1
|
Cao Y, Wu M, Cao Y, Zhu W, Zhou Y. Recent Advances on Integrating Porous Nanomaterials with Chemiluminescence Assays. Chem Asian J 2025; 20:e202401282. [PMID: 39714390 DOI: 10.1002/asia.202401282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Advanced porous nanomaterials have recently been the subject of considerable interest due to their high surface areas, tunable pore structures, high porosity, and ease of modification. In the chemiluminescence (CL) domain, the incorporation of additional pores into nanostructures not only enhances the loading capacity for signal amplification but also allows the confinement effect in a nanoscale microreactor and the controlled release of reaction agents. In light of this, increasing efforts have been made to fabricate various porous nanomaterials and explore their potential applications in CL assays. This review therefore aims to highlight the recent advances in preparation strategies and basic attributes of the CL-related porous nanomaterials. Moreover, it offers a comprehensive summary of the emerging CL sensing applications based on these materials. The key challenges and future perspectives of porous nanomaterials in CL assays are finally discussed.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| | - Ming Wu
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| | - Yu Cao
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| | - Wenlei Zhu
- School of Environment, Nanjing University, 210023, Nanjing, P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), 210023, Nanjing, P. R China
| |
Collapse
|
2
|
Wang X, Li Z, Zhou H, Liu Q, Zhang X, Hu F. Periodontitis Exacerbates Colorectal Cancer by Altering Gut Microbiota-Derived Metabolomics in Mice. J Periodontal Res 2025. [PMID: 39843386 DOI: 10.1111/jre.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
AIM The correlation between periodontitis and colorectal cancer (CRC) has drawn widespread attention. However, how periodontitis affects CRC progression remains unclear. METHODS C57BL/6 mice were used to establish experimental periodontitis and CRC model. Histological alterations of periodontium and colon were observed by hematoxylin and eosin staining. Micro-computed tomography (micro-CT) was applied to evaluate alveolar bone loss (ABL). Tumor growth was detected by immunofluorescence. Gut bacteria were analyzed using 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was performed to observe the alterations of gut microbial metabolites. The detection of associated pathways was carried out using quantitative real-time PCR (qRT-PCR). RESULTS Experimental periodontitis significantly induced increases in tumor number in mice with CRC. Double immunofluorescence for Ki67 and β-catenin, as well as Cyclin D1 and β-catenin, indicated that experimental periodontitis observably promoted tumor growth. 16S rRNA sequencing and untargeted metabolomics analysis displayed that experimental periodontitis altered gut microbial community and metabolite profiles in CRC mice. Notably, we found that experimental periodontitis dramatically increased the level of three oncometabolites (serotonin, adenosine, and spermine) in mice with CRC. CONCLUSION Alterations of gut microbial community and metabolites might be relevant in experimental periodontitis deteriorating CRC.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Zhichao Li
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Haiquan Zhou
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Qianyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Xueyang Zhang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
3
|
Cherian P, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Fiume M, Heldreth B. Safety Assessment of Adenosine as Used in Cosmetics. Int J Toxicol 2024; 43:50S-63S. [PMID: 38146080 DOI: 10.1177/10915818231221790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Adenosine, Adenosine Phosphate, Adenosine Triphosphate, Disodium Adenosine Phosphate, and Disodium Adenosine Triphosphate. These ingredients are reported to function in cosmetics as skin-conditioning agents - miscellaneous. The Panel considered the available data and concluded that the five adenosine ingredients reviewed in this report are safe in cosmetics in the present practices of use and concentration described in this safety assessment.
Collapse
Affiliation(s)
- Priya Cherian
- Cosmetic Ingredient Review Senior Scientific Analyst/Writer
| | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
4
|
Longva AS, Berg K, Weyergang A. Light-enhanced VEGF 121/rGel induce immunogenic cell death and increase the antitumor activity of αCTLA4 treatment. Front Immunol 2023; 14:1278000. [PMID: 38173721 PMCID: PMC10762878 DOI: 10.3389/fimmu.2023.1278000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Immune-checkpoint inhibitors (ICIs) represent a revolution in cancer therapy and are currently implemented as standard therapy within several cancer indications. Nevertheless, the treatment is only effective in a subset of patients, and immune-related adverse effects complicate the improved survival. Adjuvant treatments that can improve the efficacy of ICIs are highly warranted, not only to increase the response rate, but also to reduce the therapeutic ICI dosage. Several treatment modalities have been suggested as ICI adjuvants including vascular targeted treatments and photodynamic therapy (PDT). Photochemical internalization (PCI) is a drug delivery system, based on PDT. PCI is long known to generate an immune response in murine models and was recently shown to enhance the cellular immune response of a vaccine in a clinical study. In the present work we evaluated PCI in combination with the vascular targeting toxin VEGF121/rGel with respect to induction of immune-mediated cell death as well as in vitro ICI enhancement. Methods DAMP signaling post VEGF121/rGel-PCI was assessed in CT26 and MC38 murine colon cancer cell lines. Hypericin-PDT, previously indicated as an highly efficient DAMP inducer (but difficult to utilize clinically), was used as a control. ATP release was detected by a bioluminescent kit while HMGB1 and HSP90 relocalization and secretion was detected by fluorescence microscopy and western blotting. VEGF121/rGel-PCI was further investigated as an αCTLA enhancer in CT26 and MC38 tumors by measurement of tumor growth delay. CD8+ Dependent efficacy was evaluated in vivo using a CD8+ antibody. Results VEGF121/rGel-PCI was shown to induce increased DAMP signaling as compared to PDT and VEGF121/rGel alone and the magnitude was found similar to that induced by Hypericin-PDT. Furthermore, a significant CD8+ dependent enhanced αCTLA-4 treatment effect was observed when VEGF121/rGel-PCI was used as an adjuvant in both tumor models. Conclusions VEGF121/rGel-PCI describes a novel concept for ICI enhancement which induces a rapid CD8+ dependent tumor eradication in both CT26 and MC38 tumors. The concept is based on the combination of intracellular ROS generation and vascular targeting using a plant derived toxin and will be developed towards clinical utilization.
Collapse
Affiliation(s)
| | | | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Renauer P, Park JJ, Bai M, Acosta A, Lee WH, Lin GH, Zhang Y, Dai X, Wang G, Errami Y, Wu T, Clark P, Ye L, Yang Q, Chen S. Immunogenetic Metabolomics Reveals Key Enzymes That Modulate CAR T-cell Metabolism and Function. Cancer Immunol Res 2023; 11:1068-1084. [PMID: 37253111 PMCID: PMC10527769 DOI: 10.1158/2326-6066.cir-22-0565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/26/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we investigated whether it is possible to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism whereby cancer cells suppress T-cell function by generating a metabolically unfavorable tumor microenvironment (TME). In an in silico screen, we identified ADA and PDK1 as metabolic regulators. We then showed that overexpression (OE) of these genes enhanced the cytolysis of CD19-specific chimeric antigen receptor (CAR) T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampened this effect. ADA-OE in CAR T cells improved cancer cytolysis under high concentrations of adenosine, the ADA substrate, and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics analysis of these CAR T cells revealed alterations of global gene expression and metabolic signatures in both ADA- and PDK1-engineered CAR T cells. Functional and immunologic analyses demonstrated that ADA-OE increased proliferation and decreased exhaustion in CD19-specific and HER2-specific CAR T cells. ADA-OE improved tumor infiltration and clearance by HER2-specific CAR T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR T cells and reveal potential targets for improving CAR T-cell therapy.
Collapse
Affiliation(s)
- Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
| | - Jonathan J. Park
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- M.D.-Ph.D. Program, Yale University, West Haven, Connecticut, USA
| | - Meizhu Bai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Arianny Acosta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Won-Ho Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Guang Han Lin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Youssef Errami
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Tulane University, New Orleans, LA, USA
| | - Terence Wu
- West Campus Analytical Core, Mass Spectrometry/Proteomics Facility, West Haven, Connecticut, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Nanjing University, Nanjing, Jiangsu, China
| | - Quanjun Yang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- M.D.-Ph.D. Program, Yale University, West Haven, Connecticut, USA
- Immunobiology Program, Yale University, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Wu-Tsai Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Renauer P, Park JJ, Bai M, Acosta A, Lee WH, Lin GH, Zhang Y, Dai X, Wang G, Errami Y, Wu T, Clark P, Ye L, Yang Q, Chen S. Immunogenetic metabolomics revealed key enzymes that modulate CAR-T metabolism and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532663. [PMID: 36993638 PMCID: PMC10055032 DOI: 10.1101/2023.03.14.532663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically unfavorable tumor microenvironment (TME). Specifically, we use an in silico screen to identify ADA and PDK1 as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific CD8 CAR-T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampens such effect. ADA -OE in CAR-T cells improves cancer cytolysis under high concentrations of adenosine, the ADA substrate and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics in these CAR-Ts reveal alterations of global gene expression and metabolic signatures in both ADA- and PDK1- engineered CAR-T cells. Functional and immunological analyses demonstrate that ADA -OE increases proliferation and decreases exhaustion in α-CD19 and α-HER2 CAR-T cells. ADA-OE improves tumor infiltration and clearance by α-HER2 CAR-T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR-T cells, and reveal potential targets for improving CAR-T based cell therapy. Synopsis The authors identify the adenosine deaminase gene (ADA) as a regulatory gene that reprograms T cell metabolism. ADA-overexpression (OE) in α-CD19 and α-HER2 CAR-T cells increases proliferation, cytotoxicity, memory, and decreases exhaustion, and ADA-OE α-HER2 CAR-T cells have enhanced clearance of HT29 human colorectal cancer tumors in vivo .
