1
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
2
|
Cao J, Chow L, Dow S. Strategies to overcome myeloid cell induced immune suppression in the tumor microenvironment. Front Oncol 2023; 13:1116016. [PMID: 37114134 PMCID: PMC10126309 DOI: 10.3389/fonc.2023.1116016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer progression and metastasis due to tumor immune evasion and drug resistance is strongly associated with immune suppressive cellular responses, particularly in the case of metastatic tumors. The myeloid cell component plays a key role within the tumor microenvironment (TME) and disrupts both adaptive and innate immune cell responses leading to loss of tumor control. Therefore, strategies to eliminate or modulate the myeloid cell compartment of the TME are increasingly attractive to non-specifically increase anti-tumoral immunity and enhance existing immunotherapies. This review covers current strategies targeting myeloid suppressor cells in the TME to enhance anti-tumoral immunity, including strategies that target chemokine receptors to deplete selected immune suppressive myeloid cells and relieve the inhibition imposed on the effector arms of adaptive immunity. Remodeling the TME can in turn improve the activity of other immunotherapies such as checkpoint blockade and adoptive T cell therapies in immunologically "cold" tumors. When possible, in this review, we have provided evidence and outcomes from recent or current clinical trials evaluating the effectiveness of the specific strategies used to target myeloid cells in the TME. The review seeks to provide a broad overview of how myeloid cell targeting can become a key foundational approach to an overall strategy for improving tumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jennifer Cao
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Dis 2022; 8:235. [PMID: 35487914 PMCID: PMC9055054 DOI: 10.1038/s41420-022-01033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy with multiple drug regimens is the main therapy option for advanced gastric cancer (GC) patients. However, many patients develop relapse soon. Here, we evaluated the therapeutic potential of targeting interleukin-8 (IL8) to overcome resistance to chemotherapy in advanced GC. RNA sequencing revealed crucial molecular changes after chemotherapy resistance, in which the expression of IL8 was significantly activated with the increase in drug resistance. Subsequently, the clinical significance of IL8 expression was determined in GC population specimens. IL8-targeted by RNA interference or reparixin reversed chemotherapy resistance with limited toxicity in vivo and vitro experiments. Sequential treatment with first-line, second-line chemotherapy and reparixin inhibited GC growth, reduced toxicity and prolonged survival. Collectively, our study provides a therapeutic strategy that targeting IL8 as a sequential therapy after chemotherapy resistance in advanced GC.
Collapse
|
4
|
Fratter A, Biagi D, Giacomini I, Montopoli M, Cocetta V. Novel Adenosine Triphosphate-Based Nutraceutical Formulation to Prevent Non-Steroidal Anti-Inflammatory Drug Enteric Cell Toxicity: Preliminary In Vitro Evidence. J Med Food 2021; 24:1293-1303. [PMID: 34491844 DOI: 10.1089/jmf.2021.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed and self-prescribed drugs to treat inflammation and pain associated with several conditions. Although their efficacy and overall safety have been recognized when used according to medical prescriptions and for a short period time, their acute impact on enteric physiology has rarely been studied. NSAIDs are known to cause gastrointestinal side effects due to their intrinsic mechanism of action, which involves prostaglandins synthesis, leading to impaired mucopolysaccharide layer production. Despite this well-known and investigated side effect, the short- and long-term influences of acute administration of these drugs on the biochemical environment of enteric cells are not well understood. This study investigates the rate of adenosine triphosphate (ATP) loss and permeability alterations occurring in a model of human enteric cells, as a consequence of acute administration of NSAIDs as major perpetrators of enteric toxicity. For the first time, we investigate the ability of a novel ATP-containing formulation to prevent ATP hydrolysis in the stomach and ensure its delivery at the proximal duodenal site.
Collapse
Affiliation(s)
- Andrea Fratter
- Labomar SPA, Nutraceutical Research and Innovation Department, Istrana, Treviso, Italy.,Italian Society of Nutraceutical Formulators (SIFNut), Castelfranco Veneto, Treviso, Italy
| | - Damiano Biagi
- Labomar SPA, Nutraceutical Research and Innovation Department, Istrana, Treviso, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead. Eur J Med Chem 2019; 185:111853. [PMID: 31732253 DOI: 10.1016/j.ejmech.2019.111853] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Immune suppression in the tumor microenvironment (TME) is an intractable issue in anti-cancer immunotherapy. The chemokine receptors CXCR1 and CXCR2 recruit immune suppressive cells such as the myeloid derived suppressor cells (MDSCs) to the TME. Therefore, CXCR1/2 antagonists have aroused pharmaceutical interest in recent years. In this review, the medicinal chemistry of CXCR1/2 antagonists and their relevance in cancer immunotherapy have been summarized. The development of the drug candidates, along with their design rationale, clinical status and current challenges have also been discussed.
