1
|
Zihlif M, Hameduh T, Bulatova N, Hammad H. Alteration in the expression of the chemotherapy resistance‑related genes in response to chronic and acute hypoxia in pancreatic cancer. Biomed Rep 2023; 19:88. [PMID: 37901880 PMCID: PMC10603373 DOI: 10.3892/br.2023.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Pancreatic cancer is currently one of the least curable types of human cancer and remains a key health problem. One of the most important characteristics of pancreatic cancer is its ability to grow under hypoxic conditions. Hypoxia is associated with resistance of cancer cells to radiotherapy and chemotherapy. It is a major contributor to pancreatic cancer genetic instability, which local and systemic resistance that may result in poor clinical outcome. Accordingly, identifying gene expression changes in cancer resistance genes that occur under hypoxic conditions may identify a new therapeutic target. The aim of the present study was to explore the association between hypoxia and resistance to chemotherapy and determine the alteration in the expression of cancer resistance-related genes in the presence of hypoxia. Pancreatic cancer cells (PANC-1) were exposed to 8 h hypoxic episodes (<1% oxygen) three times/week for a total of 20 episodes (chronic hypoxia) or 72 h hypoxic episodes twice/week for a total of 10 episodes (acute hypoxia). The alterations in gene expression were examined using reverse transcription-quantitative PCR array compared with normoxic cells. Chemoresistance of hypoxic cells toward doxorubicin was assessed using MTT cell proliferation assay. Both chronic and acute hypoxia induced chemoresistance toward doxorubicin in PANC-1 pancreatic cancer cell line. The greatest changes occurred in estrogen Receptor Alpha Gene (ESR1) and ETS Like-1 protein (ELK1) pathways, in nucleic transcription factor Peroxisome proliferator-activated receptors (PPARs) and in a cell cycle inhibitor cyclin dependent kinase inhibitor 1A (CDKN1A). The present study demonstrated that exposing cells to prolonged hypoxia results in different gene expression changes involving pleotropic pathways that serve a role in inducing resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Tareq Hameduh
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Nailya Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hana Hammad
- Department of Biology, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
LNX1 Contributes to Cell Cycle Progression and Cisplatin Resistance. Cancers (Basel) 2021; 13:cancers13164066. [PMID: 34439220 PMCID: PMC8394373 DOI: 10.3390/cancers13164066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The ligand of numb-protein X1 (LNX1) is reported to be upregulated in various cancers, however the cellular function of LNX1 is not clearly characterized. The aim of the present study was to elucidate the regulation of LNX1 expression and clarify the role of LNX1 in cell-cycle progression and resistance to the cancer therapeutic agent, cisplatin. We found that LNX1 expression is decreased by DNA damage including cisplatin treatment and the levels of S and G2/M populations were correlated with LNX1 expression. We also showed that the upregulation of LNX1 contributes to cell-cycle progression and cisplatin resistance. Our data suggest that LNX1 is the important regulator of the cell cycle, and contributes to tumor progression. Abstract The ligand of numb-protein X1 (LNX1) acts as a proto-oncogene by inhibiting p53 stability; however, the regulation of LNX1 expression has not been investigated. In this study, we screened chemicals to identify factors that potentially regulate LNX1 expression. We found that LNX1 expression levels were decreased by DNA damage, including that by cisplatin. Upon treatment with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), LNX1 expression levels increased. In addition, cell-cycle progression increased upon LNX1 expression; the levels of S and G2/M populations were correlated with LNX1 expression. Moreover, in CRISPR-Cas9-mediated LNX1 knockout cells, we observed a delay in cell-cycle progression and a downregulation of genes encoding the cell-cycle markers cyclin D1 and cyclin E1. Finally, the upregulation of LNX1-activated cell-cycle progression and increased resistance to cisplatin-mediated cell death. Taken together, these results suggest that LNX1 contributes to cell-cycle progression and cisplatin resistance.
Collapse
|
3
|
Cole AJ, Dickson KA, Liddle C, Stirzaker C, Shah JS, Clifton-Bligh R, Marsh DJ. Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cell Mol Life Sci 2021; 78:1011-1027. [PMID: 32458023 PMCID: PMC11072370 DOI: 10.1007/s00018-020-03552-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.