Collapse
Affiliation(s)
- Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
| | - Jonathan J. Park
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- M.D.-Ph.D. Program, Yale University, West Haven, Connecticut, USA
| | - Meizhu Bai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Arianny Acosta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Won-Ho Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Guang Han Lin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Youssef Errami
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Terence Wu
- West Campus Analytical Core, Mass Spectrometry/Proteomics Facility, West Haven, Connecticut, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Quanjun Yang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- M.D.-Ph.D. Program, Yale University, West Haven, Connecticut, USA
- Immunobiology Program, Yale University, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Wu-Tsai Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Huh H, Chen DW, Foldvari M, Slavcev R, Blay J. EGFR-targeted bacteriophage lambda penetrates model stromal and colorectal carcinoma tissues, is taken up into carcinoma cells, and interferes with 3-dimensional tumor formation. Front Immunol 2022; 13:957233. [PMID: 36591314 PMCID: PMC9800840 DOI: 10.3389/fimmu.2022.957233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer and other adult solid cancers pose a significant challenge for successful treatment because the tumor microenvironment both hinders the action of conventional therapeutics and suppresses the immune activities of infiltrating leukocytes. The immune suppression is largely the effect of enhanced local mediators such as purine nucleosides and eicosanoids. Genetic approaches have the promise of interfering with these mechanisms of local immunosuppression to allow both intrinsic and therapeutic immunological anticancer processes. Bacterial phages offer a novel means of enabling access into tissues for therapeutic genetic manipulations. Methods We generated spheroids of fibroblastic and CRC cancer cells to model the 3-dimensional stromal and parenchymal components of colorectal tumours. We used these to examine the access and effects of both wildtype (WT) and epidermal growth factor (EGF)-presenting bacteriophage λ (WT- λ and EGF-λ) as a means of delivery of targeted genetic interventions in solid cancers. We used both confocal microscopy of spheroids exposed to AF488-tagged phages, and the recovery of viable phages as measured by plaque-forming assays to evaluate access; and measures of mitochondrial enzyme activity and cellular ATP to evaluate the outcome on the constituent cells. Results Using flourescence-tagged derivatives of these bacteriophages (AF488-WT-λ and AF488-EGF-λ) we showed that phage entry into these tumour microenvironments was possible and that the EGF ligand enabled efficient and persistent uptake into the cancer cell mass. EGF-λ became localized in the intracellular portion of cancer cells and was subjected to subsequent cellular processing. The targeted λ phage had no independent effect upon mature tumour spheroids, but interfered with the early formation and growth of cancer tissues without the need for addition of a toxic payload, suggesting that it might have beneficial effects by itself in addition to any genetic intervention delivered to the tumour. Interference with spheroid formation persisted over the duration of culture. Discussion We conclude that targeted phage technology is a feasible strategy to facilitate delivery into colorectal cancer tumour tissue (and by extension other solid carcinomas) and provides an appropriate delivery vehicle for a gene therapeutic that can reduce local immunosuppression and/or deliver an additional direct anticancer activity.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| |
Collapse
|
8
|
Ren X, Huang L, Wang C, Ge Y, Zhang K, Jiang D, Liu X, Zhang Q, Wang Y. Urinary analysis based on surface-enhanced Raman scattering for the noninvasive screening of lung cancer. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Chen HP, Chen CI, Liu KW, Chen TJ, Tian YF, Kuo YH, Li WS, Tsai HH, Wu LC, Yeh CF, Li CF, Chou CL, Lai HY. High SLC28A2 expression endows an inferior survival for rectal cancer patients managed by neoadjuvant CCRT. Pathol Res Pract 2022; 239:154158. [PMID: 36244249 DOI: 10.1016/j.prp.2022.154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
For rectal cancer patients with stage T3-4 disease or positive lymph node, neoadjuvant concurrent chemoradiotherapy (CCRT) has become the standard treatment, but the clinical outcomes are still far from satisfactory. Accordingly, a more precise predictive tool such as genetic biomarkers is urgently required to optimize therapy decisions. Colorectal cancer (CRC) development has been considerably correlated with cellular metabolic process involving nucleotides, but the underlying molecular mechanisms remain unclear. In this study, we employed a transcriptome dataset comprising 46 rectal adenocarcinoma patients undergoing preoperative CCRT and focused on nucleobase-containing compound metabolic process (GO: 0055134) for data mining. We identified solute carrier family 28 member 2 (SLC28A2) as the most considerably upregulated gene among rectal cancer patients with CCRT resistance. Afterwards, there were a total of 172 rectal cancer tissue blocks procuring from our biobank, and the immunointensity of SLC28A2 was appraised utilizing immunohistochemical staining. Strong SLC28A2 immunointensity was significantly linked to female patients (p = 0.032), vascular invasion (p = 0.021), and post-CCRT tumor invasion and regional lymph node involvement (p < 0.001 and p = 0.005). Notably, patients with strong SLC28A2 immunointensity had no tumor downstaging (p < 0.001). Univariate analysis revealed that high SLC28A2 immunoexpression was considerably unfavorably linked to all three endpoints: local recurrence-free survival (LRFS), metastasis-free survival (MeFS), and disease-specific survival (DSS) (all p ≤ 0.0333). Moreover, both high SLC28A2 immunoexpression and low tumor regression grade were independently unfavorable prognostic factors for all three endpoints (all p ≤ 0.013) in the multivariate analysis. Utilizing function prediction analysis, SLC28A2 upregulation was more likely to be linked with stem cell homeostasis in rectal cancer. In brief, we demonstrated that high SLC28A2 immunoexpression is substantially linked to an advanced stage, poor response to CCRT, and worse patient survival. Consequently, SLC28A2 expression can be a valuable predictive and prognostic marker for rectal cancer patients and be an encouraging therapeutic target for those with CCRT resistance.
Collapse
Affiliation(s)
- Hsin-Pao Chen
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Chih-I Chen
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan; Division of General Medicine Surgery, Department of Surgery, E-DA Hospital, Kaohsiung 824, Taiwan; Department of Information Engineering, I-Shou University, Kaohsiung 840, Taiwan; The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan
| | - Kuang-Wen Liu
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan; College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hsin-Hwa Tsai
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Li-Ching Wu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan; Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan 710, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan.
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan 710, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
10
|
Hou Y, Han R, Sun Y, Luo C, Wang X. Chemiluminescence sensing of adenosine using DNA cross-linked hydrogel-capped magnetic mesoporous silica nanoparticles. Anal Chim Acta 2022; 1195:339386. [DOI: 10.1016/j.aca.2021.339386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
11
|
Patel DA, Blay J. Seeding metastases: The role and clinical utility of circulating tumour cells. Tumour Biol 2021; 43:285-306. [PMID: 34690152 DOI: 10.3233/tub-210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral human blood is a readily-accessible source of patient material in which circulating tumour cells (CTCs) can be found. Their isolation and characterization holds the potential to provide prognostic value for various solid cancers. Enumeration of CTCs from blood is becoming a common practice in informing prognosis and may guide therapy decisions. It is further recognized that enumeration alone does not capture perspective on the heterogeneity of tumours and varying functional abilities of the CTCs to interact with the secondary microenvironment. Characterizing the isolated CTCs further, in particular assessing their functional abilities, can track molecular changes in the disease progress. As a step towards identifying a suite of functional features of CTCs that could aid in clinical decisions, developing a CTC isolation technique based on extracellular matrix (ECM) interactions may provide a more solid foundation for isolating the cells of interest. Techniques based on size, charge, density, and single biomarkers are not sufficient as they underutilize other characteristics of cancer cells. The ability of cancer cells to interact with ECM proteins presents an opportunity to utilize their full character in capturing, and also allows assessment of the features that reveal how cells might behave at secondary sites during metastasis. This article will review some common techniques and recent advances in CTC capture technologies. It will further explore the heterogeneity of the CTC population, challenges they experience in their metastatic journey, and the advantages of utilizing an ECM-based platform for CTC capture. Lastly, we will discuss how tailored ECM approaches may present an optimal platform to capture an influential heterogeneous population of CTCs.
