1
|
Chalermwat C, Thosapornvichai T, Wongkittichote P, Phillips JD, Cox JE, Jensen AN, Wattanasirichaigoon D, Jensen LT. Overexpression of the peroxin Pex34p suppresses impaired acetate utilization in yeast lacking the mitochondrial aspartate/glutamate carrier Agc1p. FEMS Yeast Res 2020; 19:5621492. [PMID: 31711143 DOI: 10.1093/femsyr/foz078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.
Collapse
Affiliation(s)
- Chalongchai Chalermwat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand.,Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - John D Phillips
- Department of Internal Medicine, Division of Hematology, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA.,Department of Biochemistry, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| |
Collapse
|
3
|
Kohlhaw GB. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 2003; 67:1-15, table of contents. [PMID: 12626680 PMCID: PMC150519 DOI: 10.1128/mmbr.67.1.1-15.2003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After exploring evolutionary aspects of branched-chain amino acid biosynthesis, the review focuses on the extended leucine biosynthetic pathway as it operates in Saccharomyces cerevisiae. First, the genes and enzymes specific for the leucine pathway are considered: LEU4 and LEU9 (encoding the alpha-isopropylmalate synthase isoenzymes), LEU1 (isopropylmalate isomerase), and LEU2 (beta-isopropylmalate dehydrogenase). Emphasis is given to the unusual distribution of the branched-chain amino acid pathway enzymes between mitochondrial matrix and cytosol, on the newly defined role of Leu5p, and on regulatory mechanisms governing gene expression and enzyme activity, including new evidence for the metabolic importance of the regulation of alpha-isopropylmalate synthase by coenzyme A. Next, structure-function relationships of the transcriptional regulator Leu3p are addressed, defining its dual role as activator and repressor and discussing evidence in support of the self-masking model. Recent data pointing at a more extended Leu3p regulon are discussed. An overview of the layered controls of the extended leucine pathway is provided that includes a description of the newly recognized roles of Ilv5p and Bat1p in maintaining mitochondrial integrity. Finally, branched-chain amino acid biosynthesis and its regulation in other fungi are summarized, the question of leucine as metabolic signal is addressed, and possible directions of future research in this area are outlined.
Collapse
Affiliation(s)
- Gunter B Kohlhaw
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
4
|
Kumar RV, Banerji A, Kurup CK, Ramasarma T. The nature of inhibition of 3-hydroxy-3-methylglutaryl CoA reductase by garlic-derived diallyl disulfide. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1078:219-25. [PMID: 2065088 DOI: 10.1016/0167-4838(91)90561-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.
Collapse
Affiliation(s)
- R V Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | | | | | |
Collapse
|
5
|
Ward OP, Young CS. Reductive biotransformations of organic compounds by cells or enzymes of yeast. Enzyme Microb Technol 1990; 12:482-93. [PMID: 1366632 DOI: 10.1016/0141-0229(90)90063-v] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae catalyses the asymmetric reductive biotransformation of a variety of compounds containing a carbonyl group or carbon-carbon double bond. Oxidoreductases participating in these reactions which have commercial potential in biotransformation processes are likely to have relatively broad substrate specificity. Important carbonyl reductases falling into this category include YADH- and yeast NADP-dependent beta-ketoester reductases. The enoyl reductase component of the FAS complex may have a role in asymmetric yeast reduction of carbon-carbon double bonds of unnatural substrates. Other nicotinamide-requiring oxidoreductases of yeast are also surveyed to rationalize observed biotransformations of whole yeast cells in terms of specific enzymes. Genetic and protein engineering may enable enzymes to be tailored to accept new substrates. A greater understanding of the enzymes and reactions involved will facilitate further optimization and exploitation of these catalytic systems in industrial processes.
Collapse
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
6
|
Roitelman J, Shechter I. Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation by iodoacetamide. J Lipid Res 1989. [DOI: 10.1016/s0022-2275(20)38402-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Kinnunen PM, Spilburg CA, Lange LG. Chemical modification of acyl-CoA:cholesterol O-acyltransferase. 2. Identification of a coenzyme A regulatory site by p-mercuribenzoate modification. Biochemistry 1988; 27:7351-6. [PMID: 3207681 DOI: 10.1021/bi00419a026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acyl-CoA:cholesterol O-acyltransferase (EC 2.3.1.26, ACAT) is the major intracellular cholesterol-esterifying activity in vascular tissue and is potentially a key regulator of intracellular cholesterol homeostasis during atherogenesis. We have previously reported inhibition of microsomal ACAT by histidine and sulfhydryl-selective chemical modification reagents and present here a more detailed analysis of the effect of sulfhydryl modification on ACAT activity. This analysis indicated two effects of sulfhydryl modification on ACAT activity. Modification of aortic microsomes with relatively low concentrations of p-mercuribenzoate (PMB) (100-200 microM) identified an inhibitory coenzyme A binding site on ACAT which contains a modifiable sulfhydryl group. This site binds CoA tightly (Ki = 20 microM), and PMB modification prevented subsequent ACAT inhibition by CoA without itself inhibiting enzyme activity. At higher concentrations (1-2 mM), PMB inhibited ACAT activity, indicating the presence of a modifiable sulfhydryl group necessary for cholesterol esterification by ACAT. Modification of both sites by PMB was reversible by thiols, and protection against modification was afforded in both cases by oleoyl-CoA, indicating that these sites may also bind oleoyl-CoA. Thus, at least two sulfhydryl groups influence ACAT activity: one is necessary for cholesterol esterification by ACAT, and one is at or near an inhibitory CoA binding site, which may be occupied at intracellular concentrations of CoA.
Collapse
Affiliation(s)
- P M Kinnunen
- Cardiology Division, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110
| | | | | |
Collapse
|
8
|
Lippe G, Deana R, Cavallini L, Galzigna L. Inhibition of rat liver hydroxymethylglutaryl-CoA reductase by sulfhydryl reagents, coenzyme A esters and synthetic compounds. Biochem Pharmacol 1985; 34:3293-7. [PMID: 4038337 DOI: 10.1016/0006-2952(85)90348-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The activity of the microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase was assayed with a procedure based on the extraction of the product mevalonolactone in a benzene phase. Diamide is an uncompetitive inhibitor of the reaction, while coenzyme A disulfide and tetraethylthiouram disulfide act as non-competitive inhibitors. Diamide inhibition cooperatively increases with the inhibitor concentration. HMG produces a decrease in enzyme activity that combines with that of coenzyme A disulfide. Both CoASH and coenzyme A esters strongly inhibit the reductase activity. Three new synthetic compounds with either thio-ether or thio-ester groups also show inhibitory effect on the enzyme activity.
Collapse
|