI: 10.1074/jbc.m805029200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 01/21/2009] [Indexed: 01/09/2023] Open
Abstract
Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.
Collapse
Affiliation(s)
- Hiroshi Kitagaki
- Biochemistry and Molecular Biology and Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cardiolipin, a lipid found in mitochondria, hydrogenosomes and bacteria was not detected in Giardia lamblia. Exp Parasitol 2008; 120:215-20. [DOI: 10.1016/j.exppara.2008.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 06/22/2008] [Accepted: 07/16/2008] [Indexed: 11/23/2022]
|
12
|
Garrett TA, Kordestani R, Raetz CR. Quantification of Cardiolipin by Liquid Chromatography‐Electrospray Ionization Mass Spectrometry. Methods Enzymol 2007; 433:213-30. [DOI: 10.1016/s0076-6879(07)33012-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Tyciakova S, Obernauerova M, Dokusova L, Kooistra RA, Steensma HY, Sulo P, Subik J. The KlPGS1 gene encoding phosphatidylglycerolphosphate synthase in Kluyveromyces lactis is essential and assigned to chromosome I. FEMS Yeast Res 2005; 5:19-27. [PMID: 15381119 DOI: 10.1016/j.femsyr.2004.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/04/2004] [Accepted: 05/25/2004] [Indexed: 11/15/2022] Open
Abstract
The phosphatidylglycerolphosphate synthase (CDP-diacylglycerol:sn-glycerol-3-phosphate 3-phosphatidyltransferase, EC 2.7.8.5) is an essential enzyme in biosynthesis of cardiolipin. In this work we report the isolation, heterological cloning, molecular characterization and physical mapping of the Saccharomyces cerevisiae PEL1/PGS1 homologue from Kluyveromyces lactis. The pel1 mutant strain of S. cerevisiae was used to isolate this homologue by screening a K. lactis genomic library. The novel cloned gene was named KlPGS1. Its coding region was found to consist of 1623 bp. The corresponding protein exhibits 55% amino acid identity to its S. cerevisiae counterpart. The presence of the mitochondrial presequence indicates its mitochondrial localization. Sporulation and ascus dissection of diploids heterozygous for single-copy disruption of KlPGS1 revealed that the KlPGS1 gene, is essential in K. lactis. Using a DIG-dUTP-labeled DNA probe-originated from the KlPGS1 gene and Southern hybridization of contour-clamped homogeneous electric field (CHEF)-separated K. lactis chromosomal DNA, the KlPGS1 gene was assigned to chromosome I. The nucleotide sequence data reported in this paper were submitted to GenBank and assigned the Accession No. AY176328.
Collapse
Affiliation(s)
- Silvia Tyciakova
- Department of Microbiology and Virology, Faculty of Sciences, Comenius University in Bratislava, Mlynska dolina B-2, 842 15 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
14
|
Gu Z, Valianpour F, Chen S, Vaz FM, Hakkaart GA, Wanders RJA, Greenberg ML. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol 2004; 51:149-58. [PMID: 14651618 DOI: 10.1046/j.1365-2958.2003.03802.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, the acyl species of the phospholipid cardiolipin (CL) are more highly unsaturated than those of the other membrane phospholipids. Defective acylation of CL with unsaturated fatty acids and decreased total CL are associated with Barth syndrome, an X-linked cardio- and skeletal myopathy attributed to a defect in the gene G4.5 (also known as tafazzin). We constructed a yeast mutant (taz1) containing a null mutation in the homologue of the human G4.5 gene. The yeast taz1Delta mutant was temperature sensitive for growth in ethanol as sole carbon source, but grew normally on glucose or glycerol plus ethanol. Total CL content was reduced in the taz1Delta mutant, and monolyso-CL accumulated. The predominant CL acyl species found in wild-type cells, C18:1 and C16:1, were markedly reduced in the mutant, whereas CL molecules containing saturated fatty acids were present. Interestingly, CL synthesis increased in the mutant, whereas expression of the CL structural genes CRD1 and PGS1 did not, suggesting that de novo biosynthetic enzyme activities are regulated by CL acylation. These results indicate that the taz1Delta mutant is an excellent genetic tool for the study of CL remodelling and may serve as a model system for the study of Barth syndrome.