Collapse
|
6
|
Dan D, Bruckmaier RM, Wellnitz O. Ketoprofen affects the mammary immune response in dairy cows in vivo and in vitro. J Dairy Sci 2018; 101:11321-11329. [DOI: 10.3168/jds.2018-15034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
|
7
|
Guevara C, Fernandez AC, Cardenas R, Suarez-Roca H. Reduction of spinal PGE2 concentrations prevents swim stress-induced thermal hyperalgesia. Neurosci Lett 2015; 591:110-114. [DOI: 10.1016/j.neulet.2015.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
|
8
|
Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proc Natl Acad Sci U S A 2014; 111:16937-42. [PMID: 25385614 DOI: 10.1073/pnas.1417365111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic pain resulting from inflammatory and neuropathic disorders causes considerable economic and social burden. Pharmacological therapies currently available for certain types of pain are only partially effective and may cause severe adverse side effects. The C5a anaphylatoxin acting on its cognate G protein-coupled receptor (GPCR), C5aR, is a potent pronociceptive mediator in several models of inflammatory and neuropathic pain. Although there has long been interest in the identification of C5aR inhibitors, their development has been complicated, as for many peptidomimetic drugs, mostly by poor drug-like properties. Herein, we report the de novo design of a potent and selective C5aR noncompetitive allosteric inhibitor, DF2593A, guided by the hypothesis that an allosteric site, the "minor pocket," previously characterized in CXC chemokine receptors-1 and -2, is functionally conserved in the GPCR class. In vitro, DF2593A potently inhibited C5a-induced migration of human and rodent neutrophils. In vivo, oral administration of DF2593A effectively reduced mechanical hyperalgesia in several models of acute and chronic inflammatory and neuropathic pain, without any apparent side effects. Mechanical hyperalgesia after spared nerve injury was also reduced in C5aR(-/-) mice compared with WT mice. Furthermore, treatment of C5aR(-/-) mice with DF2593A did not produce any further antinociceptive effect compared with C5aR(-/-) mice treated with vehicle. The successful medicinal chemistry strategy confirms that a conserved minor pocket is amenable for the rational design of selective inhibitors and the pharmacological results support that the allosteric blockade of the C5aR represents a highly promising therapeutic approach to control chronic inflammatory and neuropathic pain.
Collapse
|
9
|
Boppana NB, Devarajan A, Gopal K, Barathan M, Bakar SA, Shankar EM, Ebrahim AS, Farooq SM. Blockade of CXCR2 signalling: A potential therapeutic target for preventing neutrophil-mediated inflammatory diseases. Exp Biol Med (Maywood) 2014; 239:509-18. [DOI: 10.1177/1535370213520110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) play a key role in host innate immune responses by migrating to the sites of inflammation. Furthermore, PMN recruitment also plays a significant role in the pathophysiology of a plethora of inflammatory disorders such as chronic obstructive pulmonary disease (COPD), gram negative sepsis, inflammatory bowel disease (IBD), lung injury, and arthritis. Of note, chemokine-dependent signalling is implicated in the amplification of immune responses by virtue of its role in PMN chemotaxis in most of the inflammatory diseases. It has been clinically established that impediment of PMN recruitment ameliorates disease severity and provides relief in majority of other immune-associated disorders. This review focuses on different novel approaches clinically proven to be effective in blocking chemokine signalling associated with PMN recruitment that includes CXCR2 antagonists, chemokine analogs, anti-CXCR2 monoclonal antibodies, and CXCR2 knock-out models. It also highlights the significance of the utility of nanoparticles in drugs used for blocking migration of PMN to the sites of inflammation.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Westwood, CA 90095, USA
| | - Kaliappan Gopal
- Department of Orthopedics, Faculty of Medicine, National Orthopedics Center for Excellence in Research and Learning (NOCERAL), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Sazaly A Bakar
- Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Esaki M Shankar
- Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Abdul S Ebrahim
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Shukkur M Farooq
- Department of Pharmacy Practice, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Pietrosimone KM, Bhandari S, Lemieux MG, Knecht DA, Lynes MA. In vitro assays of chemotaxis as a window into mechanisms of toxicant-induced immunomodulation. ACTA ACUST UNITED AC 2013; 58:Unit 18.17.. [PMID: 24510542 DOI: 10.1002/0471140856.tx1817s58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dysregulated cell movement can lead to developmental abnormalities, neoplasia, and immune system disorders, and there are a variety of contexts in which xenobiotics (and biologic) effects on this movement are of interest. Many toxins and toxicants have been shown to disrupt controlled cell movement. Identification of compounds that affect cell movement is crucial to drug discovery. Drug components may have unexpected consequences with respect to cell motility, which would exclude these compounds in drug development. Finally, the development of drugs that target chemotactic pathways may be useful in the treatment of tumors, which often reprogram chemotactic pathways to become metastatic. The effects of these agents on cell movement can be measured using several different in vitro chemotactic assays. This review details the procedures of three in vitro measurements of chemotaxis: the Boyden chamber, the under-agarose assay, and the automated, real-time, ECIS/Taxis assay, and discusses the inferences that can be drawn from the results of such studies.