Collapse
Affiliation(s)
- Alexander J Cole
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
- Department of Medicine, Magee Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristie-Ann Dickson
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, UNSW, Sydney, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Jaynish S Shah
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Deborah J Marsh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia.
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
4
|
Liu S, Zhang J, Yin L, Wang X, Zheng Y, Zhang Y, Gu J, Yang L, Yang J, Zheng P, Jiang Y, Shuai L, Cai X, Wang H. The lncRNA RUNX1-IT1 regulates C-FOS transcription by interacting with RUNX1 in the process of pancreatic cancer proliferation, migration and invasion. Cell Death Dis 2020; 11:412. [PMID: 32487998 PMCID: PMC7265432 DOI: 10.1038/s41419-020-2617-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Numerous long noncoding RNAs (lncRNAs) are aberrantly expressed in pancreatic cancer (PC); however, their functions and mechanisms in cancer progression are largely unknown. In this study, we identified a novel PC-associated lncRNA, RUNX1-IT1, that was significantly upregulated in PC patient samples from multiple centers and associated with poor prognosis. In vitro and in vivo, alterations in RUNX1-IT1 expression markedly affected PC proliferation, migration and invasion. RUNX1-IT1 contributed to the progression of PC by interacting with the adjacent gene RUNX1. Rescue experiments showed that RUNX1 reduced the cancer-promoting effect of RUNX1-IT1. RNA-seq analysis after silencing RUNX1-IT1 and RUNX1 highlighted alterations in the common target C-FOS. Mechanistically, we demonstrated that RUNX1-IT1 was a trans-acting factor that participated in the proliferation, migration and invasion of PC by recruiting RUNX1 to the C-FOS gene promoter. Furthermore, RUNX1-IT1 enhanced the transcription of the RUNX1 gene, indicating its potential as a cis-regulatory RNA involved in the upstream regulation of RUNX1. Overall, RUNX1-IT1 is a crucial oncogenic lncRNA that activates C-FOS expression by regulating and recruiting RUNX1 and is a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Liangyu Yin
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Yujun Zhang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Jianyou Gu
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Ludi Yang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Ping Zheng
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Yan Jiang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Ling Shuai
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Xiongwei Cai
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China.
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China.
| |
Collapse
|
5
|
Ponce-Cusi R, Calaf GM. Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation. Int J Oncol 2015; 48:774-82. [PMID: 26691280 DOI: 10.3892/ijo.2015.3298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 8097877, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 8097877, Chile
| |
Collapse
|
6
|
Liu X, Zou J, Su J, Lu Y, Zhang J, Li L, Yin F. Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int J Oncol 2015; 48:243-52. [PMID: 26647723 DOI: 10.3892/ijo.2015.3254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 11/05/2022] Open
Abstract
Transient receptor potential cation channel, subfamily C, member 1 (TRPC1) participates in many physiological functions but has also been implicated in cancer development. However, little is known about the role of TRPC1 in ovarian cancer (OC), including the drug resistance of these tumors. In the present study, a significant and consistent downregulation of TRPC1 in drug-resistant OC tissues/cells was determined using real-time quantitative polymerase chain reaction assays and the microarrays deposited in Oncomine and Gene Expression Omnibus (GEO) profiles. Protein/gene-protein/gene and protein-chemical interactions indicated that TRPC1 interacts with 14 proteins/genes and 6 chemicals, all of which are involved in the regulation of drug resistance in OC. Biological process annotation of TRPC1, OC, and drug resistance indicated a role for TRPC1 in drug-resistance-related functions in OC, mainly via the cell cycle, gene expression and cell growth and cell death. Analysis of mRNA-microRNA interactions showed that 8 out of 11 major pathways enriched from 38 predominant microRNAs targeting TRPC1 were involved in the regulation of drug resistance in OC, and 8 out of these top 10 microRNAs were implicated in the drug resistance in ovarian and other cancers. In a clinical analysis using data obtained from The Cancer Genome Atlas project (TCGA) cohort on 341 OC patients, TRPC1 expression was found to differ significantly between grade 2 and grade 3 tumors, with low-level expression correlating with higher tumor grade. This is the first report to show a potential association between the downregulation of TRPC1 and both drug resistance and high histological tumor grade in OC. Our results provide the basis for further investigations of the drug-resistance-related functions of TRPC1 in OC and other forms of cancer.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zou