Collapse
Affiliation(s)
- Deep A Patel
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. NANOMATERIALS 2021; 11:nano11092280. [PMID: 34578596 PMCID: PMC8468449 DOI: 10.3390/nano11092280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Carbon nanotube field effect transistor (CNT FET) aptasensors have been investigated for the detection of adenosine using two different aptamer sequences, a 35-mer and a 27-mer. We found limits of detection for adenosine of 100 pM and 320 nM for the 35-mer and 27-mer aptamers, with dissociation constants of 1.2 nM and 160 nM, respectively. Upon analyte recognition the 35-mer adenosine aptamer adopts a compact G-quadruplex structure while the 27-mer adenosine aptamer changes to a folded duplex. Using the CNT FET aptasensor platform adenosine could be detected with high sensitivity over the range of 100 pM to 10 µM, highlighting the suitability of the CNT FET aptasensor platform for high performance adenosine detection. The aptamer restructuring format is critical for high sensitivity with the G-quadraplex aptasensor having a 130-fold smaller dissociation constant than the duplex forming aptasensor.
Collapse
|
13
|
Pineux F, Federico S, Klotz KN, Kachler S, Michiels C, Sturlese M, Prato M, Spalluto G, Moro S, Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem 2020; 15:1909-1920. [PMID: 32706529 DOI: 10.1002/cmdc.202000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3 AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3 ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3 AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3 AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3 AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.
Collapse
Affiliation(s)
- Florent Pineux
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Carine Michiels
- Namur Research Institute for Life Science (NARILIS), Unité de Recherche en Biologie Cellulaire (URBC), University of Namur, 5000, Namur, Belgium
| | - Mattia Sturlese
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Str. 38, 1090, Wien, Austria
| |
Collapse
|
14
|
Adenosine and adenosine receptors in colorectal cancer. Int Immunopharmacol 2020; 87:106853. [PMID: 32755765 DOI: 10.1016/j.intimp.2020.106853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
CD39 (nucleoside triphosphate diphosphohydrolase) and Ecto-5-nucleotidase (CD73) have been recognized as important factors mediating various pathological and physiological responses in the tumor microenvironment. Elevated expression of CD73 and CD39 is correlated with the over-production of adenosine in the tumor region. This increase is associated with an immunosuppressive state in the tumor site that enhances various tumor hallmarks such as metastasis, angiogenesis, and cell proliferation. Adenosine promotes these behaviors through interaction with four adenosine receptors, including A3R, A2BR, A2AR, and A1R. Signaling of these receptors reduces the function of immune effector cells and enhances the expansion and function of tumor-associated immune cells. Several studies have been shown the important role of adenosine/CD73/CD39/ARs axis in the immunopathogenesis of colorectal cancer. These findings imply that components of this axis can be considered as a worthy target for colorectal cancer immunotherapy. In this review, we summarized the role of CD73/CD39/adenosine/ARs in the immunopathogenesis of colorectal cancer.
Collapse
|
15
|
Tarnowski M, Tkacz M, Piotrowska K, Zgutka K, Pawlik A. Differential effect of adenosine on rhabdomyosarcoma migration and proliferation. Arch Med Sci 2020; 16:414-427. [PMID: 32190153 PMCID: PMC7069424 DOI: 10.5114/aoms.2018.75506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/03/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Adenosine and its receptors are involved deeply in the regulation of tumour biology. Purine nucleotides are released from stressed cells in states of hypoxia or radiochemotherapy-induced cell damage. Adenosine exerts its effect through the P1 family of selective receptors. The purpose of the study was to evaluate the exact role of extracellular role on biology of Rhabdomyosarcoma (RMS) cells. MATERIAL AND METHODS Series of in vitro studies accompanied by immunohistochemical, RQ-PCR and shRNA methods have characterised adenosine receptor expression on Rhabdomyosarcoma cell lines, normal skeletal muscle and effect of adenosine on Rhabdomyosarcoma growth and migration. RESULTS Extracellular adenosine (highest at 50 μM, p < 0.05) and AMP (highest at 300 μM, p < 0.05) markedly enhanced chemotaxis in the Boyden chamber assay The reaction is mostly governed by the A1 receptor, which is greatly overexpressed in Rhabdomyosarcoma as compared with normal skeletal muscle. Cell migration induced by adenosine and AMP is blocked by pertussis toxin, phospholipase C and MAP kinase inhibitor, which demonstrates the importance of these signalling pathways. High doses of adenosine have a detrimental effect on cellular proliferation, in a receptor-independent manner (≥ 500 μM; p < 0.05). The blockage of adenosine transporter by dipyridamole abolishes this effect, indicating involvement of an intrinsic pathway. Further increase of adenosine concentration, induced by deaminase inhibitors, augment the effect. CONCLUSIONS Our results suggest that adenosine and AMP trigger cell migration by binding to P1 receptors and directing cancer cells to the sites of hypoxia or cellular damage. Specifically by A1 receptor which is overexpressed in RMS.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Zgutka
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Yousefi S, Saraji M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:1-5. [PMID: 30660952 DOI: 10.1016/j.saa.2019.01.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/25/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
A new and straightforward optical sensor for the colorimetric determination of adenosine (AD) in human urine samples was developed. The sensor comprised silver nanoparticles (AgNPs) as colorimetric elements and anti-AD aptamer (AP) as a recognition probe. In a solution containing AD and high concentration of NaCl, due to the unique binding of AD with AP, the aggregated metal nanomaterials dispersed in the solution, and the color intensity of the solution was changed accordingly. The absorbance of the solution was monitored for AD quantification. The method was applicable for the determination of AD in the concentration range of 60-280 nM with the detection limit of 21 nM. The relative standard deviation ranged from 4.8 to 8.8% for six replicates. The method showed excellent selectivity toward AD checked over some probable interfering compounds. To investigate the performance of AgNPs, the analytical characteristics of the method including linear range, detection limit, selectivity, and precision were compared with those obtained by a common AuNPs-based aptasensor. The reliability of the method was further ascertained for the detection of AD in urine samples of two lung cancer patients with percentage recoveries in the range of 98-107%.
Collapse
Affiliation(s)
- Shila Yousefi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
17
|
Knock-down of AHCY and depletion of adenosine induces DNA damage and cell cycle arrest. Sci Rep 2018; 8:14012. [PMID: 30228286 PMCID: PMC6143609 DOI: 10.1038/s41598-018-32356-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, functional connections between S-adenosylhomocysteine hydrolase (AHCY) activity and cancer have been reported. As the properties of AHCY include the hydrolysis of S-adenosylhomocysteine and maintenance of the cellular methylation potential, the connection between AHCY and cancer is not obvious. The mechanisms by which AHCY influences the cell cycle or cell proliferation have not yet been confirmed. To elucidate AHCY-driven cancer-specific mechanisms, we pursued a multi-omics approach to investigate the effect of AHCY-knockdown on hepatocellular carcinoma cells. Here, we show that reduced AHCY activity causes adenosine depletion with activation of the DNA damage response (DDR), leading to cell cycle arrest, a decreased proliferation rate and DNA damage. The underlying mechanism behind these effects might be applicable to cancer types that have either significant levels of endogenous AHCY and/or are dependent on high concentrations of adenosine in their microenvironments. Thus, adenosine monitoring might be used as a preventive measure in liver disease, whereas induced adenosine depletion might be the desired approach for provoking the DDR in diagnosed cancer, thus opening new avenues for targeted therapy. Additionally, including AHCY in mutational screens as a potential risk factor may be a beneficial preventive measure.
Collapse
|
18
|
Lin Y, Dai Y, Sun Y, Ding C, Sun W, Zhu X, Liu H, Luo C. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 2018; 182:116-124. [PMID: 29501130 DOI: 10.1016/j.talanta.2018.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H2O2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10-12-2.2 × 10-10 mol/L with a detection limit of 2.1 × 10-13 mol/L. The proposed method was successfully used for adenosine detection in biological samples.
Collapse
Affiliation(s)
- Yanna Lin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chaofan Ding
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Weiyan Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaodong Zhu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
19
|
Han M, Cheng X, Gao Z, Zhao R, Zhang S. Inhibition of tumor cell growth by adenine is mediated by apoptosis induction and cell cycle S phase arrest. Oncotarget 2017; 8:94286-94296. [PMID: 29212228 PMCID: PMC5706874 DOI: 10.18632/oncotarget.21690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Gekko swinhonis has a long standing history in Chinese traditional medicine recognized for its application in treating patients with terminal cancer.In order to discover novel anticancer drugs with high anti-tumor efficacy and low toxicity to normal cells, we aim to investigate the anti-tumor components from Gekko swinhonis. Four nucleosides from the extracted samples were enriched, namely adenosine, guanosine, thymidine and inosine. We evaluated the antitumor effect of the four nucleosides and found that adenosine possessed the strongest anti-tumor effect. Besides, adenine could inhibit the growth of Bel-7402 and Hela cells in a dose and time dependent manner, but not normal human cervical keratinocytes. Bel-7402 and Hela cells had undergone apoptosis 48 hours after treatment as evidenced by morphologic changes under TEM, while adenine blocked cell cycle of tumor cells at S phase and subsequently causing cell cycle exit and promoting apoptosis. Moreover, the pharmacokinetics of adenine was stable in cell culture medium for up to 72 hours. Combining its potency with stability, we conclude adenine makes a promising candidate for an anti-tumor drug.
