1
|
Hajir S, Jobst KJ, Kleywegt S, Simpson AJ, Simpson MJ. Do co-solvents used in exposure studies equally perturb the metabolic profile of Daphnia magna? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgaf068. [PMID: 40246286 DOI: 10.1093/etojnl/vgaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Dissolution methods such as co-solvents are used to solubilize insoluble compounds in exposure experiments. Several exposure studies have followed the guidelines from the Organization for Economic Co-operation and Development where co-solvents are applied at 0.01% v/v of the total exposure volume. Although no observable apical endpoint abnormalities were reported following these guidelines, little is known about the molecular-level impacts of co-solvents used in exposure studies. A targeted metabolomics approach using liquid chromatography coupled with triple quadrupole mass spectrometry was used to assess Daphnia magna responses to four commonly used co-solvents, including acetone (ACT), acetonitrile (ACN), methanol (MeOH), and dimethyl sulfoxide (DMSO), at three different levels (0.01%, 0.05%, and 0.1% v/v) over 48 hr. Based on the observed metabolic disruptions, exposure to MeOH and DMSO induced higher metabolic perturbations in amino acid levels and associated biochemical pathways in comparison to ACT and ACN exposures. However, as with mixtures, when co-solvents are combined with the pollutants under investigation, there is a possibility for additive, synergistic, or antagonistic interactions. Hence, to examine the possible impairments in co-solvent and pollutant mixtures, ACT and ACN applied at 0.01% v/v were chosen to be tested with phenanthridine (PN). Daphnia magna exposure to PN dissolved in ACT had less disruptions; in contrast to PN prepared in ACN, which triggered a higher degree of antagonism in the D. magna metabolic profile. Consequently, exposing D. magna to ACT applied at 0.01% v/v resulted in the lowest metabolic perturbation in both parts of this study, suggesting that it is the least disruptive co-solvent for molecular-level exposure studies involving D. magna.
Collapse
Affiliation(s)
- Salwa Hajir
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Yin X, Wang Z, Wang J, Fang A, Tian B, Yang Y, Yu Y, Bi C. Molecular mechanism of reduced biological fitness of fludioxonil-resistant strains of Botrytis cinerea based on transcriptome analysis. PEST MANAGEMENT SCIENCE 2024; 80:4746-4756. [PMID: 38816914 DOI: 10.1002/ps.8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Fludioxonil is a fungicide used to control gray mold. However, the frequency of resistance in the field is low, and highly resistant strains are rarely isolated. The biological fitness of the resistant strain is lower than that of the wild strain. Therefore, the molecular mechanism underlying the decrease in the fitness of the fludioxonil-resistant strain of Botrytis cinerea was explored to provide a theoretical basis for resistance monitoring and management. RESULTS Transcriptome analysis was performed on five different-point mutant resistant strains of fludioxonil, focusing on mining and screening candidate genes that lead to reduced fitness of the resistant strains and the functional verification of these genes. The differentially expressed genes (DEGs) of the five point-mutation resistant strains intersected with 1869 DEGs. Enrichment analysis showed that three downregulated genes (Bcin05g07030, Bcgad1, and Bcin03g05840) were enriched in multiple metabolic pathways and were downregulated in both domesticated strains. Bcin05g07030 and Bcin03g05840 were involved in mycelial growth and development, pathogenicity, and conidial yield, and negatively regulated oxidative stress and cell wall synthesis. Bcgad1 was involved in mycelial growth and development, conidial yield, oxidative stress, and cell wall synthesis. Furthermore, Bcin05g07030 was involved in osmotic stress and spore germination, whereas Bcin03g05840 and Bcgad1 negatively regulated osmotic stress and cell wall integrity. CONCLUSION These results enable us to further understand the molecular mechanism underlying the decrease in the biological fitness of B. cinerea fludioxonil-resistant strains. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueru Yin
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zongwei Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Akhmedzhanov IG, Khotamov MM, Merzlyak PG. Comparative study of the efficiency of inducers of cotton resistance to verticillium wilt. МИКОЛОГИЯ И ФИТОПАТОЛОГИЯ 2024; 58. [DOI: 10.31857/s0026364824010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The effect of pre-sowing seed treatment with immunostimulant Bisol-2, red light and low frequency electromagnetic field on the content of fungitoxic substances of phenolic nature – phytoalexins (isohemigossypol and gossypol-equivalent) in infected etiolated cotton seedlings of S-4727 cultivar infected with Verticillium wilt pathogen was studied. It was found that photostimulation of seeds by red light induces phytoalexin formation in cotton tissues infected by the pathogen 1.5–2 times more effectively in comparison with Bisol-2 preparation or inducer of electromagnetic nature. The correlation between the content of phytoalexins in the tissues of seedlings, parameters of induction curves of chlorophyll fluorescence and the number of plants with signs of wilt lesions grown from treated and untreated seeds with inducers was revealed. This indicates the possibility of using red light and weak low-frequency electromagnetic fields as factors contributing to the intensification of phytoalexin formation in response to Verticillium wilt infection of cotton.