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Su
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
7
|
Liu X, Gao Y, Lu Y, Zhang J, Li L, Yin F. Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol 2015; 141:381-95. [PMID: 24997551 DOI: 10.1007/s00432-014-1765-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Oncogenes play pivotal roles in the development of cancer, and disturbances in their expression have been implicated in drug resistance. However, an overview of the contribution of oncogenes to drug resistance in ovarian cancer has not previously been reported. This study aimed to review the drug resistance-related oncogenes in ovarian cancer and precisely determine their relationships. METHODS The oncogenes associated with drug resistance in ovarian cancer from available papers were summarized, and a comprehensive bioinformatics analysis including pathway enrichment, biological processes annotation, protein/gene interaction and microRNA-mRNA interaction was performed. RESULTS Total of 25 oncogenes contributing to drug resistance in ovarian cancer was integrated and further analyzed. An oncogene-mediated drug resistance pathway that explains the associations of 21 of these oncogenes in drug resistance was drafted on the basis of previously published papers. The downstream location of v-akt murine thymoma viral oncogene (AKT) and B-cell CLL/lymphoma 2-associated X protein (BAX) with respect to many other oncogenes was determined, indicating that the two genes may play a central role, and the AKT- and BAX-mediated signaling are the main pathways accounting for the involvement of oncogenes in drug resistance in ovarian cancer. Besides, the annotation of biological process indicated that the apoptosis (cell death) and phosphorylation (phosphate metabolic process) might be the two major biological routes through which oncogenes contribute to drug resistance in ovarian cancer. In addition, on the basis of the comprehensive analysis of microRNA-mRNA interactions, 11 microRNAs were identified to be targeted at least 7 of the 25 oncogenes, indicating that those microRNAs could be an important regulator of the 25 oncogenes. Collectively, by integrating and further analyzing the available data on these oncogenes, this study contributes to improving our understanding of the mechanisms by which their expression leads to drug resistance in this ovarian cancer.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Rouette A, Parent S, Girouard J, Leblanc V, Asselin E. Cisplatin increases B-cell-lymphoma-2 expression via activation of protein kinase C and Akt2 in endometrial cancer cells. Int J Cancer 2011; 130:1755-67. [PMID: 21618512 DOI: 10.1002/ijc.26183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/28/2011] [Indexed: 01/13/2023]
Abstract
Human carcinomas often show resistance to cisplatin and Bcl-2 is associated with resistance to cisplatin. However, Bcl-2 regulation on cisplatin treatment in human cancers is unknown. Here, we show a novel mechanism by which cisplatin treatment promotes resistance by increasing the expression of Bcl-2 mRNA. Bcl-2 mRNA and protein expression was increased in cisplatin-resistant endometrial cancer cell lines (KLE and HEC-1-A), but not in cisplatin-sensitive cell line (Ishikawa). Cisplatin-mediated increase in Bcl-2 expression was blocked by combination with either actinomycin D or cycloheximide. In addition, Bcl-2 inhibition by HA14-1 led to increased cisplatin-induced apoptosis in KLE and HEC-1-A, whereas Bcl-2 overexpression in Ishikawa led to decreased cisplatin-induced apoptosis. Inhibition of protein kinase C (PKC) activity prevented cisplatin-dependant increase in Bcl-2 mRNA, and induced apoptosis in KLE cells. Furthermore, PKC inhibition was associated with decreased Akt and NF-κB activity. Cells stably expressing shRNA for Akt isoforms revealed that Akt2 was involved in cisplatin-dependant increase in Bcl-2 and apoptosis. Overexpression of Akt2 in Akt2-deficient cells led to increased Bcl-2 expression on cisplatin treatment. Our data suggest a novel regulation pathway of Bcl-2 by cisplatin, via the activation of PKC and Akt2, which has a profound impact on resistance to cisplatin-induced apoptosis in endometrial cancer cells.