Collapse
Affiliation(s)
- Kathryn M Pietrosimone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | | | | | | | | |
Collapse
|
11
|
Hertzer KM, Donald GW, Hines OJ. CXCR2: a target for pancreatic cancer treatment? Expert Opin Ther Targets 2013; 17:667-80. [PMID: 23425074 DOI: 10.1517/14728222.2013.772137] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Pancreatic cancer, a leading cause of cancer deaths worldwide, is very aggressive and has minimally effective treatment options. For those who have no surgical options, medical treatments are limited. The chemokine receptor CXCR2 has become the subject of much interest recently because of multiple studies indicating its involvement in cancer and inflammatory conditions. Research now indicates that CXCR2 and its ligands are intimately involved in tumor regulation and growth and that inhibition of its function shows promising results in multiple cancer types, including pancreatic cancer. AREAS COVERED In this study, the authors review basic molecular and structural details of CXCR2, as well as the known functions of CXCR2 and several of its ligands in inflammation and cancer biology with specific attention to pancreatic cancer. Then the future possibilities and questions remaining for pharmacological intervention against CXCR2 in pancreatic cancer are explored. EXPERT OPINION Many current inhibitory strategies already exist for targeting CXCR2 in vitro as well as in vivo. Clinically speaking, CXCR2 is an exciting potential target for pancreatic cancer; however, CXCR2 is functionally important for multiple processes and therapeutic options would benefit from further work toward understanding of these roles as well as structural and target specificity.
Collapse
Affiliation(s)
- Kathleen M Hertzer
- Hirshberg Translational Pancreatic Cancer Research Laboratory, David Geffen School of Medicine at UCLA, Department of Surgery , 675 Charles E Young Drive, MRL 2535, Los Angeles, CA 90095 , USA
| | | | | |
Collapse
|
12
|
Abstract
Leukocyte recruitment to sites of infection or tissue damage plays a crucial role for the innate immune response. Chemokine-dependent signaling in immune cells is a very important mechanism leading to integrin activation and leukocyte recruitment. CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. During the last years, several studies were performed investigating the role of CXCR2 in different diseases. Until now, many CXCR2 inhibitors are tested in animal models and clinical trials and promising results were obtained. This review gives an overview of the structure of CXCR2 and the signaling pathways that are activated following CXCR2 stimulation. We discuss in detail the role of this chemokine receptor in different disease models including acute lung injury, COPD, sepsis, and ischemia-reperfusion-injury. Furthermore, this review summarizes the results of clinical trials which used CXCR2 inhibitors.
Collapse
Affiliation(s)
- Anika Stadtmann
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster Münster, Germany
| | | |
Collapse
|
13
|
Donalisio C, Barbero R, Cuniberti B, Vercelli C, Casalone M, Re G. Effects of flunixin meglumine and ketoprofen on mediator production in ex vivo and in vitro models of inflammation in healthy dairy cows. J Vet Pharmacol Ther 2012; 36:130-9. [PMID: 22724509 DOI: 10.1111/j.1365-2885.2012.01396.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, ex vivo assays were carried out in dairy cows to evaluate the anti-inflammatory effects of two nonsteroidal anti-inflammatory drugs: ketoprofen (KETO) and flunixin meglumine (FM). Twelve healthy Holstein dairy cattle were randomly allocated to two groups (n=6): group 1 received FM and group 2 received KETO at recommended therapeutic dosages. The anti-inflammatory effects of both drugs were determined by measuring the production of coagulation-induced thromboxane B2 (TXB2 ), lipopolysaccharides (LPS) (10 μg/mL)-induced prostaglandin E2 (PGE2 ), and calcium ionophore (60 μm)-induced leukotrien B4 (LTB4 ). Cytokine production was assessed by measuring tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-8 (CXCL8) concentrations after incubation in the presence of 10 μg/mL LPS. The IC50 of FM and KETO was determined in vitro by determining the concentration of TXB2 and PGE2 in the presence of scalar drug concentrations (10(-9) -10(-3) m). Both FM and KETO inhibited the two COX isoforms in vitro, but showed a preference for COX-1. FM and KETO showed similar anti-inflammatory effects in the cow.
Collapse
Affiliation(s)
- C Donalisio
- Division of Pharmacology and Toxicology, Department of Animal Pathology, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Paskauskas S, Parseliunas A, Kerkadze V, Nobiling R, Schmidt J, Ryschich E. Blockade of leukocyte haptokinesis and haptotaxis by ketoprofen, diclofenac and SC-560. BMC Immunol 2011; 12:64. [PMID: 22078067 PMCID: PMC3247092 DOI: 10.1186/1471-2172-12-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/12/2011] [Indexed: 02/06/2023] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAID) represent a one of the most widely used anti-inflammatory substances. Their anti-inflammatory effects are mainly based on inhibition of cyclooxygenase. The potential direct effect of NSAID on leukocyte migration was poorly investigated. Using time-lapse microscopy and 96-well fluorescence-based assay, we studied the effect of three different NSAID, ketoprofen, diclofenac and SC-560, on leukocyte haptokinesis and haptotaxis in vivo and in vitro. Results NSAID induced an immediate inhibiting effect on leukocyte migration both in vitro and in vivo. This effect was dose-dependent and was not restricted to a specific type of leukocytes. The inhibition of leukocyte migration by NSAID was partially re-stored after removal of inhibiting agent. Only complete blockade of leukocyte migration was accompanied by a strong reduction of [Ca2+]i. Conclusions NSAID strongly supress leukocyte migration. The results of the present study may have important clinical implications since blockade of leukocyte migration can be achieved after topical application of NSAID.