Collapse
Affiliation(s)
- I. G. Akhmedzhanov
- Institute of Biophysics and Biochemistry at the National University of Uzbekistan
| | - M. M. Khotamov
- Institute of Genetics and Plant Experimental Biology of the Academy of Sciences of the Republic of Uzbekistan
| | - P. G. Merzlyak
- Institute of Biophysics and Biochemistry at the National University of Uzbekistan
| |
Collapse
|
4
|
Xia Q, Zheng Y, Wang L, Chen X. Proposing Signaling Molecules as Key Optimization Targets for Intensifying the Phytochemical Biosynthesis Induced by Emerging Nonthermal Stress Pretreatments of Plant-Based Foods: A Focus on γ-Aminobutyric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12622-12644. [PMID: 37599447 DOI: 10.1021/acs.jafc.3c04413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Emerging evidence has confirmed the role of emerging nonthermal stressors (e.g., electromagnetic fields, ultrasonication, plasma) in accumulating bioactive metabolites in plant-based food. However, the signal decoding mechanisms behind NonTt-driven phytochemical production remain unclear, hindering postharvest bioactive component intensification. This study aims to summarize the association between signaling molecules and bioactive secondary metabolite production under nonthermal conditions, demonstrating the feasibility of enhancing phytochemical accumulation through signaling molecule crosstalk manipulation. Nonthermal elicitors were found to be capable of inducing stress metabolisms and activating various signaling molecules, similar to conventional abiotic stress. A simplified pathway model for nonthermally induced γ-aminobutyric acid accumulation was proposed with reactive oxygen species and calcium signaling being versatile pathways responsive to nonthermal elicitors. Manipulating signal molecules/pathways under nonthermal conditions can intensify phytochemical biosynthesis. Further research is needed to integrate signaling molecule responses and metabolic network shifts in nonthermally stressed plant-based matrices, balancing quality modifications and intensification of food functionality potential.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
5
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Wood Metabolomic Responses of Wild and Cultivated Grapevine to Infection with Neofusicoccum parvum, a Trunk Disease Pathogen. Metabolites 2020; 10:metabo10060232. [PMID: 32512855 PMCID: PMC7344444 DOI: 10.3390/metabo10060232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/05/2023] Open
Abstract
Grapevine trunk diseases (GTDs), which are associated with complex of xylem-inhabiting fungi, represent one of the major threats to vineyard sustainability currently. Botryosphaeria dieback, one of the major GTDs, is associated with wood colonization by Botryosphaeriaceae fungi, especially Neofusicoccum parvum. We used GC-MS and HPLC-MS to compare the wood metabolomic responses of the susceptible Vitis vinifera subsp. vinifera (V. v. subsp. vinifera) and the tolerant Vitis vinifera subsp. sylvestris (V. v. subsp. sylvestris) after artificial inoculation with Neofusicoccum parvum (N. parvum). N. parvum inoculation triggered major changes in both primary and specialized metabolites in the wood. In both subspecies, infection resulted in a strong decrease in sugars (fructose, glucose, sucrose), whereas sugar alcohol content (mannitol and arabitol) was enhanced. Concerning amino acids, N. parvum early infection triggered a decrease in aspartic acid, serine, and asparagine, and a strong increase in alanine and β-alanine. A trend for more intense primary metabolism alteration was observed in V. v. subsp. sylvestris compared to V. v. subsp. vinifera. N. parvum infection also triggered major changes in stilbene and flavonoid compounds. The content in resveratrol and several resveratrol oligomers increased in the wood of both subspecies after infection. Interestingly, we found a higher induction of resveratrol oligomer (putative E-miyabenol C, vitisin C, hopeaphenol, ampelopsin C) contents after wood inoculation in V. v. subsp. sylvestris.
Collapse
|
7
|
Cebulak T, Oszmiański J, Kapusta I, Lachowicz S. Effect of abiotic stress factors on polyphenolic content in the skin and flesh of pear by UPLC-PDA-Q/TOF-MS. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03392-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Growing social interest in foods with high biological quality results in the need to look for possibilities of increasing the biological quality of food products. The aim of this research was an attempt to estimate the increase of polyphenolic compounds (by UPLC-PDA-MS/MS) in the flesh and skin of pear under the influence of stress elicitors such as UVC radiation, L-EMF, H-EMF and US with various exposure times. The applied stress factors differentiated the content of phenolic acids, flavan-3-ols and flavonols both in flesh and in skin. In all cases, pear skin demonstrated a decrease in the sum of polyphenolic compounds; however, when it comes to flavan-3-ols and procyanidins, the concentration of the compounds increased in two cases: after a 30-min exposure to L-EMF (+ 18%) and after a 5-min exposure to H-EMF (+ 20%). Following a 30-min flesh exposure to US, the determined sum of polyphenolic compounds was + 28% higher than in the control sample. It was observed that the level of flavan-3-ols and procyanidins in the flesh increased after a 60-min exposure to UVC radiation and low-frequency and high-frequency electromagnetic fields, and after a 20-min and 30-min exposure to ultrasounds. The presence of flavonols was only observed in pear skin. The research results show that it is possible to produce juice with a higher content of polyphenolic compounds, because juice is obtained mainly from the flesh; however, there is a need for further research to confirm the observed tendencies in the changes of polyphenolic compounds in fractions of pears.
Collapse
|
8
|
Shao X, He J, Liang R, Lu Y, Shi Y, Wang Y, Zheng X, Zhang S, Wang T. Mortality, growth and metabolic responses by 1H-NMR-based metabolomics of earthworms to sodium selenite exposure in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:69-77. [PMID: 31176249 DOI: 10.1016/j.ecoenv.2019.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The rapid development of selenium-enriched agriculture leads to the accumulation of selenium in the soil, which has an adverse impact on terrestrial ecosystems. In the present study, the mortality, growth inhibition rate and metabolism of earthworms were examined to investigate the toxicological effects of sodium selenite (Na2SeO3) on earthworms (Eisenia fetida) after exposuring for 14 days (d). We used 1H-NMR-based metabolomics to identify sensitive biomarkers and explored the metabolic responses of earthworms exposed to Na2SeO3. The mortality and growth inhibition rate of earthworms exposed to 70 and 90 mg/kg Na2SeO3 were significantly higher than the rate of control group. The LC50 (the median lethal concentration) of Na2SeO3 was 57.4 mg/kg in this artificial soil test of E. fetida exposed to Na2SeO3 for 14 d. However, there was no significant differences when earthworms were exposed to different concentrations of Na2SeO3. The selected metabolic markers were ATP, lactic acid, leucine, alanine, valine, glycine, glutamic acid, lysine, α-glucose and betaine. Na2SeO3 affected the metabolic level of earthworms, as the percentage of metabolic markers in the earthworm changes when exposed to different concentrations of Na2SeO3. The metabolic disturbances were greater with increasing concentrations of Na2SeO3. The differential metabolic markers were significantly changed when exposed to Na2SeO3 comparing to those in the control group, affecting the tricarboxylic acid cycle process and breaking the metabolic balance. This study showed that Na2SeO3 had toxic effect on the growth and development of earthworms. In addition, this study provided a biochemical insights for the development of selenium-enriched agriculture.