Collapse
Affiliation(s)
- Alexandre Rouette
- Research Group in Molecular Oncology and Endocrinology, Department of Chemistry and Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | | | | |
Collapse
|
9
|
Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity. Cell Mol Life Sci 2010; 68:1785-98. [PMID: 20976523 PMCID: PMC3078315 DOI: 10.1007/s00018-010-0546-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/16/2023]
Abstract
The oncoprotein c-Fos has been commonly found differently expressed in cancer cells. Our previous work showed that mouse cells lacking the immediate-early gene c-fos are hypersensitive to ultraviolet (UVC) light. Here, we demonstrate that in human diploid fibroblasts UV-triggered induction of c-Fos protein is a delayed and long-lasting event. Sustained upregulation of c-Fos goes along with transcriptional stimulation of the NER gene xpf, which harbors an AP-1 binding site in the promoter. Data gained on c-Fos knockdown and c-Fos overexpressing human cells provide evidence that c-Fos/AP-1 stimulates upregulation of XPF, thereby increasing the cellular repair capacity protecting from UVC-induced DNA damage. When these cells are pre-exposed to a low non-toxic UVC dose and challenged with a subsequent high dose of UVC irradiation, they show accelerated repair of UVC-induced DNA adducts and reduced cell kill. The data indicate a protective role of c-Fos induction by triggering an adaptive response pathway.
Collapse
|
10
|
Christmann M, Tomicic MT, Aasland D, Berdelle N, Kaina B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res 2010; 38:6418-32. [PMID: 20511593 PMCID: PMC2965218 DOI: 10.1093/nar/gkq455] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cells respond to genotoxic stress with the induction of DNA damage defence functions. Aimed at identifying novel players in this response, we analysed the genotoxic stress-induced expression of DNA repair genes in mouse fibroblasts proficient and deficient for c-Fos or c-Jun. The experiments revealed a clear up-regulation of the three prime exonuclease I (trex1) mRNA following ultraviolet (UV) light treatment. This occurred in the wild-type but not c-fos and c-jun null cells, indicating the involvement of AP-1 in trex1 induction. Trex1 up-regulation was also observed in human cells and was found on promoter, RNA and protein level. Apart from UV light, TREX1 is induced by other DNA damaging agents such as benzo(a)pyrene and hydrogen peroxide. The mouse and human trex1 promoter harbours an AP-1 binding site that is recognized by c-Fos and c-Jun, and its mutational inactivation abrogated trex1 induction. Upon genotoxic stress, TREX1 is not only up-regulated but also translocated into the nucleus. Cells deficient in TREX1 show reduced recovery from the UV and benzo(a)pyrene-induced replication inhibition and increased sensitivity towards the genotoxins compared to the isogenic control. The data revealed trex1 as a novel DNA damage-inducible repair gene that plays a protective role in the genotoxic stress response.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
11
|
Nam E, Park C. Maspin suppresses survival of lung cancer cells through modulation of Akt pathway. Cancer Res Treat 2010; 42:42-7. [PMID: 20369051 DOI: 10.4143/crt.2010.42.1.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/07/2009] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Maspin is a tumor suppressor protein that has been reported to stimulate the cell death of cancer and inhibit the metastasis of cancer. The present study aimed to explore the survival pathway by which maspin modulates the resistance of human lung cancer cells to chemotherapeutic drugs, and the consequences of maspin gene therapy in an animal model. MATERIALS AND METHODS NCI-H157 and A549 cells were transfected with either a mock vector (pCMVTaq4C), maspin (pCMV-maspin), siControl or siMaspin. RT-PCR and Western blot analysis were performed to study the expressions of survival proteins in lung cancer. cDNA microarray analysis was carried out to compare the maspin-modulated gene expression between the xenograft tumors derived from the lung cancer cells that were stably transfected with pCMVTaq4C or pCMV-maspin. Maspin gene therapy was performed by intra-tumoral injections of pCMVTaq4C or pCMV-maspin into the pre-established subcutaneous tumors in nude mice. RESULTS Maspin significantly decreased the survival to doxorubicin and etoposide, whereas did not affect the survival to cisplatin in the NCI-H157 cells. Interestingly, transfection with a maspin plasmid resulted in a significant reduction of the phosphorylation of Akt in the NCI-H157 cells, whereas knockdown of maspin increased the phosphorylation of Akt in the A549 cells. Microarray analysis of the xenograft tumors revealed a specific gene expression profile, demonstrating that maspin is associated with the differential expressions of PTEN and IGF2R. Direct transfer of pCMV-maspin into the tumor significantly retarded the tumor growth in the animal experiments (p=0.0048). CONCLUSION Lung cancer cells lacking maspin could be resistant to chemotherapeutic drugs such as doxorubicin or etoposide, at least in part by maintaining Akt phosphorylation.