Collapse
|
15
|
Srinivas M, Medaiah S, Girish S, Anil M, Pai J, Walvekar A. The effect of ketoprofen in chronic periodontitis: A clinical double-blind study. J Indian Soc Periodontol 2011; 15:255-9. [PMID: 22028513 PMCID: PMC3200022 DOI: 10.4103/0972-124x.85670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 08/21/2011] [Indexed: 11/21/2022] Open
Abstract
Background: The objective of this double-blind clinical trial was to evaluate the effects of the nonsteroidal anti-inflammatory drug (NSAID), ketoprofen, on patients with chronic periodontitis. Materials and Methods: Two similar local drug delivery preparations of a poloxamen gel containing 1.5% ketoprofen and a placebo were indigenously prepared for this purpose. Ten subjects aged 33-55 years with moderate to severe chronic periodontitis were recruited and were monitored for a period of 90 days. Three sites in each patient (total 30 sites) with a probing pocket depth of 5-8 mm were selected and divided randomly into three groups: 1) group A: scaling and rootplaning (SRP) + drug A; 2) group B: SRP + drug B; and 3) group C: SRP. Clinical parameters and blood smear (from intracrevicular blood) were assessed to determine the differential count and Arneth index. All parameters were assessed at baseline, 30 days and 90 days, respectively. Results: Highly significant values were achieved for plaque index (P=0.00), and significant values were obtained for gingival index (P=0.044). Reduction in bleeding on probing was found to be highly significant. Probing depth and clinical attachment level showed no inter group variation. Conclusion: The results of this double-blind trial indicate that the combined effect of locally delivered ketoprofen with SRP was more effective in controlling periodontal disease than SRP alone.
Collapse
Affiliation(s)
- M Srinivas
- Department of Periodontics, Coorg Institute of Dental Sciences, Coorg, Karnataka, India
| | | | | | | | | | | |
Collapse
|
16
|
Benedictus L, Jorritsma R, Knijn H, Vos P, Koets A. Chemotactic activity of cotyledons for mononuclear leukocytes related to occurrence of retained placenta in dexamethasone induced parturition in cattle. Theriogenology 2011; 76:802-9. [DOI: 10.1016/j.theriogenology.2011.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 11/16/2022]
|
17
|
Vianna P, Bauer ME, Dornfeld D, Chies JAB. Distress conditions during pregnancy may lead to pre-eclampsia by increasing cortisol levels and altering lymphocyte sensitivity to glucocorticoids. Med Hypotheses 2011; 77:188-91. [DOI: 10.1016/j.mehy.2011.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/08/2011] [Indexed: 02/05/2023]
|
18
|
Nafea EH, Marson A, Poole-Warren LA, Martens PJ. Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 2011; 154:110-22. [PMID: 21575662 DOI: 10.1016/j.jconrel.2011.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/21/2011] [Indexed: 12/31/2022]
Abstract
Cell-based medicine has recently emerged as a promising cure for patients suffering from various diseases and disorders that cannot be cured/treated using technologies currently available. Encapsulation within semi-permeable membranes offers transplanted cell protection from the surrounding host environment to achieve successful therapeutic function following in vivo implantation. Apart from the immunoisolation requirements, the encapsulating material must allow for cell survival and differentiation while maintaining its physico-mechanical properties throughout the required implantation period. Here we review the progress made in the development of cell encapsulation technologies from the mass transport side, highlighting the essential requirements of materials comprising immunoisolating membranes. The review will focus on hydrogels, the most common polymers used in cell encapsulation, and discuss the advantages of these materials and the challenges faced in the modification of their immunoisolating and permeability characteristics in order to optimize their function.
Collapse
Affiliation(s)
- E H Nafea
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052 NSW, Australia
| | | | | | | |
Collapse
|
19
|
Mihara K, Wijkmans J. Low Molecular Weight CXCR2 Antagonists as Promising Therapeutics. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527631995.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Fan H, Hall P, Santos LL, Gregory JL, Fingerle-Rowson G, Bucala R, Morand EF, Hickey MJ. Macrophage migration inhibitory factor and CD74 regulate macrophage chemotactic responses via MAPK and Rho GTPase. THE JOURNAL OF IMMUNOLOGY 2011; 186:4915-24. [PMID: 21411731 DOI: 10.4049/jimmunol.1003713] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) promotes leukocyte recruitment to sites of inflammation. However, whether this stems from a direct effect on leukocyte migration is unknown. Furthermore, the role of the MIF-binding protein CD74 in this response has not been investigated. Therefore, the aim of this study was to examine the contributions of MIF and CD74 to chemokine-induced macrophage recruitment. Intravital microscopy studies demonstrated that CCL2-induced leukocyte adhesion and transmigration were reduced in MIF(-/-) and CD74(-/-) mice. MIF(-/-) and CD74(-/-) macrophages also exhibited reduced chemotaxis in vitro, although CD74(-/-) macrophages showed increased chemokinesis. Reduced CCL2-induced migration was associated with attenuated MAPK phosphorylation, RhoA GTPase activity, and actin polymerization in MIF(-/-) and CD74(-/-) macrophages. Furthermore, in MIF(-/-) macrophages, MAPK phosphatase-1 was expressed at elevated levels, providing a potential mechanism for the reduction in MAPK phosphorylation in MIF-deficient cells. No increase in MAPK phosphatase-1 expression was observed in CD74(-/-) macrophages. In in vivo experiments assessing the link between MIF and CD74, combined administration of MIF and CCL2 increased leukocyte adhesion in both MIF(-/-) and CD74(-/-) mice, showing that CD74 was not required for this MIF-induced response. Additionally, although leukocyte recruitment induced by administration of MIF alone was reduced in CD74(-/-) mice, consistent with a role for CD74 in leukocyte recruitment induced by MIF, MIF-treated CD74(-/-) mice displayed residual leukocyte recruitment. These data demonstrate that MIF and CD74 play previously unappreciated roles in CCL2-induced macrophage adhesion and migration, and they indicate that MIF and CD74 mediate this effect via both common and independent mechanisms.