Collapse
Affiliation(s)
- Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemistry & Chemical Engineering, Shanxi University, Taiyuan, 030000, China
| | - Jiao He
- Liupanshui City Environmental Protection Bureau, Liupanshui, 553000, China
| | - Ruoyu Liang
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Wang
- College of Chemistry & Chemical Engineering, Shanxi University, Taiyuan, 030000, China.
| | - Xiaoqi Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100059, China
| | - Sheng Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100059, China
| | - Ting Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030000, China
| |
Collapse
|
9
|
Ganneru S, Shaik H, Peddi K, Mudiam MKR. Evaluating the metabolic perturbations in Mangifera indica (mango) ripened with various ripening agents/practices through gas chromatography - mass spectrometry based metabolomics. J Sep Sci 2019; 42:3086-3094. [PMID: 31329331 DOI: 10.1002/jssc.201900291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/12/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Mangifera indica L. (mango) is said to be the king of fruits due to its rich nutritional properties and mainly originates from the Indian sub-continent. The consumption pattern of the mangoes has increased drastically, due to which, many ripening practices/agents were used to make it ready-to-eat fruit or juice for the consumers. The fruit quality and metabolic composition are said to be altered due to different ripening agents/practices. The present communication mainly deals to understand the metabolic perturbations in mango fruits due to different ripening practices/agents (room temperature ripening, ethylene, and calcium carbide) using gas chromatography - mass spectrometry based metabolomics. The partial least square-discriminant analysis has found 16 differential metabolites for different ripening agents/practices which are belong to the classes of amino acids, fatty acids, sugars, and polyols. Four metabolic pathways were found to alter in the fruit metabolome due to different ripening agents/practices. Fructose, glucose, and galactose were found to be significantly up-regulated due to calcium carbide ripening in comparison to other ripening agents/practices. Overall findings from the present study advocates that mass spectrometry based metabolomics can be valuable tool to understand the fruit quality and safety with respect to consumer health.
Collapse
Affiliation(s)
| | - Hussain Shaik
- Analytical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, Telangana, India
| | - Kiranmayi Peddi
- Department of Biochemistry, Acharya Nagarjuna University, India
| | - Mohana Krishna Reddy Mudiam
- Analytical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Song M, Zhao J, Wen HS, Li Y, Li JF, Li LM, Tao YX. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS One 2019; 14:e0217133. [PMID: 31125355 PMCID: PMC6534312 DOI: 10.1371/journal.pone.0217133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/06/2019] [Indexed: 11/26/2022] Open
Abstract
Acute change in water temperature causes heavy economic losses in the aquaculture industry. The present study investigated the metabolic and molecular effects of acute thermal stress on black rockfish (Sebastes schlegelii). Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics was used to investigate the global metabolic response of black rockfish at a high water temperature (27°C), low water temperature (5°C) and normal water temperature (16°C). Metabolites involved in energy metabolism and basic amino acids were significantly increased upon acute exposure to 27°C (P < 0.05), and no change in metabolite levels occurred in the low water temperature group. However, certain fatty acid levels were elevated after cold stress (P < 0.05), and this effect was not observed in the 27°C group, suggesting that acute high and low temperature exposures caused different physiological responses. Using quantitative real-time PCR, we analyzed the expression of ubiquitin (ub), hypoxia-inducible factor (hif), lactate dehydrogenase (ldh), and acetyl-CoA carboxylase (acac). Higher expression levels of ub, hif, and ldh (P < 0.05) were observed in the high water temperature group, but no changes in these expression levels occurred in the low water temperature group. Our findings provide a potential metabolic profile for black rockfish when exposed to acute temperature stress and provide some insights into host metabolic and molecular responses to thermal stress.
Collapse
Affiliation(s)
- Min Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Ji Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
- * E-mail: (HSW); (YL)
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
- * E-mail: (HSW); (YL)
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Lan-Min Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
11
|
Nguyen TV, Alfaro AC, Young T, Green S, Zarate E, Merien F. Itaconic acid inhibits growth of a pathogenic marine Vibrio strain: A metabolomics approach. Sci Rep 2019; 9:5937. [PMID: 30976014 PMCID: PMC6459830 DOI: 10.1038/s41598-019-42315-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/29/2019] [Indexed: 01/28/2023] Open
Abstract
The antimicrobial role of itaconic acid (ITA) has been recently discovered in mammalian cells. In our previous studies, we discovered that marine molluscs biosynthesise substantial quantities of ITA when exposed to marine pathogens, but its antimicrobial function to Vibrio bacteria is currently unknown. Thus, in this study, we used an untargeted gas chromatography-mass spectrometry (GC-MS) platform to identify metabolic changes of Vibrio sp. DO1 (V. corallyliticus/neptunius-like isolate) caused by ITA exposure. Vibrio sp. DO1 was cultured in Luria-Bertani broth supplemented with 3 mM sodium acetate and with different concentrations of ITA (0, 3 and 6 mM) for 24 h. The results showed that ITA completely inhibited Vibrio sp. growth at 6 mM and partially inhibited the bacterial growth at 3 mM. A principal component analysis (PCA) revealed a clear separation between metabolite profiles of Vibrio sp. DO1 in the 3 mM ITA treatment and the control, which were different in 25 metabolites. Among the altered metabolites, the accumulation of glyoxylic acid and other metabolites in glyoxylate cycle (cis-aconitic acid, isocitric acid and fumaric acid) together with the increase of isocitrate lyase (ICL) activity in the 3 mM ITA treatment compared to the control suggest that ITA inhibited Vibrio sp. growth via disruption of central carbon metabolism.
Collapse
Affiliation(s)
- Thao Van Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Saras Green
- Mass Spectrometry Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Erica Zarate
- Mass Spectrometry Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioprocess Biosyst Eng 2019; 42:727-739. [DOI: 10.1007/s00449-019-02076-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/15/2019] [Indexed: 11/27/2022]
|
13
|
Durand TC, Cueff G, Godin B, Valot B, Clément G, Gaude T, Rajjou L. Combined Proteomic and Metabolomic Profiling of the Arabidopsis thaliana vps29 Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. Int J Mol Sci 2019; 20:E362. [PMID: 30654520 PMCID: PMC6359594 DOI: 10.3390/ijms20020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/25/2022] Open
Abstract
The retromer is a multiprotein complex conserved from yeast to humans, which is involved in intracellular protein trafficking and protein recycling. Selection of cargo proteins transported by the retromer depends on the core retromer subunit composed of the three vacuolar protein sorting (VPS) proteins, namely VPS26, VPS29, and VPS35. To gain a better knowledge of the importance of the plant retromer in protein sorting, we carried out a comparative proteomic and metabolomic analysis of Arabidopsis thaliana seeds from the wild-type and the null-retromer mutant vps29. Here, we report that the retromer mutant displays major alterations in the maturation of seed storage proteins and synthesis of lipid reserves, which are accompanied by severely impaired seed vigor and longevity. We also show that the lack of retromer components is counterbalanced by an increase in proteins involved in intracellular trafficking, notably members of the Ras-related proteins in brain (RAB) family proteins. Our study suggests that loss of the retromer stimulates energy metabolism, affects many metabolic pathways, including that of cell wall biogenesis, and triggers an osmotic stress response, underlining the importance of retromer function in seed biology.