Collapse
Affiliation(s)
- Ming Han
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xin Cheng
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Rongrong Zhao
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Shizhuang Zhang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| |
Collapse
|
20
|
Tian T, An Y, Wu Y, Song Y, Zhu Z, Yang C. Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30480-30487. [PMID: 28816436 DOI: 10.1021/acsami.7b09717] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An integrated distance-based origami paper analytical device (ID-oPAD) is developed for simple, user friendly and visual detection of targets of interest. The platform enables complete integration of target recognition, signal amplification, and visual signal output based on aptamer/invertase-functionalized sepharose beads, cascaded enzymatic reactions, and a 3D microfluidic paper-based analytical device with distance-based readout, respectively. The invertase-DNA conjugate is released upon target addition, after which it permeates through the cellulose and flows down into the bottom detection zone, whereas sepharose beads with larger size are excluded and stay in the upper zone. Finally, the released conjugate initiates cascaded enzymatic reactions and translates the target signal into a brown bar chart reading. By simply closing the device, the ID-oPAD enables a sample-in-answer-out assay within 30 min with visual and quantitative readout. Importantly, bound/free probe separation is achieved by taking advantage of the size difference between sepharose beads and cellulose pores, and the downstream enzymatic amplification is realized based on the compatibility of multiple enzymes with corresponding substrates. Overall, with the advantages of low-cost, disposability, simple operation, and visual quantitative readout, the ID-oPAD offers an ideal platform for point-of-care testing, especially in resource-limited areas.
Collapse
Affiliation(s)
- Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yuan An
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yiping Wu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350002, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
21
|
Shen J, Wang H, Li C, Zhao Y, Yu X, Luo X. Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy. Biosens Bioelectron 2016; 90:356-362. [PMID: 27940239 DOI: 10.1016/j.bios.2016.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
Abstract
In this work, a simple and highly sensitive label-free electrochemical aptasensor for adenosine detection was developed based on target-aptamer binding triggered nicking endonuclease-assisted strand-replacement DNA polymerization and rolling circle amplification (RCA) strategy. The magnetic beads (MB) probe, which was attached the aptamer of adenosine and mDNA, was firstly fabricated. In the presence of adenosine, mDNA was released from MB upon recognition of the aptamer to target adenosine. The released mDNA as the primer activated autonomous DNA polymerization/nicking process and accompanied by the continuous release of replicated DNA fragments. Subsequently, numerous released DNA fragments were captured on the working electrode, and then as initiators to trigger the downstream RCA process leading to the formation of a long ssDNA concatemer for loading large amounts of Ru(NH3)63+. Therefore, a conspicuously amplified electrochemical signal through the developed dual-amplification strategy could be achieved. This method exhibited a high sensitivity toward adenosine with a detection limit of 0.032nM. Also, it exhibited high selectivity to different nucleoside families and good reproducibility. This design opens new horizons for integrating different disciplines, presenting a versatile tool for ultrasensitive detecting organic small molecules in medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Jing Shen
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Hongyang Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Chunxiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Yanyan Zhao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xijuan Yu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
22
|
Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z, Yang CJ. Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (μDiSH-PAD) for Visual Quantitative Point-of-Care Testing. Anal Chem 2016; 88:2345-52. [DOI: 10.1021/acs.analchem.5b04294] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaofeng Wei
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- MOE Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shasha Jia
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanli Ma
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianjun Sun
- MOE Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory
of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory
of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Hu M, Zhi X, Zhang J. Radiofrequency ablation (RFA) for palliative treatment of painful non-small cell lung cancer (NSCLC) rib metastasis: Experience in 12 patients. Thorac Cancer 2015; 6:761-4. [PMID: 26557915 PMCID: PMC4632929 DOI: 10.1111/1759-7714.12258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Painful rib metastasis is common in non-small cell lung cancer (NSCLC). Pain is often partially or totally refractory to analgesic medications or the side effects of medication are unacceptable. We report the safety and efficacy of a new method: radiofrequency ablation (RFA) in treating painful NSCLC rib metastasis. Methods RFA procedures were completed in 12 patients with painful rib metastasis. Patient age ranged from 66–83 years (mean 74.8 years, standard deviation (SD) = 5.3). There were four cases of squamous-carcinoma, seven adenocarcinomas, and one case of large cell carcinoma. Pain caused by neoplasm size, pain levels pre-procedure and post-procedure (as assessed using the visual analog scale, VAS), time length, and target temperature of RFA treatments were documented. Results RFA procedures were performed with 100% technical success. The mean pre-procedure and post-procedure pain, as measured by the VAS, was 7.9 (SD = 0.90) and 3.4 (SD = 0.99), respectively. No symptomatic complications occurred. Non-symptomatic complications included one case of pneumothorax and one case of hemoptysis. Conclusion RFA appears to be a safe, practical, and effective method for the palliative treatment of painful NSCLC chest wall metastasis.
Collapse
Affiliation(s)
- Mu Hu
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing, China
| | - Xiuyi Zhi
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing, China
| | - Jian Zhang
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing, China
| |
Collapse
|
24
|
Zhao H, Wang YS, Tang X, Zhou B, Xue JH, Liu H, Liu SD, Cao JX, Li MH, Chen SH. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green. Anal Chim Acta 2015; 887:179-185. [PMID: 26320800 DOI: 10.1016/j.aca.2015.05.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
Abstract
We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis.
Collapse
Affiliation(s)
- Hui Zhao
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Yong-Sheng Wang
- College of Public Health, University of South China, Hengyang, 421001, PR China.
| | - Xian Tang
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Bin Zhou
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Jin-Hua Xue
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Hui Liu
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Shan-Du Liu
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Jin-Xiu Cao
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Ming-Hui Li
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Si-Han Chen
- College of Public Health, University of South China, Hengyang, 421001, PR China
| |
Collapse
|
25
|
Merighi S, Borea PA, Stefanelli A, Bencivenni S, Castillo CA, Varani K, Gessi S. A2aand a2badenosine receptors affect HIF-1α signaling in activated primary microglial cells. Glia 2015; 63:1933-1952. [DOI: 10.1002/glia.22861] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Stefania Merighi
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Pier Andrea Borea
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Angela Stefanelli
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Serena Bencivenni
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Carlos Alberto Castillo
- Department of Nursing; Faculty of Nursing; Occupational and Speech Therapies, University of Castilla-La Mancha; Talavera De La Reina Spain
| | - Katia Varani
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Stefania Gessi
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| |
Collapse
|
26
|
Najafabadi ME, Khayamian T, Hashemian Z. Aptamer-conjugated magnetic nanoparticles for extraction of adenosine from urine followed by electrospray ion mobility spectrometry. J Pharm Biomed Anal 2015; 107:244-50. [PMID: 25625475 DOI: 10.1016/j.jpba.2015.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 01/18/2023]
Abstract
Magnetic nanoparticles (MNPs) conjugated with aptamer was developed for the selective extraction of adenosine in urine samples followed by electrospray ionization-ion mobility spectrometry (ESI-IMS). The ion mobility spectrum of adenosine showed two peaks at low concentrations and two more peaks related to dimer of adenosine at high concentrations. However, the ion mobility spectrum of eluent at low concentration showed only the peaks related to dimer of adenosine. In other words, aptamer captured two adenosine molecules between the top G-quartet and the two short stems, where they bonded to each other. The mass spectrum of the eluent also validated the presence of dimer (m/z 535.95). The effect of extraction parameters on extraction efficiency including sorbent amount, elution conditions (solvent type and volume) and adsorption conditions were investigated. Under the optimized conditions, the linear dynamic range was found to be 0.05-5.00 μg mL(-1) with detection limit of 0.02 μg mL(-1). The extraction efficiency was 94% and the relative standard deviation was 4% for three replicate measurements of adenosine at 0.25 μg mL(-1) in urine samples. As a practical application, the method was applied for the determination of adenosine in urine samples of patients with lung cancer, and the obtained results were in good agreement with those obtained by HPLC-UV method. Therefore, the proposed method is an alternative clinical analysis.
Collapse
Affiliation(s)
| | - Taghi Khayamian
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Zahra Hashemian
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
27
|
Soares AS, Costa VM, Diniz C, Fresco P. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin Pharmacol Toxicol 2015; 116:25-36. [PMID: 24909096 DOI: 10.1111/bcpt.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is the most deadly type of skin cancer. The lack of effective pharmacological approaches for this tumour can be related to the incomplete understanding of the pathophysiological mechanisms involved in melanoma cell proliferation. Adenosine has growth-promoting and growth inhibitory effects on tumour cells. We aimed to investigate effects of adenosine and its metabolic product, inosine, on human C32 melanoma cells and the signalling pathways involved. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and bromodeoxyuridine (BrdU) proliferation assays were used to evaluate adenosine, adenosine deaminase and inosine effects, in the absence or presence of adenosine receptor (AR), A3 AR and P2Y1 R antagonists and PLC, PKC, MEK1/2 and PI3K inhibitors. ERK1/2 levels were determined using an ELISA kit. Adenosine and inosine levels were quantified using an enzyme-coupled assay. Adenosine caused cell proliferation through AR activation. Adenosine deaminase increased inosine levels (nanomolar concentrations) on the extracellular space, in a time-dependent manner, inducing proliferation through A3 AR activation. Micromolar concentrations of inosine enhanced proliferation through A3 AR activation, causing an increase in ERK1/2 levels, and P2Y1 R activation via ENT-dependent mechanisms. We propose the simultaneous activation of PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways as the main mechanism responsible for the proliferative effect elicited by inosine and its significant role in melanoma cancer progression.