Collapse
Affiliation(s)
- Huapeng Fan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Greene SA. Chronic pain: pathophysiology and treatment implications. Top Companion Anim Med 2010; 25:5-9. [PMID: 20188333 DOI: 10.1053/j.tcam.2009.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/07/2009] [Indexed: 11/11/2022]
Abstract
An examination of the current understanding of the processes and related therapies aimed at treatment of chronic pain in animals is presented. Discussion focuses on mechanisms involved in the neural pathways of chronic pain, differences between acute and chronic pain, and pharmacologic options for chronic pain as they relate to inflammatory, neoplastic, and neuropathic processes.
Collapse
Affiliation(s)
- Stephen A Greene
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA.
| |
Collapse
|
22
|
Sablone MR, Cesta MC, Moriconi A, Aramini A, Bizzarri C, Giacinto CD, Bitondo RD, Gloaguen I, Aschi M, Crucianelli M, Bertini R, Allegretti M. Structure–Activity Relationship of novel phenylacetic CXCR1 inhibitors. Bioorg Med Chem Lett 2009; 19:4026-30. [DOI: 10.1016/j.bmcl.2009.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
|
23
|
Cunha TM, Barsante MM, Guerrero AT, Verri WA, Ferreira SH, Coelho FM, Bertini R, Di Giacinto C, Allegretti M, Cunha FQ, Teixeira MM. Treatment with DF 2162, a non-competitive allosteric inhibitor of CXCR1/2, diminishes neutrophil influx and inflammatory hypernociception in mice. Br J Pharmacol 2008; 154:460-70. [PMID: 18362895 DOI: 10.1038/bjp.2008.94] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil migration into tissues is involved in the genesis of inflammatory pain. Here, we addressed the hypothesis that the effect of CXC chemokines on CXCR1/2 is important to induce neutrophil migration and inflammatory hypernociception. EXPERIMENTAL APPROACH Mice were treated with a non-competitive allosteric inhibitor of CXCR1/2, DF 2162, and neutrophil influx and inflammatory hypernociception were assessed by myeloperoxidase assay and electronic pressure meter test, respectively, in various models of inflammation. KEY RESULTS DF 2162 inhibited neutrophil chemotaxis induced by CXCR1/2 ligands but had no effect on CXCL8 binding to neutrophils. A single mutation of the allosteric site at CXCR1 abrogated the inhibitory effect of DF 2162 on CXCL-8-induced chemotaxis. Treatment with DF 2162 prevented influx of neutrophils and inflammatory hypernociception induced by CXCL1 in a dose-dependent manner. The compound inhibited neutrophil influx and inflammatory hypernociception induced by carrageenan, lipopolysaccharide and zymosan, but not hypernociception induced by dopamine and PGE(2). DF 2162 had a synergistic effect with indomethacin or the absence of TNFR1 to abrogate carrageenan-induced hypernociception. Treatment with DF 2162 diminished neutrophil influx, oedema formation, disease score and hypernociception in collagen-induced arthritis. CONCLUSIONS AND IMPLICATIONS CXCR1/2 mediates neutrophil migration and is involved in the cascade of events leading to inflammatory hypernociception. In addition to modifying fundamental pathological processes, non-competitive allosteric inhibitors of CXCR1/2 may have the additional benefit of providing partial relief for pain and, hence, may be a valid therapeutic target for further studies aimed at the development of new drugs for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- T M Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C, Luca G, Basta G, Calafiore R. Preparation and in vitro and in vivo characterization of composite microcapsules for cell encapsulation. Int J Pharm 2006; 324:27-36. [PMID: 16949775 DOI: 10.1016/j.ijpharm.2006.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/18/2006] [Accepted: 07/18/2006] [Indexed: 01/07/2023]
Abstract
Cell encapsulation technology raises great hopes in medicine and biotechnology. Transplantation of encapsulated pancreatic islets represents a promising approach to the final cure of type 1 diabetes mellitus. Unfortunately, long-term graft survival and functional competence remain only partially fulfilled. Failure was often ascribed to the lack of biocompatibility generating inflammatory response, limited immunobarrier competence, hypoxia, and low beta-cell replication. In the present work, ketoprofen loaded biodegradable microspheres, embedded into alginate/poly-L-ornithine/alginate microcapsules, were prepared in order to release ketoprofen at early stages after implantation. Morphology, size, in vitro release behaviour, and in vivo biocompatibility were assessed. The effect of some preparation parameters was also evaluated. Polymeric microspheres were spherical and smooth, two populations of about 5 and 20 microm of mean diameter characterized the particle size distribution. A high burst effect was observed for all preparations during in vitro release studies. Ketoprofen, plasticizing the polymeric matrix, could be responsible of this release behaviour. Alginate/poly-L-ornithine/alginate microcapsules were not modified upon ketoprofen loaded microspheres encapsulation and an optimal dispersion was obtained. Composite system showed good biocompatibility when a high molecular weight polymer was employed. Therefore a potentially suitable composite system for cell encapsulation was obtained. This system may be successfully used to release NSAIDs and other active molecules capable to improve cell system functional performance and life-span.