Collapse
Affiliation(s)
- Thomas C Durand
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon I, CNRS, INRA, 69342 Lyon, France.
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Benoît Valot
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon I, CNRS, INRA, 69342 Lyon, France.
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| |
Collapse
|
14
|
Xiong Y, Yang R, Sun X, Yang H, Chen H. Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1225-1237. [PMID: 29755207 PMCID: PMC5928181 DOI: 10.1007/s10811-017-1279-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 06/08/2023]
Abstract
A variety of different symbiotic microbial communities are harbored on the surface of seaweeds, the interactions of which depend upon nutritional exchanges between the microbes and the hosts. Metabolomic profiling is able to provide a comprehensive and unbiased snapshot of the metabolites associated with seaweed-microbe interactions. In this study, the relationships between phycosphere bacteria and the red alga Pyropia haitanensis were investigated on a metabolomic basis using gas chromatography-mass spectrometry, and the pathways of the interactions between the seaweed and its associated phycospheric microbes were revealed. Bacillus sp. WPySW2, one bacterial species isolated from the phycosphere of Pyropia species, had a significant influence on the metabolomic profile of the algae. Some of the intracellular metabolites such as phenylalanine, leucine, isoleucine, valine, proline, tyrosine, threonine, octadecanoic acid, hexadecanoic acid, and citric acid were downregulated in the thalli of P. haitanensis when it was co-cultured with Bacillus sp. WPySW2, while several special metabolites including melibiose, serine, glycerol-3-phosphate, galactosylglycerol, and alanine were upregulated. The results demonstrated that P. haitanensis grew better when it was co-cultured with Bacillus sp. WPySW2 at 20 °C. In conclusion, several main intracellular metabolites were downregulated and upregulated, which might have facilitated bacterial colonization.
Collapse
Affiliation(s)
- Yuqin Xiong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211 China
| | - Xiaoxiao Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
| | - Huatian Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211 China
| | - Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211 China
| |
Collapse
|
15
|
Zhang H, Zhao L. Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:85-94. [PMID: 28806601 DOI: 10.1016/j.aquatox.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Acetamiprid, a neonicotinoid pesticide, is reported to have adverse sublethal effects on non-target beneficial organisms. Halosulfuron-methyl (HM), one of the most widely used herbicides in agriculture, has high ecotoxicity to aquatic plants and animals. In this study, a GC-MS-based metabolomics approach was used to investigate the toxicity of acetamiprid and HM. The Automated Mass Spectral Deconvolution and Identification System (AMDIS) software program and the retention index method were used to identify 51 metabolites in zebra fish (Brachydanio rerio). Changes in metabolites showed that acetamiprid and HM disturbed amino acid (e.g., leucine, valine, serine, glycine, proline, and alanine) metabolism, the TCA cycle (malic acid and fumaric acid), and the balance of neurotransmitters (glutamic acid, taurine, and glycine). The change in metabolites in the liver, head, and blood indicated that metabolites in the liver were more sensitive than those in the head and blood. Overall, on the basis of the change in metabolites, we identified a potential risk to zebra fish exposed to sublethal doses of acetamiprid and/or HM.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi 034000, PR China; Shanxi Academy of Analytical Science, Taiyuan 030006, PR China
| | - Lijuan Zhao
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi 034000, PR China.
| |
Collapse
|
16
|
Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. J Microsc Ultrastruct 2017; 5:225-229. [PMID: 30023258 PMCID: PMC6025783 DOI: 10.1016/j.jmau.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
During the last few decades there has been an enormous increase in the usage of cell phones as these are one of the most convenient gadgets and provide excellent mode of communication without evoking any hindrance to movement. However, these are significantly adding to the electromagnetic field radiations (EMF-r) in the environment and thus, are required to be analysed for their impacts on living beings. The present study investigated the role of cell phone EMF-r in inciting oxidative damage in onion (Allium cepa) roots at a frequency of 2100 MHz. Onion roots were exposed to continuous wave homogenous EMF-r for 1, 2 and 4 h for single day and generation of reactive oxygen species (ROS) in terms of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2•−) content and changes in the activities of antioxidant enzymes- superoxide dismutases (SOD) and catalases (CAT) were measured. The results showed that EMF-r exposure enhanced the content of MDA, H2O2 and O2•−. Also, there was an upregulation in the activity of antioxidant enzymes− SOD and CAT− in onion roots. The study concluded that 2100 MHz cell phone EMF-r incite oxidative damage in onion roots by altering the oxidative metabolism.
Collapse
|
17
|
Nehmé R, Atieh C, Fayad S, Claude B, Chartier A, Tannoury M, Elleuch F, Abdelkafi S, Pichon C, Morin P. Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci 2016; 40:558-566. [DOI: 10.1002/jssc.201601005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans; Orléans France
| | - Carla Atieh
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans; Orléans France
| | - Syntia Fayad
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans; Orléans France
| | - Bérengère Claude
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans; Orléans France
| | - Agnès Chartier
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans; Orléans France
| | - Mona Tannoury
- Département de Biologie, Faculté des Sciences II; Université Libanaise; Fanar Liban
| | - Fatma Elleuch
- Biotechnologie des algues, Département de Génie biologique, Ecole Nationale d'Ingénieurs de Sfax; University of Sfax; Tunisia
- Centre de Biophysique moléculaire; et Université d'Orléans; France
| | - Slim Abdelkafi
- Biotechnologie des algues, Département de Génie biologique, Ecole Nationale d'Ingénieurs de Sfax; University of Sfax; Tunisia
| | - Chantal Pichon
- Centre de Biophysique moléculaire; et Université d'Orléans; France
| | - Philippe Morin
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans; Orléans France
| |
Collapse
|
18
|
Hua Y, Hou Y, Wang S, Ma Y, Liu Z, Zou L, Liu X, Luo Y, Liu J. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics. Molecules 2016; 21:molecules21111538. [PMID: 27854294 PMCID: PMC6273876 DOI: 10.3390/molecules21111538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/27/2023] Open
Abstract
Pseudostellariae Radix (PR) is an important traditional Chinese medicine (TCM), which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC) were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc) cultivated in traditional fields (Jurong, Jiangsu, JSJR) and cultivated fields (Zherong, Fujian, FJZR). A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.