Collapse
Affiliation(s)
- Ana Sofia Soares
- REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
28
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
29
|
Guenette JP, Lopez MJ, Kim E, Dupuy DE. Solitary painful osseous metastases: correlation of imaging features with pain palliation after radiofrequency ablation--a multicenter american college of radiology imaging network study. Radiology 2013; 268:907-15. [PMID: 23657892 DOI: 10.1148/radiol.13122398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To identify the correlation of pre- and postablation imaging features with pain relief, pain intensity, and patient mood after radiofrequency (RF) ablation of solitary painful osseous metastases. MATERIALS AND METHODS This prospective, multicenter group trial was approved by each institutional review board. Participants were enrolled between November 1, 2001, and April 6, 2006. Written informed consent was obtained from all subjects, and patient confidentiality protocols were followed in compliance with HIPAA. Computed tomography (CT)-guided RF ablation and contrast material-enhanced 1-month follow-up CT and/or magnetic resonance imaging were performed in 49 subjects (24 men, 25 women; age range, 34-83 years) with a confirmed malignant solitary bone lesion of maximum dimension of 8 cm or smaller that was causing intractable pain. Pain intensity and patient mood were measured before and after RF ablation. Tumor imaging features were recorded. Unadjusted and adjusted linear mixed-effects models, with a random intercept for each subject, were used to model patient mood, pain relief, and pain intensity scores at three times after ablation as a function of each tumor characteristic. RESULTS Decreased postablation tumor pain correlated with preablation tumor volume (P = .02) and pathologic fracture (P = .01), while pain relief correlated with pathologic fracture (P = .03) and percentage of bone-tumor interface (BTI) ablated (P = .02). Conversely, presence of an irregular rim after ablation (P = .02) and rim thickness (P = .01) correlated with increased pain. There was no evidence in this study that RF ablation of larger tumor percentage or larger volume leads to better pain relief or decreased pain (P > .05). CONCLUSION Existing pathologic fracture and smaller tumor size appear to be predictive parameters of success when selecting patients for palliative RF ablation of painful solitary osseous metastases. Successful palliation also appears to be related to the percentage of BTI ablated.
Collapse
Affiliation(s)
- Jeffrey P Guenette
- Warren Alpert Medical School and Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
30
|
Yoo L, Ahn KY, Ahn JY, Laurell T, Lee YM, Yoo PJ, Lee J. A simple one-step assay platform based on fluorescence quenching of macroporous silicon. Biosens Bioelectron 2012; 41:477-83. [PMID: 23083907 DOI: 10.1016/j.bios.2012.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/27/2012] [Accepted: 09/09/2012] [Indexed: 01/24/2023]
Abstract
We synthesized 3D macroporous silicon through a simple electrochemical dissolution process and systematically estimated its protein adsorption and effect on fluorescence emission. Compared with conventional 2D polystyrene plate, the macroporous silicon showed a superior protein adsorption capacity and significant fluorescence quenching effect. We developed a 3D macroporous silicon-based adenosine assay system through the following fabrication process: streptavidin molecules that have been immobilized on the surface of macroporous silicon are attached with biotin-linked and adenosine-specific DNA aptamer, followed by hybridization between the attached aptamer and fluorescent chemical (carboxytetramethylrhodamine/CTMR) that is conjugated with a short complementary DNA sequence. In the absence of adenosine, the aptamer-CTMR complexes remain closely attached to the surface of porous silicon, hence fluorescence being significantly quenched. Upon binding to adenosine, the DNA aptamer is subject to structure switching that leads to dissociation of CTMR from DNA aptamer, and consequently the CTMR fluorescence is restored, indicating a simple one-step assay of adenosine. Compared to the conventional 2D PS and ZnO nanorods-based assays, adenosine at much lower (sub-micromolar) concentration was successfully detected through the 3D macroporous silicon-based assay. The three-dimensionally and densely immobilized aptamer probes and effective fluorescence quenching on the surface of macroporous silicon enables adenosine to be detected at lower levels. Although the adenosine detection is reported here as a proof-of-concept, the developed macroporous silicon-based simple one-step assay platform can be applied in general to fluorescence quenching -based detection of many other biomolecules.
Collapse
Affiliation(s)
- Lina Yoo
- Department of Chemical and Biological Engineering, College of Engineering Korea University, Anam-Dong 5-1, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang JQ, Wang YS, Xue JH, He Y, Yang HX, Liang J, Shi LF, Xiao XL. A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-"turning on" mechanism. J Pharm Biomed Anal 2012; 70:362-8. [PMID: 22717140 DOI: 10.1016/j.jpba.2012.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
A novel small molecule probe, aptamer beacon (AB), was introduced for adenosine (Ade) recognition and quantitative analysis. The Ade aptamer was engineered into an aptamer beacon by adding a gold nanoparticle-modified nucleotide sequence which is complementary to aptamer sequence (FDNA) at the 3'-end of FDNA. The fluorescence signal "turning on" was observed when AB was bound to Ade, which is attributed to a significant conformational change in AB from a FDNA/QDNA duplex to a FDNA-Ade complex. The Ade measurement was carried out in 20 mmol L(-1) Tris-HCl buffer solution of pH 7.4, ΔF signal linearly correlated with the concentration of Ade over the range of 2.0×10(-8) to 1.8×10(-6) mol L(-1). The limit of detection (LOD) for Ade is 6.0×10(-9) mol L(-1) with relative standard deviations (R.S.D) of 3.64-5.36%, and the recoveries were 98.6%, 100%, 102% (n=6), respectively. The present method has been successfully applied to determine Ade in human urine samples, and the obtained results were in good agreement with those obtained by the HPLC method. Our investigation shows that the unique properties of the AB could provide a promising potential for small molecules detection, and be benefit to extend the application of aptamer beacon technique.
Collapse
Affiliation(s)
- Jin-Quan Zhang
- College of Public Health, University of South China, Hengyang 421001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kalhan A, Gharibi B, Vazquez M, Jasani B, Neal J, Kidd M, Modlin IM, Pfragner R, Rees DA, Ham J. Adenosine A2A and A2B receptor expression in neuroendocrine tumours: potential targets for therapy. Purinergic Signal 2011; 8:265-74. [PMID: 22119961 DOI: 10.1007/s11302-011-9280-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
The clinical management of neuroendocrine tumours is complex. Such tumours are highly vascular suggesting tumour-related angiogenesis. Adenosine, released during cellular stress, damage and hypoxia, is a major regulator of angiogenesis. Herein, we describe the expression and function of adenosine receptors (A(1), A(2A), A(2B) and A(3)) in neuroendocrine tumours. Expression of adenosine receptors was investigated in archival human neuroendocrine tumour sections and in two human tumour cell lines, BON-1 (pancreatic) and KRJ-I (intestinal). Their function, with respect to growth and chromogranin A secretion was carried out in vitro. Immunocytochemical data showed that A(2A) and A(2B) receptors were strongly expressed in 15/15 and 13/18 archival tumour sections. Staining for A(1) (4/18) and A(3) (6/18) receptors was either very weak or absent. In vitro data showed that adenosine stimulated a three- to fourfold increase in cAMP levels in BON-1 and KRJ-1 cells. The non-selective adenosine receptor agonist (adenosine-5'N-ethylcarboxamide, NECA) and the A(2A)R agonist (CGS21680) stimulated cell proliferation by up to 20-40% which was attenuated by A(2B) (PSB603 and MRS1754) and A(2A) (SCH442416) receptor selective antagonists but not by the A(1) receptor antagonist (PSB36). Adenosine and NECA stimulated a twofold increase in chromogranin A secretion in BON-1 cells. Our data suggest that neuroendocrine tumours predominantly express A(2A) and A(2B) adenosine receptors; their activation leads to increased proliferation and secretion of chromogranin A. Targeting adenosine signal pathways, specifically inhibition of A(2) receptors, may thus be a useful addition to the therapeutic management of neuroendocrine tumours.