Collapse
Affiliation(s)
- Paolo Blasi
- Department of Chemistry and Technology of Drugs, School of Pharmacy, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bizzarri C, Beccari AR, Bertini R, Cavicchia MR, Giorgini S, Allegretti M. ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther 2006; 112:139-49. [PMID: 16720046 DOI: 10.1016/j.pharmthera.2006.04.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 12/15/2022]
Abstract
ELR+ CXC chemokines, by direct interaction with their cell surface receptors CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2), are believed to be crucially involved in the direct migration and activation of leukocytes. ELR+ CXC chemokines are supposed to play a key role in several inflammatory diseases and this makes ELR+ CXC chemokines and their receptors attractive therapeutic targets. The first aim of this review is to discuss the potential pathological role of ELR+ CXC chemokines in different pathologies, including ulcerative colitis (UC), ischaemia/reperfusion injury (RI), bronchiolitis obliterans syndrome (BOS) and tumor progression. Moreover, the most recently described inhibitors of ELR+ CXC chemokines and their therapeutic indications will be reviewed. Finally, the mode of action and the potential therapeutical use of reparixin, a new potent and selective inhibitor of CXCR1/2 activity, and its chemical derivatives are also discussed.
Collapse
Affiliation(s)
- Cinzia Bizzarri
- Dompé Research Centre, Dompé pha.r.ma. s.p.a., Via Campo di Pile, 67100 L'Aquila, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Rambeaud M, Pighetti GM. Impaired neutrophil migration associated with specific bovine CXCR2 genotypes. Infect Immun 2005; 73:4955-9. [PMID: 16041010 PMCID: PMC1201266 DOI: 10.1128/iai.73.8.4955-4959.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/17/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022] Open
Abstract
Bovine mastitis continues to be the most detrimental factor for profitable dairying. Recent research conducted within our laboratory has identified a genetic marker in the CXCR2 gene associated with mastitis susceptibility. The objective of the present study was to evaluate the migratory ability of neutrophils from cows with different CXCR2 +777 genotypes. Neutrophils isolated from peripheral blood of 30 Holstein cows were tested for in vitro migration and adhesion molecule expression. Cows with the CC or GC genotype at CXCR2 +777 showed significantly lower neutrophil migration to recombinant human interleukin-8 (rhIL-8) than cows with the GG genotype (P < 0.05). Cows with the CC genotype at CXCR2 +777 also showed decreased neutrophil migration to zymosan-activated serum compared to these same cows (P < 0.05). Decreased upregulation of CD18 expression was observed after stimulation with rhIL-8 in cows expressing the CXCR2 +777 CC genotype compared to cows expressing the GG genotype (P < 0.05). A similar trend was observed for CD11b (P < 0.10). However, no difference in CD62 downregulation was observed with respect to genotype. These results provide initial evidence for a phenotypic association between a single nucleotide polymorphism and neutrophil function in dairy cows, as well as potential insight into specific mechanisms affected in cows more susceptible to mastitis.
Collapse
Affiliation(s)
- M Rambeaud
- Department of Animal Science, The University of Tennessee, 2640 Morgan Circle, 114 McCord Hall, Knoxville, TN 37996, USA
| | | |
Collapse
|
27
|
Allegretti M, Bertini R, Cesta MC, Bizzarri C, Di Bitondo R, Di Cioccio V, Galliera E, Berdini V, Topai A, Zampella G, Russo V, Di Bello N, Nano G, Nicolini L, Locati M, Fantucci P, Florio S, Colotta F. 2-Arylpropionic CXC Chemokine Receptor 1 (CXCR1) Ligands as Novel Noncompetitive CXCL8 Inhibitors. J Med Chem 2005; 48:4312-31. [PMID: 15974585 DOI: 10.1021/jm049082i] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CXC chemokine CXCL8/IL-8 plays a major role in the activation and recruitment of polymorphonuclear (PMN) cells at inflammatory sites. CXCL8 activates PMNs by binding the seven-transmembrane (7-TM) G-protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2). (R)-Ketoprofen (1) was previously reported to be a potent and specific noncompetitive inhibitor of CXCL8-induced human PMNs chemotaxis. We report here molecular modeling studies showing a putative interaction site of 1 in the TM region of CXCR1. The binding model was confirmed by alanine scanning mutagenesis and photoaffinity labeling experiments. The molecular model driven medicinal chemistry optimization of 1 led to a new class of potent and specific inhibitors of CXCL8 biological activity. Among these, repertaxin (13) was selected as a clinical candidate drug for prevention of post-ischemia reperfusion injury.