Collapse
Affiliation(s)
- Yujiao Hua
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ya Hou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shengnan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zixiu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yiyuan Luo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Juanxiu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
19
|
da Silva JAT, Dobránszki J. Magnetic fields: how is plant growth and development impacted? PROTOPLASMA 2016; 253:231-48. [PMID: 25952081 DOI: 10.1007/s00709-015-0820-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 05/24/2023]
Abstract
This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.
Collapse
Affiliation(s)
| | - Judit Dobránszki
- Research Institute of Nyíregyháza, University of Debrecen, Nyíregyháza, P.O. Box 12, 4400, Hungary.
| |
Collapse
|
20
|
Ch R, Singh AK, Pandey P, Saxena PN, Reddy Mudiam MK. Identifying the metabolic perturbations in earthworm induced by cypermethrin using gas chromatography-mass spectrometry based metabolomics. Sci Rep 2015; 5:15674. [PMID: 26514086 PMCID: PMC4626786 DOI: 10.1038/srep15674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/21/2015] [Indexed: 01/03/2023] Open
Abstract
Globally, cypermethrin is one of the most widely used synthetic pyrethroid for agricultural and domestic purposes. Most part of the pesticides used in the agriculture ends up as residues in the soil, making soil dwelling organisms, especially earthworms more susceptible to pesticide intoxication. Cypermethrin is known to be a neurotoxicant to many model organisms, including mammals and insects, but such type of toxicity evidence is not available for invertebrate systems like earthworms. In the present work, metabolomics based approach was utilized to identify the toxic mechanism of action of cypermethrin on earthworm (Metaphire posthuma) and these were exposed to sub-lethal concentrations of cypermethrin such as 2.5 mg/kg, 5 mg/kg, 10 mg/kg and 20 mg/kg (1/40th, 1/20th, 1/10th and 1/5th of LC50, respectively) for fourteen days. The results revealed that 22 metabolites (mainly fatty acids, sugars and amino acids) were shown significant responses in the exposed earthworms and these responses are dose dependent. It is proposed that mainly carbohydrate and fatty acids in neural system metabolism was disturbed. Overall, the results provided that metabolomics can be an effective tool to understand the effects of cypermethrin on the metabolic responses of earthworm Metaphire posthuma.
Collapse
Affiliation(s)
- Ratnasekhar Ch
- Analytical Chemistry Laboratory &Regulatory Toxicology Group, CSIR- Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR- IITR Main Campus, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India
| | - Amit Kumar Singh
- Analytical Chemistry Laboratory &Regulatory Toxicology Group, CSIR- Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pathya Pandey
- Analytical Chemistry Laboratory &Regulatory Toxicology Group, CSIR- Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India
| | - Prem Narain Saxena
- SEM facility, CSIR- Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India
| | - Mohana Krishna Reddy Mudiam
- Analytical Chemistry Laboratory &Regulatory Toxicology Group, CSIR- Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR- IITR Main Campus, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India.,Pesticide Toxicology Laboratory &Regulatory Toxicology Group, CSIR- Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
21
|
Monselise EBI, Levkovitz A, Kost D. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:101-107. [PMID: 24889211 DOI: 10.1111/plb.12198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells.
Collapse
Affiliation(s)
- E B-I Monselise
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
22
|
Lee DJ, Chi YT, Kim DM, Choi SH, Lee JY, Choi GW. Ectopic expression of CaRLK1 enhances hypoxia tolerance with increasing alanine production in Nicotiana spp. PLANT MOLECULAR BIOLOGY 2014; 86:255-70. [PMID: 25030225 DOI: 10.1007/s11103-014-0227-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/09/2014] [Indexed: 05/26/2023]
Abstract
In a previous report, the pepper receptor-like kinase 1 (CaRLK1) gene was shown to be responsible for negatively regulating plant cell death caused by pathogens via accumulation of superoxide anions. Here, we examined whether this gene also plays a role in regulating cell death under abiotic stress. The total concentrations of free amino acids in CaRLK1-overexpressed cells (RLKox) increased by twofold compared with those of the wild-type Nicotiana tabacum BY-2 cells. Additionally, alanine and pyruvate concentrations increased by approximately threefold. These accumulations were associated with both the expression levels of the isocitrate lyase (ICL) and malate synthase genes and their specific activities, which were preferentially up-regulated in the RLKox cells. The expression levels of ethylene biosynthetic genes (ACC synthase and ACC oxidase) were suppressed, but those of both the metallothionein and lesion simulating disease 1 genes increased in the RLKox cells during submergence-induced hypoxia. The specific activity of catalase, which is involved in protecting ICL from reactive oxygen species, was also induced threefold in the RLKox cells. The primary roots of the transgenic plants that were exposed to hypoxic conditions grew at similar rates to those in normal conditions. We propose that CaRLK1 maintains a persistent hypoxia-resistant phenotype.
Collapse
Affiliation(s)
- Dong Ju Lee
- School of Biological Sciences and Technology, Higher Education Center for Bioregulator Research, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea,
| | | | | | | | | | | |
Collapse
|
23
|
Metabolic phenotyping of berries in different six grape (Vitis vinifera) cultivars. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-014-4166-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Gas chromatography-mass spectrometry based metabolomic approach for optimization and toxicity evaluation of earthworm sub-lethal responses to carbofuran. PLoS One 2013; 8:e81077. [PMID: 24324663 PMCID: PMC3852017 DOI: 10.1371/journal.pone.0081077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/09/2013] [Indexed: 01/08/2023] Open
Abstract
Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies.