Collapse
Affiliation(s)
- A Kalhan
- Centre for Endocrine and Diabetes Sciences, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lefort EC, Blay J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis 2011; 28:337-49. [PMID: 21298326 DOI: 10.1007/s10585-010-9364-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/29/2010] [Indexed: 12/27/2022]
Abstract
There is accumulating evidence that secondary plant metabolites such as flavonoids may have anti-cancer properties, and yet the molecular pathways that lead to alterations in cancer cell behaviour remain unclear. We investigated the possible actions of apigenin, a flavone present in leafy vegetables like parsley, on the levels of CD26 in carcinoma cells. CD26 is a multifunctional cell-surface protein that through its associated dipeptidyl peptidase (DPPIV) and ecto-adenosine deaminase (eADA) enzyme activities is able to suppress pathways involved in tumour metastasis. CD26 is down-regulated in various cancers including colorectal carcinoma. Apigenin substantially up-regulated cell-surface CD26 on HT-29 and HRT-18 human colorectal cancer cells. Levels of CD26 protein, along with its associated DPPIV enzyme activity, capacity to bind eADA, and ability to link cells to fibronectin, were increased with a maximum after 24-48 h. Elevation of CD26 occurred at concentrations that were at least 10-fold less than those shown to affect cell growth, and 100-fold below those that could affect cell viability. Furthermore, the CD26 effect was enhanced when apigenin was paired with chemotherapeutic agents utilized in the treatment of advanced colorectal cancer including irinotecan, 5-fluorouracil and oxaliplatin. For irinotecan, apigenin caused a 4-fold increase in the potency of the drug. These results demonstrate that apigenin can increase the cellular levels of CD26 and its multiple functions, and may oppose the predicted effect of decreased DPPIV and eADA activities on carcinoma cells, which is to facilitate tumour growth and metastasis.
Collapse
Affiliation(s)
- Emilie C Lefort
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
34
|
Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem 2009; 397:212-7. [PMID: 19849997 DOI: 10.1016/j.ab.2009.10.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/08/2009] [Accepted: 10/15/2009] [Indexed: 02/04/2023]
Abstract
A novel sensitive method has been developed for the detection of adenosine (AD) in human urine by using enhanced resonance light scattering (RLS). This method is based on the specific recognition and signal amplification of adenosine aptamer (Apt) coupled with gold nanoparticles (GNPs) via G-quartet-induced nanoparticle assembly, which was fabricated by triggering a structure switching of the 3' terminus G-rich sequence and aptamer duplex. RLS signal linearly correlated with the concentration of adenosine over the range of 6-115nM. The limit of detection (LOD) for adenosine is 1.8nM with relative standard deviations (RSD) of 2.90-4.80% (n=6). The present method has been successfully applied to determination of adenosine in real human urine, and the obtained results were in good agreement with those obtained by the HPLC method. Our investigation shows that the combination of the excellent selectivity of aptamer with the high sensitivity of the RLS technique could provide a promising potential for aptamer-based small molecule detection, and be beneficial in extending the application of RLS.
Collapse
Affiliation(s)
- Jin-Quan Zhang
- College of Public Health, University of South China, Hengyang 421001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen J, Russo J. Mitochondrial oestrogen receptors and their potential implications in oestrogen carcinogenesis in human breast cancer. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13590840801972074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Buffon A, Ribeiro VB, Schanoski AS, Sarkis JJF. Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour. Mol Cell Biochem 2009; 281:189-95. [PMID: 16328972 DOI: 10.1007/s11010-006-1029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/18/2005] [Indexed: 11/29/2022]
Abstract
Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5'-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumour-promoting molecule) in the circulation.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
37
|
Giglioni S, Leoncini R, Aceto E, Chessa A, Civitelli S, Bernini A, Tanzini G, Carraro F, Pucci A, Vannoni D. Adenosine kinase gene expression in human colorectal cancer. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:750-4. [PMID: 18600536 DOI: 10.1080/15257770802145629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate gene expression of adenosine kinase, a key enzyme in adenosine metabolism, in human intestinal biopsy specimens of 10 colorectal cancer patients. Quantitative mRNA expression levels were normalized against the reference gene beta-actin. The results showed that adenosine kinase gene expression was significantly higher in cancer than in normal-appearing tissue, in line with our previous measurements of adenosine kinase enzyme activities in colorectal tumor samples.
Collapse
Affiliation(s)
- S Giglioni
- Dipartimento di Medicina Interna, Sc. Endocrino-Metaboliche e Biochimica, Università di Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Misikangas M, Pajari AM, Päivärinta E, Oikarinen SI, Rajakangas J, Marttinen M, Tanayama H, Törrönen R, Mutanen M. Three Nordic berries inhibit intestinal tumorigenesis in multiple intestinal neoplasia/+ mice by modulating beta-catenin signaling in the tumor and transcription in the mucosa. J Nutr 2007; 137:2285-90. [PMID: 17885012 DOI: 10.1093/jn/137.10.2285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Berries contain a number of compounds that are proposed to have anticarcinogenic properties. We studied the effects and molecular mechanisms of wild berries with different phenolic profiles on intestinal tumorigenesis in multiple intestinal neoplasia/+ mice. The mice were fed a high-fat AIN93-G diet (Con) or AIN93-G diets containing 10% (w:w) freeze-dried bilberry, lingonberry (LB), or cloudberry (CB) for 10 wk. All 3 berries significantly inhibited the formation of intestinal adenomas as indicated by a 15-30% reduction in tumor number (P < 0.05). CB and LB also reduced tumor burden by over 60% (P < 0.05). Compared to Con, CB and LB resulted in a larger (P < 0.05) proportion of small adenomas (43, 69, and 64%, respectively) and a smaller proportion of large adenomas (56, 29, and 33%, respectively). Beta-catenin and cyclin D1 in the small and large adenomas and in the normal-appearing mucosa were measured by Western blotting and immunohistochemistry. CB resulted in decreased levels of nuclear beta-catenin and cyclin D1 and LB in the level of cyclin D1 in the large adenomas (P < 0.05). Early changes in gene expression in the normal-appearing mucosa were analyzed by Affymetrix microarrays, which revealed changes in genes implicated in colon carcinogenesis, including the decreased expression of the adenosine deaminase, ecto-5'-nucleotidase, and prostaglandin E2 receptor subtype EP4. Our results indicate that berries are potentially a rich source of chemopreventive components.
Collapse
Affiliation(s)
- Marjo Misikangas
- Department of Applied Chemistry and Microbiology (Nutrition), University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dupertuis YM, Benais-Pont G, Buchegger F, Pichard C. Effect of an immunonutrient mix on human colorectal adenocarcinoma cell growth and viability. Nutrition 2007; 23:672-80. [PMID: 17656070 DOI: 10.1016/j.nut.2007.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVE L-Glutamine, L-arginine, RNA, and omega-3 polyunsaturated fatty acids (PUFAs) have been incorporated into nutritional formulas to improve immunity of patients with gastrointestinal cancer. We therefore examined the individual and net effects of these immunonutrients on four different human colorectal adenocarcinoma cell lines. METHODS LS174T, HT-29, CO112, and Caco-2 cells were exposed to dilutions of 1:50, 1:100, and 1:1000 of a mix or individual components of a mix of 15 g/L of L-glutamine, 16.3 g/L of L-arginine, 1.6 g/L of RNA, and 2.7 g/L of omega-3 PUFAs. Cell growth kinetic was assessed using cell count with a flow cytometer. Cell cycle and apoptosis were evaluated with double fluorescence-activated cell sorter analyses using bromodeoxyuridine labeling index and annexin V staining, respectively. One-way analysis of variance and Student's t tests were used for comparison. RESULTS Evaluation of the cell growth kinetic over an 18-d period showed that the immunonutrient mix stimulated cancer cell growth only when diluted > or =100 times. Individual component evaluation indicated that the cell growth stimulation was mainly due to the presence of L-glutamine and to a lesser extent RNA in the mix. L-Arginine had no effect. At a lower dilution of 1:50, omega-3 PUFA concentrations were sufficient to induce cell cycle arrest and massive cell death in part through apoptosis. CONCLUSION These results suggest that cancer cell growth stimulation by current immunonutrient formulas is unlikely due to predominant cytotoxic effect of omega-3 PUFAs.