Collapse
Affiliation(s)
- Marcello Allegretti
- Dompé Research and Development, Dompé S.p.A., via Campo di Pile, 67100, L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sacerdote P, . MB. Lornoxicam Inhibits Human Polymorphonuclear Cell Migration Induced by fMLP, Interleukin-8 and Substance P. INT J PHARMACOL 2005. [DOI: 10.3923/ijp.2005.180.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Kona-Boun JJ, Silim A, Troncy E. Immunologic aspects of veterinary anesthesia and analgesia. J Am Vet Med Assoc 2005; 226:355-63. [PMID: 15702683 DOI: 10.2460/javma.2005.226.355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jean-Jacques Kona-Boun
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | | |
Collapse
|
30
|
Tsai WC, Rodriguez ML, Young KS, Deng JC, Thannickal VJ, Tateda K, Hershenson MB, Standiford TJ. Azithromycin Blocks Neutrophil Recruitment inPseudomonasEndobronchial Infection. Am J Respir Crit Care Med 2004; 170:1331-9. [PMID: 15361366 DOI: 10.1164/rccm.200402-200oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Macrolides exert their effects on the host by modulation of immune responses. In this study, we assessed the therapeutic efficacy of azithromycin in a murine model of mucoid Pseudomonas aeruginosa endobronchial infection. The clearance of Pseudomonas from the airway of mice treated with the macrolide azithromycin was not different than untreated mice challenged with Pseudomonas beads. However, the azithromycin-treated mice showed a remarkable reduction in lung cellular infiltrate in response to Pseudomonas beads, as compared with untreated mice. This effect was associated with significant decreases in lung levels of tumor necrosis factor-alpha and keratinocyte-derived chemokine in azithromycin-treated mice compared with untreated mice. Furthermore, there was a significant reduction in the response of both mouse and human neutrophils to chemokine-dependent and -independent chemoattractants when studied in vitro. Inhibition of chemotaxis correlated with azithromycin-mediated inhibition of extracellular signal-regulated kinase-1 and -2 activation. This study indicates that the azithromycin treatment in vivo results in significant reduction in airway-specific inflammation, which occurs in part by inhibition of neutrophil recruitment to the lung through reduction in proinflammatory cytokine expression and inhibition of neutrophil migration via the extracellular signal-regulated kinase-1 and -2 signal transduction pathway.
Collapse
Affiliation(s)
- Wan C Tsai
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109-0642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Catusse J, Struyf S, Wuyts A, Weyler M, Loos T, Gijsbers K, Gouwy M, Proost P, Van Damme J. Rabbit neutrophil chemotactic protein (NCP) activates both CXCR1 and CXCR2 and is the functional homologue for human CXCL6. Biochem Pharmacol 2004; 68:1947-55. [PMID: 15476666 DOI: 10.1016/j.bcp.2004.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 07/09/2004] [Indexed: 11/19/2022]
Abstract
Neutrophil chemotactic protein (NCP) is a rabbit CXC chemokine with activating and chemotactic properties on neutrophilic granulocytes. Although its selective activity on neutrophils is demonstrated, its interactions with specific chemokine receptors are not defined. For further functional characterization, NCP was chemically synthesized and was found to be equipotent as natural NCP in neutrophil chemotaxis. To identify its human homologue, we separately expressed two potential rabbit NCP receptors (CXCR1 and CXCR2) in Jurkat cells. Pure synthetic NCP was equally efficient to promote chemotaxis through either rabbit CXCR1 or CXCR2. Moreover, chemotaxis assays on rabbit CXCR1 and CXCR2 transfectants showed that NCP uses the same receptors as interleukin-8 (IL-8), a major rabbit CXC chemokine, but not rabbit GROalpha, which only recognized CXCR2. In addition, specific inhibitors for CXCR1 or CXCR2 reduced rabbit neutrophil chemotaxis induced by NCP and rabbit IL-8. Furthermore, NCP and the structurally related human CXCR1/CXCR2 agonist CXCL6/GCP-2 (granulocyte chemotactic protein-2) cross-desensitized each other in intracellular calcium release assays on human neutrophils, further indicating that both chemokines share the same receptors. The inflammatory role of NCP was also evidenced by its potent granulocytosis inducing capacity in rabbits upon systemic administration. This study provides in vitro and in vivo evidences that NCP is the functional rabbit homologue for human CXCL6/GCP-2 rather than the most related CXCR2 agonist CXCL5/ENA-78 (epithelial cell-derived neutrophil activating peptide-78). It is concluded that the rabbit is a better model to study human neutrophil activation compared to mice, which lack CXCL8/IL-8.