Collapse
Affiliation(s)
- Zhiming Gu
- Department of Biological Science, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Valianpour F, Wanders RJA, Barth PG, Overmars H, van Gennip AH. Quantitative and Compositional Study of Cardiolipin in Platelets by Electrospray Ionization Mass Spectrometry: Application for the Identification of Barth Syndrome Patients. Clin Chem 2002. [DOI: 10.1093/clinchem/48.9.1390] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractBackground: The concentration of cardiolipin (CL) in cultured skin fibroblasts is a useful indicator of Barth syndrome (BTHS; MIM 302060), but the sampling and culturing of fibroblasts are burdensome and time-consuming procedures. We investigated whether the analysis of CL in platelets might help to identify BTHS in patients suspected of having this condition.Methods: We used HPLC and online electrospray ionization mass spectrometry (HPLC-ESI-MS) to quantify CL molecular species. The CL content of platelets was studied in blood samples of BTHS and non-BTHS patients. Control blood samples drawn from healthy adults were collected and analyzed within 24 h (n = 10) and 48 h (n = 10) to characterize any effect of sample shipping time on the CL content in platelets. Samples were collected from children 1–10 years of age who were not affected by BTHS (n = 6) and from BTHS patients (n = 4) and analyzed within 24 h. Results for all four groups were compared by a Student t-test for all individual analyses.Results: We found different CL molecular species, e.g., (C18:2)4-CL. BTHS patients had a specific decrease of tetralinoleyl-CL concentrations in platelets (0.1–0.5 nmol/mg of protein; n = 4) compared with all control groups (2.3–5.5 nmol/mg of protein; n = 26). Only minor differences were observed among the different control groups.Conclusions: Quantitative and compositional analyses of CL in platelets by the proposed method allow identification of BTHS patients more rapidly than gene analysis or analysis of CL in cultured skin fibroblasts. The abnormality of CL may explain the abnormal mitochondrial function observed in BTHS. The differences between the control groups did not cause any complication.
Collapse
Affiliation(s)
- Fredoen Valianpour
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, and the Department of Clinical Chemistry, 1100 DE Amsterdam, The Netherlands
| | - Ronald JA Wanders
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, and the Department of Clinical Chemistry, 1100 DE Amsterdam, The Netherlands
| | - Peter G Barth
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, and the Department of Clinical Chemistry, 1100 DE Amsterdam, The Netherlands
| | - Henk Overmars
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, and the Department of Clinical Chemistry, 1100 DE Amsterdam, The Netherlands
| | - Albert H van Gennip
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, and the Department of Clinical Chemistry, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
16
|
Jackson M, Crick DC, Brennan PJ. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 2000; 275:30092-9. [PMID: 10889206 DOI: 10.1074/jbc.m004658200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) and metabolically derived products such as the phosphatidylinositol mannosides and linear and mature branched lipomannan and lipoarabinomannan are prominent phospholipids/lipoglycans of Mycobacterium sp. believed to play important roles in the structure and physiology of the bacterium as well as during host infection. To determine if PI is an essential phospholipid of mycobacteria, we identified the pgsA gene of Mycobacterium tuberculosis encoding the phosphatidylinositol synthase enzyme and constructed a pgsA conditional mutant of Mycobacterium smegmatis. The ability of this mutant to synthesize phosphatidylinositol synthase and subsequently PI was dependent on the presence of a functional copy of the pgsA gene carried on a thermosensitive plasmid. The mutant grew like the control strain under permissive conditions (30 degrees C), but ceased growing when placed at 42 degrees C, a temperature at which the rescue plasmid is lost. Loss of cell viability at 42 degrees C was observed when PI and phosphatidylinositol dimannoside contents dropped to approximately 30 and 50% of the wild-type levels, respectively. This work provides the first evidence of the essentiality of PI to the survival of mycobacteria. PI synthase is thus an essential enzyme of Mycobacterium that shows promise as a drug target for anti-tuberculosis therapy.