Collapse
Affiliation(s)
- Yves M Dupertuis
- Clinical Nutrition, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
40
|
Gessi S, Merighi S, Varani K, Cattabriga E, Benini A, Mirandola P, Leung E, Mac Lennan S, Feo C, Baraldi S, Borea PA. Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A(3) adenosine subtype. J Cell Physiol 2007; 211:826-36. [PMID: 17348028 DOI: 10.1002/jcp.20994] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenosine may affect several pathophysiological processes, including cellular proliferation, through interaction with A(1), A(2A), A(2B), and A(3) receptors. In this study we characterized adenosine receptors in human colon cancer tissues and in colon cancer cell lines Caco2, DLD1, HT29. mRNA of all adenosine subtypes was detected in cancer tissues and cell lines. At a protein levels low amount of A(1), A(2A), and A(2B) receptors were detected, whilst the A(3) was the most abundant subtype in both cancer tissues and cells, with a pharmacological profile typical of the A(3) subtype. All the receptors were coupled to stimulation/inhibition of adenylyl-cyclase in cancer cells, with the exception of A(1) subtype. Adenosine increased cell proliferation with an EC(50) of 3-12 microM in cancer cells. This effect was not essentially reduced by adenosine receptor antagonists. However dypiridamol, an adenosine transport inhibitor, increased the stimulatory effect induced by adenosine, suggesting an action at the cell surface. Addition of adenosine deaminase makes the A(3) agonist 2-chloro-N6-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (Cl-IB-MECA) able to stimulate cell proliferation with an EC(50) of 0.5-0.9 nM in cancer cells, suggesting a tonic proliferative effect induced by endogenous adenosine. This effect was antagonized by 5-N-(4-methoxyphenyl-carbamoyl)amino-8-propyl-2(2furyl)-pyrazolo-[4,3e]-1,2,4-triazolo [1,5-c] pyrimidine (MRE 3008F20) 10 nM. Cl-IB-MECA-stimulated cell proliferation involved extracellular-signal-regulated-kinases (ERK1/2) pathway, as demonstrated by reduction of proliferation with 1,4-diamino-2,3-dicyano-1,4-bis-[2-amino-phenylthio]-butadiene (U0126) and by ERK1/2 phosphorylation. In conclusion this study indicates for the first time that in colon cancer cell lines endogenous adenosine, through the interaction with A(3) receptors, mediates a tonic proliferative effect.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Buffon A, Ribeiro VB, Wink MR, Casali EA, Sarkis JJF. Nucleotide metabolizing ecto-enzymes in Walker 256 tumor cells: molecular identification, kinetic characterization and biochemical properties. Life Sci 2006; 80:950-8. [PMID: 17169379 DOI: 10.1016/j.lfs.2006.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/02/2006] [Accepted: 11/16/2006] [Indexed: 02/06/2023]
Abstract
In this study we describe the molecular identification, kinetic characterization and biochemical properties of an E-NTPDase and an 5'-nucleotidase in Walker 256 cells. For the ATP, ADP and AMP hydrolysis there were optimum pH in the range 6.5-8.0, and absolute requirement for divalent cations (Mg(2+)>Ca(2+)). A significant inhibition of ATP and ADP hydrolysis was observed in the presence of high concentrations of sodium azide and 0.5 mM of Gadolinium chloride. These activities were insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors. The K(m) values were 464.2+/-86.6 microM (mean+/-SEM, n=4), 137.0+/-31 microM (mean+/-SEM, n=5) and 44.8+/-10.2 microM (mean+/-SEM, n=4), and V(max) values were 655.0+/-94.6 (mean+/-SEM, n=4), 236.3+/-27.2 (mean+/-SEM, n=5) and 177.6+/-13.8 (mean+/-SEM, n=5) nmol of inorganic phosphate min(-1) mg of protein(-1) for ATP, ADP and AMP, respectively. Using RT-PCR analysis we identified the mRNA of two members of the ecto-nucleoside triphosphate diphosphohydrolase family (NTPDase 2 and 5) and a 5'-nucleotidase. The presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important to regulate the ratio adenine nucleotides/adenine nucleoside extracellularly, therefore motivating tumor growth.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 ANEXO, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
42
|
Richard CL, Tan EY, Blay J. Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int J Cancer 2006; 119:2044-53. [PMID: 16823836 DOI: 10.1002/ijc.22084] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The level of expression of the chemokine receptor CXCR4 has been shown to play a crucial role in determining the ability of cancer cells to metastasize from the primary tumor and become established in tissue sites that are rich in the CXCR4 ligand CXCL12/SDF-1alpha. High CXCR4 expression on cancer cells is associated with an increased risk of recurrence and poorer overall survival. We propose that local tissue mediators within the primary tumor or at secondary sites may modulate the level of CXCR4 expression and, therefore, potentially affect the ability of the cancer cells to metastasize. The purine nucleoside adenine-9-beta-D-ribofuranoside (adenosine) is generated at high concentrations within the extracellular fluid of solid tumors because of their hypoxia. We show here that adenosine acts through A(2A) and A(2B) adenosine receptors on human colorectal carcinoma cells to upregulate CXCR4 mRNA expression up to 10-fold and selectively increases cell-surface CXCR4 protein up to 3-fold. This increase in cell-surface CXCR4 enables the carcinoma cells to migrate toward CXCL12, and enhances their proliferation in response to CXCL12. Adenosine may therefore be one of the factors within the tumor microenvironment that facilitates tumor dissemination, by upregulating CXCR4 on certain cancer cells and enhancing cellular responses to CXCL12.
Collapse
Affiliation(s)
- Cynthia Lee Richard
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
43
|
Neuro-bioenergetic concepts in cancer prevention and treatment. Med Hypotheses 2006; 68:832-43. [PMID: 17069985 DOI: 10.1016/j.mehy.2006.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 09/03/2006] [Indexed: 12/21/2022]
Abstract
Cancer remains one of the most difficult and elusive disorders to prevent and treat, despite great efforts in research and treatment over the last 30 years. Researchers have tried to understand the pathogenesis of cancer by discovering the single cellular mechanism or pathway derived from a genetic mutation. There are limited efforts made toward discovering a unified concept of cancer. We propose a neuro-bioenergetic concept of cancer pathogenesis based on the central mechanism of cellular hyperexcitability via inducible overexpression of voltage-gated ion channels, ligand-gated channels and neurotransmitters. Exploration of this concept could lead to a better understanding of the cause of cancer as well as developing more effective and specific strategies toward cancer prevention and treatment.
Collapse
|
44
|
Tan EY, Richard CL, Zhang H, Hoskin DW, Blay J. Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatase(s) and reducing ERK1/2 activity via a novel pathway. Am J Physiol Cell Physiol 2006; 291:C433-44. [PMID: 16611738 DOI: 10.1152/ajpcell.00238.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multifunctional cell-surface protein dipeptidyl peptidase IV (DPPIV/CD26) is aberrantly expressed in many cancers and plays a key role in tumorigenesis and metastasis. Its diverse cellular roles include modulation of chemokine activity by cleaving dipeptides from the chemokine NH(2)-terminus, perturbation of extracellular nucleoside metabolism by binding the ecto-enzyme adenosine deaminase, and interaction with the extracellular matrix by binding proteins such as collagen and fibronectin. We have recently shown that DPPIV can be downregulated from the cell surface of HT-29 colorectal carcinoma cells by adenosine, which is a metabolite that becomes concentrated in the extracellular fluid of hypoxic solid tumors. Most of the known responses to adenosine are mediated through four different subtypes of G protein-coupled adenosine receptors: A(1), A(2A), A(2B), and A(3). We report here that adenosine downregulation of DPPIV from the surface of HT-29 cells occurs independently of these classic receptor subtypes, and is mediated by a novel cell-surface mechanism that induces an increase in protein tyrosine phosphatase activity. The increase in protein tyrosine phosphatase activity leads to a decrease in the tyrosine phosphorylation of ERK1/2 MAP kinase that in turn links to the decline in DPPIV mRNA and protein. The downregulation of DPPIV occurs independently of changes in the activities of protein kinases A or C, phosphatidylinositol 3-kinase, other serine/threonine phosphatases, or the p38 or JNK MAP kinases. This novel action of adenosine has implications for our ability to manipulate adenosine-dependent events within the solid tumor microenvironment.
Collapse
Affiliation(s)
- Ernest Y Tan
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Medical Bldg., Dalhousie University, 1459 Oxford St., Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
45
|
Ghilardi JR, Röhrich H, Lindsay TH, Sevcik MA, Schwei MJ, Kubota K, Halvorson KG, Poblete J, Chaplan SR, Dubin AE, Carruthers NI, Swanson D, Kuskowski M, Flores CM, Julius D, Mantyh PW. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci 2006; 25:3126-31. [PMID: 15788769 PMCID: PMC6725088 DOI: 10.1523/jneurosci.3815-04.2005] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer colonization of bone leads to the activation of osteoclasts, thereby producing local tissue acidosis and bone resorption. This process may contribute to the generation of both ongoing and movement-evoked pain, resulting from the activation of sensory neurons that detect noxious stimuli (nociceptors). The capsaicin receptor TRPV1 (transient receptor potential vanilloid subtype 1) is a cation channel expressed by nociceptors that detects multiple pain-producing stimuli, including noxious heat and extracellular protons, raising the possibility that it is an important mediator of bone cancer pain via its capacity to detect osteoclast- and tumor-mediated tissue acidosis. Here, we show that TRPV1 is present on sensory neuron fibers that innervate the mouse femur and that, in an in vivo model of bone cancer pain, acute or chronic administration of a TRPV1 antagonist or disruption of the TRPV1 gene results in a significant attenuation of both ongoing and movement-evoked nocifensive behaviors. Administration of the antagonist had similar efficacy in reducing early, moderate, and severe pain-related responses, suggesting that TRPV1 may be a novel target for pharmacological treatment of chronic pain states associated with bone cancer metastasis.