Collapse
Affiliation(s)
- Julie Catusse
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E, Martinez FO, Di Bitondo R, Troiani G, Sabbatini V, D'Anniballe G, Anacardio R, Cutrin JC, Cavalieri B, Mainiero F, Strippoli R, Villa P, Di Girolamo M, Martin F, Gentile M, Santoni A, Corda D, Poli G, Mantovani A, Ghezzi P, Colotta F. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A 2004; 101:11791-6. [PMID: 15282370 PMCID: PMC511013 DOI: 10.1073/pnas.0402090101] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Indexed: 01/28/2023] Open
Abstract
The chemokine CXC ligand 8 (CXCL8)/IL-8 and related agonists recruit and activate polymorphonuclear cells by binding the CXC chemokine receptor 1 (CXCR1) and CXCR2. Here we characterize the unique mode of action of a small-molecule inhibitor (Repertaxin) of CXCR1 and CXCR2. Structural and biochemical data are consistent with a noncompetitive allosteric mode of interaction between CXCR1 and Repertaxin, which, by locking CXCR1 in an inactive conformation, prevents signaling. Repertaxin is an effective inhibitor of polymorphonuclear cell recruitment in vivo and protects organs against reperfusion injury. Targeting the Repertaxin interaction site of CXCR1 represents a general strategy to modulate the activity of chemoattractant receptors.
Collapse
|
33
|
Souza DG, Bertini R, Vieira AT, Cunha FQ, Poole S, Allegretti M, Colotta F, Teixeira MM. Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br J Pharmacol 2004; 143:132-42. [PMID: 15302676 PMCID: PMC1575259 DOI: 10.1038/sj.bjp.0705862] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Neutrophils are thought to play a major role in the mediation of reperfusion injury. CXC chemokines are known inducers of neutrophil recruitment. Here, we assessed the effects of Repertaxin, a novel low molecular weight inhibitor of human CXCL8 receptor activation, on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in the rat. 2. Pre-incubation of rat neutrophils with Repertaxin (10(-11)-10(-6) m) inhibited the chemotaxis of neutrophils induced by human CXCL8 or rat CINC-1, but not that induced by fMLP, PAF or LTB(4), in a concentration-dependent manner. Repertaxin also prevented CXCL8-induced calcium influx but not CXCL8 binding to purified rat neutrophils. 2. In a model of mild I/R injury (30 min of ischaemia and 30 min of reperfusion), Repertaxin dose-dependently (3-30 mg kg(-1)) inhibited the increase in vascular permeability and neutrophil influx. Maximal inhibition occurred at 30 mg kg(-1). 4. Following severe I/R injury (120 min of ischaemia and 120 min of reperfusion), Repertaxin (30 mg kg(-1)) markedly prevented neutrophil influx, the increase in vascular permeability both in the intestine and the lungs. Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. 5. Repertaxin effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-alpha and the reperfusion-associated lethality. 6. For comparison, we also evaluated the effects of an anti-CINC-1 antibody in the model of severe I/R injury. Overall, the antibody effectively prevented tissue injury, systemic inflammation and lethality. However, the effects of the antibody were in general of lower magnitude than those of Repertaxin. 7. In conclusion, CINC-1 and possibly other CXC chemokines, acting on CXCR2, have an important role during I/R injury. Thus, drugs, such as Repertaxin, developed to block the function of the CXCR2 receptor may be effective at preventing reperfusion injury in relevant clinical situations.
Collapse
Affiliation(s)
- Danielle G Souza
- Immunopharmacology, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Angelica T Vieira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Q Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Steve Poole
- National Institute of Biological Standards and Control
| | | | | | - Mauro M Teixeira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Author for correspondence:
| |
Collapse
|
34
|
Di Cioccio V, Strippoli R, Bizzarri C, Troiani G, Cervellera MN, Gloaguen I, Colagrande A, Cattozzo EM, Pagliei S, Santoni A, Colotta F, Mainiero F, Bertini R. Key role of proline-rich tyrosine kinase 2 in interleukin-8 (CXCL8/IL-8)-mediated human neutrophil chemotaxis. Immunology 2004; 111:407-15. [PMID: 15056377 PMCID: PMC1782435 DOI: 10.1111/j.1365-2567.2004.01822.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/25/2003] [Accepted: 01/06/2004] [Indexed: 11/30/2022] Open
Abstract
The signalling pathways leading to CXCL8/IL-8-induced human neutrophil migration have not been fully characterized. The present study demonstrates that CXCL8 induces tyrosine phosphorylation as well as enzymatic activity of proline-rich tyrosine kinase 2 (Pyk2), a non-receptor protein tyrosine kinase (PTK), in human neutrophils. Induction of Pyk2 tyrosine phosphorylation by CXCL8 is regulated by Src PTK activation, whereas it is unaffected by phosphatidylinositol 3-kinase activation. Inhibition of Pyk2 activation by PP1, a Src PTK inhibitor, is paralleled by the inhibition of CXCL8-mediated neutrophil chemotaxis. Among CXCL8 receptors, Src protein tyrosine kinase activation selectively regulates CXCR1-mediated polymorphonuclear neutrophil (PMN) chemotaxis. Overexpression of PykM, the kinase-dead mutant of Pyk2, blocks CXCL8-induced chemotaxis of HL-60-derived PMN-like cells, thus pinpointing the key role of Pyk2 in CXCL8-induced chemotaxis.
Collapse
|