Collapse
Affiliation(s)
- M Jackson
- Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
17
|
Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000; 275:22387-94. [PMID: 10777514 DOI: 10.1074/jbc.m909868199] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin (CL) is a unique phospholipid which is present throughout the eukaryotic kingdom and is localized in mitochondrial membranes. Saccharomyces cerevisiae cells containing a disruption of CRD1, the structural gene encoding CL synthase, have no CL in mitochondrial membranes. To elucidate the physiological role of CL, we compared mitochondrial functions in the crd1Delta mutant and isogenic wild type. The crd1Delta mutant loses viability at elevated temperature, and prolonged culture at 37 degrees C leads to loss of the mitochondrial genome. Mutant membranes have increased phosphatidylglycerol (PG) when grown in a nonfermentable carbon source but have almost no detectable PG in medium containing glucose. In glucose-grown cells, maximum respiratory rate, ATPase and cytochrome oxidase activities, and protein import are deficient in the mutant. The ADP/ATP carrier is defective even during growth in a nonfermentable carbon source. The mitochondrial membrane potential is decreased in mutant cells. The decrease is more pronounced in glucose-grown cells, which lack PG, but is also apparent in membranes containing PG (i.e. in nonfermentable carbon sources). We propose that CL is required for maintaining the mitochondrial membrane potential and that reduced membrane potential in the absence of CL leads to defects in protein import and other mitochondrial functions.
Collapse
Affiliation(s)
- F Jiang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- M Schlame
- Department of Anesthesiology, Hospital for Special Surgery, Cornell University Medical College, 555 E. 70th St., New York, NY 10021, USA
| | | | | |
Collapse
|
19
|
Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 1999; 38:361-99. [PMID: 10793889 DOI: 10.1016/s0163-7827(99)00010-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.
Collapse
Affiliation(s)
- G M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08901, USA.
| | | |
Collapse
|
20
|
Schlame M, Shanske S, Doty S, König T, Sculco T, DiMauro S, Blanck TJ. Microanalysis of cardiolipin in small biopsies including skeletal muscle from patients with mitochondrial disease. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33404-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Jiang F, Gu Z, Granger JM, Greenberg ML. Cardiolipin synthase expression is essential for growth at elevated temperature and is regulated by factors affecting mitochondrial development. Mol Microbiol 1999; 31:373-9. [PMID: 9987137 DOI: 10.1046/j.1365-2958.1999.01181.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiolipin (CL) is a unique dimeric phospholipid localized primarily in the mitochondrial membrane. In eukaryotes, the enzyme CL synthase catalyses the synthesis of CL from two lipid substrates, CDP-diacylglycerol and phosphatidylglycerol. In earlier studies, we reported the purification of CL synthase from Saccharomyces cerevisiae and the cloning of the gene CRD1 (previously called CLS1) that encodes the enzyme. Because CL is an important component of the mitochondrial membrane, knowledge of its regulation will provide insight into the biogenesis of this organelle. To understand how CL synthesis is regulated, we analysed CRD1 expression by Northern blot analysis of RNA extracted from cells under a variety of growth conditions. CRD1 expression is regulated by mitochondrial development factors. CRD1 levels were 7- to 10-fold greater in stationary than in logarithmic growth phase, and threefold greater in wild-type than in rho 0 mutants. Expression was somewhat elevated during growth in glycerol/ethanol versus glucose media. In contrast, CRD1 expression was not regulated by the phospholipid precursors inositol and choline, and was not altered in the regulatory mutants ino2, ino4 and opi1. Mutations in cytochrome oxidase assembly, which led to reduced Crd1p enzyme activity, did not affect CRD1 expression. The crd1 null mutant makes a truncated CRD1 message. Although the null mutant can grow on both fermentable and non-fermentable carbon sources at lower temperatures, it cannot form colonies at 37 degrees C. In conclusion, CRD1 expression is controlled by factors affecting mitochondrial development, but not by the phospholipid precursors inositol and choline. Expression of CRD1 is essential for growth at elevated temperatures, suggesting that either CL or Crd1p is required for an essential cellular function.
Collapse
Affiliation(s)
- F Jiang
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
The yeast Saccharomyces cerevisiae is a powerful experimental system to study biochemical, cell biological and molecular biological aspects of lipid synthesis. Most but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of this unicellular eukaryote have been cloned, and many gene products have been functionally characterized. Less information is available about genes and gene products governing the transport of lipids between organelles and within membranes, turnover and degradation of complex lipids, regulation of lipid biosynthesis, and linkage of lipid metabolism to other cellular processes. Here we summarize current knowledge about lipid biosynthetic pathways in S. cerevisiae and describe the characteristic features of the gene products involved. We focus on recent discoveries in these fields and address questions on the regulation of lipid synthesis, subcellular localization of lipid biosynthetic steps, cross-talk between organelles during lipid synthesis and subcellular distribution of lipids. Finally, we discuss distinct functions of certain key lipids and their possible roles in cellular processes.