Collapse
|
25
|
Ye Y, Zhang L, Yang R, Luo Q, Chen H, Yan X, Tang H. Metabolic phenotypes associated with high-temperature tolerance of Porphyra haitanensis strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8356-8363. [PMID: 23898950 DOI: 10.1021/jf402749a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colored mutants of Porphyra haitanensis have superior production and quality characteristics, with two mutants, Shengfu 1 (SF-1) and Shengfu 2 (SF-2), having good high-temperature tolerances. To understand the molecular aspects of high-temperature tolerance, this study comprehensively investigated the metabolic differences between the high-temperature tolerant strains and wild type. Nuclear magnetic resonance (NMR) methods identified 35 algal metabolites, including sugars, amino acids, carboxylic acids, aldehydes, amines, and nucleotides. The results indicated that the high-temperature tolerant strains had significantly different metabolic phenotypes from the wild type. The high-temperature tolerant mutants had significantly higher levels in a set of osmolytes consisting of betaine, taurine, laminitol, and isofloridoside than the wild type, indicating the particular importance of efficient osmoregulation for high-temperature resistance. These findings provided essential metabolic information about high-temperature adaptation for P. haitanensis and demonstrated NMR-based metabolomics as a useful tool for understanding the metabolic features related to resistance to stressors.
Collapse
Affiliation(s)
- Yangfang Ye
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, Centre for Biospectroscopy and Metabonomics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Ali K, Maltese F, Figueiredo A, Rex M, Fortes AM, Zyprian E, Pais MS, Verpoorte R, Choi YH. Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:100-7. [PMID: 22682569 DOI: 10.1016/j.plantsci.2012.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 05/23/2023]
Abstract
Grapevines are easily infected by plant pathogens. It was found that resistant grapevines induce a wide range of phenolics upon the pathogen-infection. In this study in order to gain insight into these processes in different time-points the metabolic changes during the interaction of two grapevine cultivars, 'Regent' (resistant) and 'Trincadeira' (susceptible), with the downy mildew pathogen (Plasmopara viticola) were investigated. Nuclear magnetic resonance (NMR) spectroscopy on leaf extracts was used at several time points after experimental inoculation. A wide range of metabolites were identified using various two-dimensional (2D)-NMR techniques. Multivariate data analysis characterized both the resistant and the susceptible cultivars and their response against the pathogen. Metabolites responsible for their discrimination were identified as a fertaric acid, caftaric acid, quercetin-3-O-glucoside, linolenic acid, and alanine in the resistant cultivar 'Regent', while the susceptible 'Trincadeira' showed higher levels of glutamate, succinate, ascorbate and glucose. This study portrays the analytical capability of NMR spectroscopy and multivariate data analyses methods for the metabolic profiling of plant samples. The results obtained will underline the role of phenylpropanoids and flavonoids in resistance against biotic stresses which in turn provides a firm platform for the metabolic engineering of grapevine cultivars with higher resistance towards pathogens.
Collapse
Affiliation(s)
- Kashif Ali
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lankadurai BP, Wolfe DM, Simpson AJ, Simpson MJ. 1H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2845-2851. [PMID: 21620543 DOI: 10.1016/j.envpol.2011.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 05/30/2023]
Abstract
(1)H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm(2) of phenanthrene (1/64th of the LC(50)) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by (1)H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies.
Collapse
Affiliation(s)
- Brian P Lankadurai
- Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada
| | | | | | | |
Collapse
|
28
|
Rea G, Antonacci A, Lambreva M, Pastorelli S, Tibuzzi A, Ferrari S, Fischer D, Johanningmeier U, Oleszek W, Doroszewska T, Rizzo AM, Berselli PV, Berra B, Bertoli A, Pistelli L, Ruffoni B, Calas-Blanchard C, Marty JL, Litescu SC, Diaconu M, Touloupakis E, Ghanotakis D, Giardi MT. Integrated plant biotechnologies applied to safer and healthier food production: The Nutra-Snack manufacturing chain. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Monselise EBI, Levkovitz A, Gottlieb HE, Kost D. Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas. ACTA ACUST UNITED AC 2011; 13:1890-6. [DOI: 10.1039/c1em10031a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Lima MRM, Felgueiras ML, Graça G, Rodrigues JEA, Barros A, Gil AM, Dias ACP. NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4033-42. [PMID: 20709726 DOI: 10.1093/jxb/erq214] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Esca is a destructive disease that affects vineyards leading to important losses in wine production. Information about the response of Vitis vinifera plants to this disease is scarce, particularly concerning changes in plant metabolism. In order to study the metabolic changes in Vitis plants affected by esca, leaves from both infected and non-affected cordons of V. vinifera cv. Alvarinho (collected in the Vinho Verde region, Portugal) were analysed. The metabolite composition of leaves from infected cordons with visible symptoms [diseased leaves (dl)] and from asymptomatic cordons [healthy leaves (hl)] was evaluated by 1D and 2D (1)H-nuclear magnetic resonance (NMR) spectroscopy. Principal component analysis (PCA) of the NMR spectra showed a clear separation between dl and hl leaves, indicating differential compound production due to the esca disease. NMR/PCA analysis allowed the identification of specific compounds characterizing each group, and the corresponding metabolic pathways are discussed. Altogether, the study revealed a significant increase of phenolic compounds in dl, compared with hl, accompanied by a decrease in carbohydrates, suggesting that dl are rerouting carbon and energy from primary to secondary metabolism. Other metabolic alterations detected comprised increased levels of methanol, alanine, and gamma-aminobutyric acid in dl, which might be the result of the activation of other defence mechanisms.
Collapse
Affiliation(s)
- Marta R M Lima
- University of Minho, Department of Biology, CITAB-Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Brown SAE, McKelvie JR, Simpson AJ, Simpson MJ. 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2117-2123. [PMID: 20338676 DOI: 10.1016/j.envpol.2010.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/14/2010] [Accepted: 02/28/2010] [Indexed: 05/29/2023]
Abstract
1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-beta-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised approximately 65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.