Collapse
Affiliation(s)
- Joseph R Ghilardi
- Neurosystems Center and Department of Preventive Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Buffon A, Ribeiro VB, Fürstenau CR, Battastini AMO, Sarkis JJF. Acetylsalicylic acid inhibits ATP diphosphohydrolase activity by platelets from adult rats. Clin Chim Acta 2005; 349:53-60. [PMID: 15469855 DOI: 10.1016/j.cccn.2004.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/31/2004] [Accepted: 06/01/2004] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND METHODS The in vitro effect of the nonsteroidal anti-inflammatory drug, acetylsalicylic acid (ASA), on the extracellular adenine nucleotide hydrolysis by intact rat blood platelets was studied. RESULTS Our results demonstrate that aspirin, at final concentrations of 2.0 and 3.0 mM, inhibits ATP extracellular hydrolysis in vitro by approximately 17% and 21%, respectively. Aspirin, at a final concentration of 3.0 mM, also inhibited in vitro extracellular ADP hydrolysis by approximately 41%. The same concentrations of this drug, however, did not alter AMP hydrolysis by intact rat blood platelets under similar assay conditions. The kinetic analysis demonstrated that the inhibition of ADP and ATP hydrolysis by aspirin in rat platelets is of the uncompetitive type. CONCLUSION In this study, we demonstrated an inhibitory effect of ASA upon E-NTPDase 3 activity of platelets from adult rats and discussed the significance of our findings.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, ANEXO, CEP Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
47
|
Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS. Role of estrogen receptor in the regulation of ecto-5'-nucleotidase and adenosine in breast cancer. Clin Cancer Res 2004; 10:708-17. [PMID: 14760094 DOI: 10.1158/1078-0432.ccr-0811-03] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE The purpose is to understand the expression of ecto-5'-nucleotidase (eN), an adenosine producing enzyme with potential roles in angiogenesis, growth, and immunosuppression, in estrogen receptor (ER)-negative and -positive breast cancer. EXPERIMENTAL DESIGN We investigated the regulation of eN expression at the mRNA and protein levels by alpha in a panel of breast cancer cell lines that differ in ER status and invasive and metastatic potential. We also determined rates of adenosine formation in cells with high and low eN expression and in ER+ cells treated with estradiol. RESULTS ER-negative cells express high eN protein and mRNA levels and produce up to 104-fold more adenosine from AMP and ATP. Estradiol and antiestrogen treatments confirm that eN mRNA and protein expression and adenosine generation are negatively regulated through the ER. Endogenous expression of eN in ER- cells transfected with ERalpha and phorbol ester-induced eN expression in ER+ cells was strongly suppressed by estradiol, suggesting a dominant function of ER. Finally, an examination of 18 clinical breast cancer samples that were analyzed for both ER status and eN expression by Martin et al. (Cancer Res., 60: 2232-2238, 2000) revealed a significant inverse correlation between ER and eN status. CONCLUSIONS Our results show for the first time that eN is negatively regulated by ERalpha in dominant fashion and suggests that eN expression and its generation of adenosine may relate to breast cancer progression. Additionally, increased expression of eN in a subset of ER-negative cells may serve as a novel marker for a subset of more aggressive breast carcinoma.
Collapse
Affiliation(s)
- Jozef Spychala
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Tan EY, Mujoomdar M, Blay J. Adenosine down-regulates the surface expression of dipeptidyl peptidase IV on HT-29 human colorectal carcinoma cells: implications for cancer cell behavior. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:319-30. [PMID: 15215186 PMCID: PMC1618535 DOI: 10.1016/s0002-9440(10)63299-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2004] [Indexed: 01/07/2023]
Abstract
Dipeptidyl peptidase IV (DPPIV) is a multifunctional cell-surface protein that, as well as having dipeptidase activity, is the major binding protein for adenosine deaminase (ADA) and also binds extracellular matrix proteins such as fibronectin and collagen. It typically reduces the activity of chemokines and other peptide mediators as a result of its enzymatic activity. DPPIV is aberrantly expressed in many cancers, and decreased expression has been linked to increases in invasion and metastasis. We asked whether adenosine, a purine nucleoside that is present at increased levels in the hypoxic tumor microenvironment, might affect the expression of DPPIV at the cell surface. Treatment with a single dose of adenosine produced an initial transient (1 to 4 hours) modest (approximately 10%) increase in DPPIV, followed by a more profound (approximately 40%) depression of DPPIV protein expression at the surface of HT-29 human colon carcinoma cells, with a maximal decline being reached after 48 hours, and persisting for at least a week with daily exposure to adenosine. This down-regulation ofDPPIV occurred at adenosine concentrations comparable to those present within the extracellular fluid of colorectal tumors growing in vivo, and was not elicited by inosine or guanosine. Neither cellular uptake of adenosine nor its phosphorylation was necessary for the down-regulation of DPPIV. The decrease in DPPIV protein at the cell surface was paralleled by decreases in DPPIV enzyme activity, binding of ADA, and the ability of the cells to bind to and migrate on cellular fibronectin. Adenosine, at concentrations that exist within solid tumors, therefore acts at the surface of colorectal carcinoma cells to decrease levels and activities of DPPIV. This down-regulation of DPPIV may increase the sensitivity of cancer cells to the tumor-promoting effects of adenosine and their response to chemokines and the extracellular matrix, facilitating their expansion and metastasis.
Collapse
Affiliation(s)
- Ernest Y Tan
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
49
|
Mujoomdar M, Bennett A, Hoskin D, Blay J. Adenosine stimulation of proliferation of breast carcinoma cell lines: Evaluation of the [3H]thymidine assay system and modulatory effects of the cellular microenvironment in vitro. J Cell Physiol 2004; 201:429-38. [PMID: 15389546 DOI: 10.1002/jcp.20089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purine nucleoside adenosine is produced at increased levels in the tissues of solid cancers as a result of local hypoxia. Adenosine inhibits the cell-mediated anti-tumor immune response, promotes tumor cell migration and angiogenesis, and stimulates the proliferation of tumor cells. We examined the stimulatory effect of adenosine on DNA synthesis, cell cycle progression, and cell proliferation in MCF7 and T-47D breast carcinoma cell lines in culture, and identified factors that modulate the growth response. The ability of adenosine to stimulate DNA synthesis, as measured by the incorporation of [(3)H]thymidine, was independent of the total radioactivity of the [(3)H]thymidine up to 10 microCi/ml, total thymidine concentrations up to 100 microM, and the labeling interval. It was also not affected by the presence of low-molecular-weight compounds (such as thymidine and adenosine) in the serum used to supplement the medium. Adenosine stimulated DNA synthesis and cell proliferation with an EC(50) of 4-6 microM and a maximum response at 30-100 microM, when given as a single addition. The stimulatory effect of adenosine involved progression through the cell cycle and a genuine increase in cell number, in the absence of significant apoptotic or necrotic cell death. The mitogenic effect of adenosine was dependent upon the culture cell density, with an optimum adenosine response at around 50% of confluent density. The response was also highly dependent upon the form of the serum addition to the growth medium, with the best response elicited in the presence of low concentrations of nonfetal bovine serum, although adenosine was mitogenic under standard culture conditions. The effects of serum supplementation and cell density were not due to differences in the rate of adenosine metabolism by either serum or cellular enzymes, but appeared to result from changes in the sensitivity to adenosine of the cell population in response to environmental cues. We, therefore, find that adenosine is consistently mitogenic for human breast carcinoma cells, and that the [(3)H]thymidine incorporation assay is a valid measure of this response. The data are consistent with the stimulatory effect of adenosine on cell proliferation being modulated by the local cellular environment.
Collapse
Affiliation(s)
- Michelle Mujoomdar
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
50
|
Lowthers EL, Richard CL, Blay J. DIFFERENTIAL SENSITIVITY TO SHORT-CHAIN CERAMIDE ANALOGUES OF HUMAN INTESTINAL CARCINOMA CELLS GROWN IN TUMOR SPHEROIDS VERSUS MONOLAYER CULTURE. ACTA ACUST UNITED AC 2003; 39:340-2. [PMID: 14640787 DOI: 10.1290/1543-706x(2003)039<0340:dstsca>2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cytotoxic activity of short-chain (C(2)) ceramide was evaluated in human intestinal carcinoma cells grown as multicellular tumor spheroids versus the same cells cultured as monolayers under closely comparable conditions. A decrease in cell number was seen in monolayer cultures of HT-29, Caco-2, and HRT-18 cells, with an EC(50) (concentration for half-maximal toxicity) of between 13 and 23 microM. However, when the same cells were grown in the multicellular spheroid format, C(2) was markedly less potent in reducing cell number, with an EC(50) of between 44 and 63 microM, representing a 1.9- to 4.9-fold decrease in its potency. The chemotherapeutic agents 5-fluorouracil and cisplatin were equally potent against spheroids and monolayer cultures, indicating that although drug access is a problem in conventionally grown tumor spheroids it is not a problem for spheroids grown under the conditions used in this study. Our results suggest that although ceramide is capable of inducing cell death in intestinal carcinoma cells grown in spheroid culture, its cellular toxicity is constrained by influences that are independent of drug access and may be the consequence of the altered cellular relationships. Carcinoma cell populations show an intrinsically decreased responsiveness to the effects of ceramide when they are grown in a three-dimensional culture format.
Collapse
Affiliation(s)
- Erica L Lowthers
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|