Collapse
Affiliation(s)
- G Daum
- Institut für Biochemie und Lebensmittelchemie, Technische Universität, Petersgasse, Graz, Austria.
| | | | | | | |
Collapse
|
24
|
Chang SC, Heacock PN, Mileykovskaya E, Voelker DR, Dowhan W. Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J Biol Chem 1998; 273:14933-41. [PMID: 9614098 DOI: 10.1074/jbc.273.24.14933] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, cardiolipin (CL) synthase catalyzes the final step in the synthesis of CL from phosphatidylglycerol and CDP-diacylglycerol. CL and its synthesis are localized predominantly to the mitochondrial inner membrane, and CL is generally thought to be an essential component of many mitochondrial processes. By using homology searches for genes potentially encoding phospholipid biosynthetic enzymes, we have cloned the gene (CLS1) encoding CL synthase in Saccharomyces cerevisiae. Overexpression of the CLS1 gene under its endogenous promoter or the inducible GAL1 promoter in yeast and expression of CLS1 in baculovirus-infected insect cells resulted in elevated CL synthase activity. Disruption of the CLS1 gene in a haploid yeast strain resulted in the loss of CL synthase activity, no detectable CL, a 5-fold elevation in phosphatidylglycerol levels, and lack of staining of mitochondria by a dye with high affinity for CL. The cls1::TRP1 null mutant grew on both fermentable and non-fermentable carbon sources but more poorly on the latter. The level and activity of cytochrome c oxidase was normal, and a dye whose accumulation is dependent on membrane proton electrochemical potential effectively stained the mitochondria. These results definitively identify the gene encoding the CL synthase of yeast.
Collapse
Affiliation(s)
- S C Chang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
25
|
Shen H, Dowhan W. Regulation of phosphatidylglycerophosphate synthase levels in Saccharomyces cerevisiae. J Biol Chem 1998; 273:11638-42. [PMID: 9565583 DOI: 10.1074/jbc.273.19.11638] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PGS1 gene of Saccharomyces cerevisiae encodes phosphatidylglycerophosphate (PG-P) synthase. PG-P synthase activity is regulated by factors affecting mitochondrial development and through cross-pathway control by inositol. The molecular mechanism of this regulation was examined by using a reporter gene under control of the PGS1 gene promoter (PPGS1-lacZ). Gene expression subject to carbon source regulation was monitored both at steady-state level and during the switch between different carbon sources. Cells grown in a non-fermentable carbon source had beta-galactosidase levels 3-fold higher than those grown in glucose. A shift from glucose to lactate rapidly raised the level of gene expression, whereas a shift back to glucose had the opposite effect. In either a pgs1 null mutant or a rho mutant grown in glucose, PPGS1-lacZ expression was 30-50% of the level in wild type cells. Addition of inositol to the growth medium resulted in a 2-3-fold reduction in gene expression in wild type cells. In ino2 and ino4 mutants, gene expression was greatly reduced and was not subject to inositol regulation consistent with inositol repression being dependent on the INO2 and INO4 regulatory genes. PPGS1-lacZ expression was elevated in a cds1 null mutant in the presence or absence of inositol, indicating that the capacity to synthesize CDP-diacylglycerol affects gene expression. Lack of cardiolipin synthesis (cls1 null mutant) had no effect on reporter gene expression.
Collapse
Affiliation(s)
- H Shen
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, USA
| | | |
Collapse
|
26
|
Tuller G, Hrastnik C, Achleitner G, Schiefthaler U, Klein F, Daum G. YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett 1998; 421:15-8. [PMID: 9462830 DOI: 10.1016/s0014-5793(97)01525-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unassigned open reading frame YDL142c was identified to code for cardiolipin synthase, Cls1p. A cls1 deletion strain is viable on glucose, galactose, ethanol, glycerol and lactate containing media, although the growth rate on non-fermentable carbon sources is decreased. Mitochondria of the cls1 mutant are devoid of cardiolipin but accumulate the cardiolipin precursor phosphatidylglycerol when grown on non-fermentable carbon sources. Specific activity of phosphatidylglycerolphosphate synthase in cls1 is reduced to 30-75% of the wild-type level. Amounts of mitochondrial cytochromes and activity of cytochrome c oxidase, however, are not affected in the cls1 deletion strain. Collectively, these data indicate that cardiolipin is not essential for aerobic growth of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- G Tuller
- Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, Austria
| | | | | | | | | | | |
Collapse
|