Collapse
Affiliation(s)
- Sarah A E Brown
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, Ontario, Canada M1C 1A4
| | | | | | | |
Collapse
|
32
|
Sharma VP, Singh HP, Kohli RK, Batish DR. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5543-5547. [PMID: 19682728 DOI: 10.1016/j.scitotenv.2009.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 05/28/2023]
Abstract
During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 microW cm(-2); 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H(2)O(2)) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at > or =2 h), and radicle and plumule growths (> or =1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H(2)O(2) accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Ved Parkash Sharma
- Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
33
|
Park KS, Paul D, Kim JS, Park JW. l-Alanine augments rhizobacteria-induced systemic resistance in cucumber. Folia Microbiol (Praha) 2009; 54:322-6. [DOI: 10.1007/s12223-009-0041-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/22/2009] [Indexed: 12/01/2022]
|
34
|
Dordević D, Raković D. [Proposal for magnetic/electromagnetic fields protection norms on national level]. MEDICINSKI PREGLED 2008; 61:147-150. [PMID: 18773690 DOI: 10.2298/mpns0804147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
INTRODUCTION The modern life is not possible without application of magnetic/electromagnetic fields, which can be both helpful and harmful for human body. INFLUENCE OF MAGNETIC/ELECTROMAGNETIC FIELDS ON BIOLOGICAL SYSTEMS The non-ionizing radiation, especially magnetic/electromagnetic fields of all frequencies (0-300 GHz), can have many harmful effects on the human health that is confirmed by numerous epidemiological studies, studies with volunteers, animal studies, and in vitro studies. Proposal for magnetic/electromagnetic fields protection norms on national level based on the WHO Program for Environment, International Commission on Non-Ionizing Radiation Protection (ICNIRP)], and WHO International EMF Project. CONCLUSION Protection from harmful effects of the magnetic/electromagnetic fields is still a great problem in many countries of modern society--huge costs, impaired quality of life, and more important, damage to the human health. Numerous data and publications of harmful effects of the magnetic/electromagnetic fields represents one's country basic necessary documentation for making decisions and law documents for protection norms on national level concerning the health maintenance according to the ICNIRP normatives.
Collapse
Affiliation(s)
- Drago Dordević
- Univerzitet u Beogradu, Medicinski fakultet, Institut za patolosku fiziologiju, Beograd.
| | | |
Collapse
|
35
|
Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3371-81. [PMID: 18648103 DOI: 10.1093/jxb/ern187] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grapevine species (Vitis sp.) are prone to several diseases, fungi being the major pathogens compromising its cultivation and economic profit around the world. Knowledge of the complexity of mechanisms responsible for resistance to fungus infection of cultivars, such as Regent, is necessary for strategies to be defined which will improve resistance in highly susceptible crop species. Transcript and metabolic profiles of the Vitis vinifera cultivars Regent and Trincadeira (resistant and susceptible to fungi, respectively) were analysed by cDNA microarray, quantitative real-time PCR, and nuclear magnetic resonance spectroscopy. The integration of datasets obtained through transcriptome and metabolome analysis revealed differences in transcripts and metabolites between both cultivars. These differences are probably associated with the innate resistance of Regent towards the mildews. Several transcripts related to stress and defence, namely a subtilisin-like protease, phenylalanine ammonia lyase, S-adenosylmethionine synthase, WD-repeat protein like, and J2P, were up-regulated in Regent suggesting an intrinsic resistance capability of this cultivar. A metabolic profile revealed an accumulation of compounds such as inositol and caffeic acid, which are known to confer resistance to fungi. The differences in transcripts and metabolites detected are discussed in terms of the metabolic pathways and their possible role in plant defence against pathogen attack, as well as their potential interest to discriminate among resistant and susceptible grapevine cultivars.
Collapse
Affiliation(s)
- Andreia Figueiredo
- Unit of Molecular Biology and Plant Biotechnology, ICAT, FCUL, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Forcella M, Berra E, Giacchini R, Parenti P. Antioxidant defenses preserve membrane transport activity in Chironomus riparius larvae exposed to anoxia. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 65:181-94. [PMID: 17630655 DOI: 10.1002/arch.20197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Changes in enzyme activities, metabolite concentrations, and membrane transport activity underlying the Chironomus riparius larvae adaptive response to anoxia were investigated. Trehalose, malate, and aspartate degradation and alanine accumulation were recorded. During anoxia exposure, there was a boost of antioxidant defenses as shown by an increase of the specific activity of the enzymes catalase, glutathione-S-transferase, glutathione peroxidase, glutathione-synthase, malic enzyme, and NADP-dependent isocitrate dehydrogenase. The ratio, glutathione reduced over glutathione oxidized, decreased. Except for alanine and catalase, the parameters return to their basal value when larvae are transferred to normoxic conditions. To test whether antioxidant defenses had protective effects on membrane functionality, L-leucine uptake into brush border membrane vesicles and membrane lipid peroxidation was measured. No difference between membranes prepared from larvae exposed to anoxia and control larvae was found. The amino acid alanine, when present inside the vesicles, trans-stimulated leucine uptake. This effect could represent a mechanism to stimulate amino acid uptake and catabolism in vivo when free alanine concentration increases during hypoxic periods.
Collapse
Affiliation(s)
- Matilde Forcella
- Department of Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Immune stimulation in fish and chicken through weak low frequency electromagnetic fields. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s10669-007-9055-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Trebbi G, Borghini F, Lazzarato L, Torrigiani P, Calzoni GL, Betti L. Extremely low frequency weak magnetic fields enhance resistance of NN tobacco plants to tobacco mosaic virus and elicit stress-related biochemical activities. Bioelectromagnetics 2007; 28:214-23. [PMID: 17080458 DOI: 10.1002/bem.20296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increasing evidence has accumulated concerning the biological effects of extremely low frequency magnetic fields (ELF-MFs) in different plant models. In the present study, effects of ELF-MFs in tobacco plants reacting to tobacco mosaic virus (TMV) with a hypersensitive response (HR) were evaluated. Plants were exposed for 8 or 24 h (either before or after TMV inoculation) to a static MF, at either -17 or 13 microT, combined with a 10 Hz sinusoidal MF with different intensities (25.6 or 28.9 microT). The working variables were the area and number of hypersensitive lesions in leaves. Following ELF-MFs exposure, an increased resistance was detected, particularly after an 8-h treatment, as shown by the decrease in lesion area and number. Moreover, two enzyme activities involved in resistance mechanisms were analyzed: ornithine decarboxylase (ODC) and phenylalanine ammonia-lyase (PAL). Uninoculated leaves previously exposed to ELF-MFs in general showed a significant increase relative to controls in ODC and PAL activities, in particular for 13 microT static MF plus 28.9 microT, 10 Hz sinusoidal MF (24 h) treatment. In conclusion, ELF-MFs seem to influence the HR of tobacco to TMV, as shown by the increased resistance and changes in ODC and PAL activities, indicating the reliability of the present plant model in the study of bioelectromagnetic interactions.
Collapse
Affiliation(s)
- Grazia Trebbi
- Dipartimento di Scienze e Tecnologie Agroambientali, Università di Bologna, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Forcella M, Berra E, Giacchini R, Rossaro B, Parenti P. Increased alanine concentration is associated with exposure to fenitrothion but not carbamates in Chironomus riparius larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 66:326-34. [PMID: 17166588 DOI: 10.1016/j.ecoenv.2006.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/24/2006] [Accepted: 10/29/2006] [Indexed: 05/13/2023]
Abstract
Chironomus riparius Meigen were exposed to three different insecticides, the organophosphorous fenitrothion and the carbamates carbaryl and carbofuran (0, 1, 10, and 100 microg/L) for 24h as fourth-instar larvae. Acetylcholinesterase (AChE), naphtylacetate esterase (NAE), p-nitrophenylacetate esterase (PNPAE), glutathione-S-transferase (GST), and a number of metabolites (alanine, pyruvate, lactate, trehalose, aspartate, oxalacetate) were measured to determine which was the most valuable biochemical biomarker of exposure. AChE activity was significantly reduced by all three insecticides, PNPAE by fenitrothion, carbofuran and carbaryl, whereas NAE activity was stimulated by carbaryl and unaffected by fenitrothion and carbofuran. Metabolites analysis revealed a strong accumulation of alanine in larvae exposed to fenitrothion, but not in larvae exposed to carbamates. This accumulation was accompanied by a significant increase of lactate and a significant decrease of pyruvate and trehalose. No variations were observed with carbofuran and carbaryl. No change of aspartate concentration was detected. We conclude that the association of alanine accumulation with a significant inhibition of AChE activity can be used as a valuable biochemical biomarker of exposure.
Collapse
Affiliation(s)
- Matilde Forcella
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
40
|
Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bastien O, Garin J, Roby C, Bourguignon J. Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply. Biochimie 2006; 88:1533-47. [PMID: 16716483 DOI: 10.1016/j.biochi.2006.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
The incorporation and localisation of 133Cs in a plant cellular model and the metabolic response induced were analysed as a function of external K concentration using a multidisciplinary approach. Sucrose-fed photosynthetic Arabidopsis thaliana suspension cells, grown in a K-containing or K-depleted medium, were submitted to a 1 mM Cs stress. Cell growth, strongly diminished in absence of K, was not influenced by Cs. In contrast, the chlorophyll content, affected by a Cs stress superposed to K depletion, did not vary under the sole K depletion. The uptake of Cs was monitored in vivo using 133Cs NMR spectroscopy while the final K and Cs concentrations were determined using atomic absorption spectrometry. Cs absorption rate and final concentration increased in a K-depleted external medium; in vivo NMR revealed that intracellular Cs was distributed in two kinds of compartment. Synchrotron X-ray fluorescence microscopy indicated that one could be the chloroplasts. In parallel, the cellular response to the Cs stress was analysed using proteomic and metabolic profiling. Proteins up- and down-regulated in response to Cs, in presence of K+ or not, were analysed by 2D gel electrophoresis and identified by mass spectrometry. No salient feature was detected excepting the overexpression of antioxidant enzymes, a common response of Arabidopsis cells stressed whether by Cs or by K-depletion. 13C and 31P NMR analysis of acid extracts showed that the metabolome impact of the Cs stress was also a function of the K nutrition. These analyses suggested that sugar metabolism and glycolytic fluxes were affected in a way depending upon the medium content in K+. Metabolic flux measurements using 13C labelling would be an elegant way to pursue on this line. Using our experimental system, a progressively stronger Cs stress might point out other specific responses elicited by Cs.
Collapse
Affiliation(s)
- P Le Lay
- Laboratoire de physiologie cellulaire végétale, UMR 5168 CEA/CNRS/INRA/UJF, DRDC, CEA-Grenoble, avenue des Martyrs, 38054 Grenoble cedex 09, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Radical Scavengers Suppress Low Frequency EMF Enhanced Proliferation in Cultured Cells and Stress Effects in Higher Plants. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s10669-005-4272-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Mesnard F, Ratcliffe RG. NMR analysis of plant nitrogen metabolism. PHOTOSYNTHESIS RESEARCH 2005; 83:163-80. [PMID: 16143850 DOI: 10.1007/s11120-004-2081-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 07/17/2004] [Indexed: 05/04/2023]
Abstract
The analysis of primary and secondary nitrogen metabolism in plants by nuclear magnetic resonance (NMR) spectroscopy is comprehensively reviewed. NMR is a versatile analytical tool, and the combined use of (1)H, (2)H, (13)C, (14)N and (15)N NMR allows detailed investigation of the acquisition, assimilation and metabolism of nitrogen. The analysis of tissue extracts can be complemented by the in vivo NMR analysis of functioning tissues and cell suspensions, and by the application of solid state NMR techniques. Moreover stable isotope labelling with (2)H-, (13)C- and (15)N-labelled precursors provides direct insight into specific pathways, with the option of both time-course and steady state analysis increasing the potential value of the approach. The scope of the NMR method, and its contribution to studies of plant nitrogen metabolism, are illustrated with a wide range of examples. These include studies of the GS/GOGAT pathway of ammonium assimilation, investigations of the metabolism of glutamate, glycine and other amino acids, and applications to tropane alkaloid metabolism. The continuing development of the NMR technique, together with potential applications in the emerging fields of metabolomics and metabolic flux analysis, leads to the conclusion that NMR will play an increasingly valuable role in the analysis of plant nitrogen metabolism.
Collapse
Affiliation(s)
- F Mesnard
- EA 2084, Faculté de Pharmacie, Laboratoire de Phytotechnologie, 1 rue des Louvels, F-80037 Amiens Cedex 1, France
| | | |
Collapse
|