Collapse
Affiliation(s)
- Eunsook Nam
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
12
|
Resistance to platinum-based chemotherapy in lung cancer cell lines. Cancer Chemother Pharmacol 2010; 66:1103-11. [PMID: 20953859 DOI: 10.1007/s00280-010-1268-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE A series of six lung cancer cell lines of different cell origin (including small cell and mesothelioma) were characterized immunohistochemically and the role of a series of protein candidates previously implicated in drug resistance were investigated. METHODS These include colony-forming and cell growth assays, immunohistochemistry, siRNA knockouts, real-time PCR and western blots. RESULTS No correlation was found with AKT, HO-1, HO-2, GRP78, 14-3-3zeta and ERCC1 levels and cisplatin nor oxaliplatin cytotoxicity, but an association was observed with levels of the enzyme, dihydrodiol dehydrogenase (DDH); an enzyme previously implicated in the development of platinum resistance. The relationship appeared to hold true for those cell lines derived from lung epithelial primary tumors but not for the neuroendocrine/small-cell and mesothelioma cell lines. siRNA knockouts to DDH-1 and DDH-2 were prepared with the cell line exhibiting the greatest resistance to cisplatin (A549) resulting in marked decreases in the DDH isoforms as assessed by real-time PCR, western blot and enzymatic activity. The DDH-1 knockout was far more sensitive to cisplatin than the DDH-2 knockout. CONCLUSION Thus, sensitivity to cisplatin appeared to be associated with DDH levels in epithelial lung cancer cell lines with the DDH-1 isoform producing the greatest effect. Results in keeping with transfection experiments with ovarian and other cell lines.
Collapse
|
13
|
Muscella A, Urso L, Calabriso N, Vetrugno C, Rochira A, Storelli C, Marsigliante S. Anti-apoptotic effects of protein kinase C-delta and c-fos in cisplatin-treated thyroid cells. Br J Pharmacol 2009; 156:751-63. [PMID: 19254279 DOI: 10.1111/j.1476-5381.2008.00049.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that cisplatin inititates a signalling pathway mediated by PKC-delta/extracellular signal-regulated kinase (ERK), important for maintaining viability in PC Cl3 thyroid cells. The studies described herein examined whether c-fos was associated with cisplatin resistance and the signalling link between c-fos and PKC-delta/ERK. EXPERIMENTAL APPROACH Cells were treated with various pharmacological inhibitors of PKCs and ERK, or were depleted of c-fos, PKC-delta, PKC-epsilon and caspase-3 by small interfering RNA (siRNA), then incubated with cisplatin and cytotoxicity assessed. KEY RESULTS Cisplatin provokes the induction of c-fos and the activation of conventional PKC-beta, and novel PKC-delta and -epsilon. The cisplatin-provoked c-fos induction was decreased by Gö6976, a PKC-beta inhibitor; by siRNA for PKC-delta- but not that for PKC-epsilon or by PD98059, a mitogen-activated protein kinase/ERK kinase inhibitor. Expression of c-fos was abolished by GF109203X, an inhibitor of all PKC isoforms, or by PD98059 plus Gö6976 or by PKC-delta-siRNA plus Gö6976. When c-fos expression was blocked by siRNA, cisplatin cytotoxicity was strongly enhanced with increased caspase-3 activation. In PKC-delta-depleted cells treated with cisplatin, caspase-3 activation was increased and cell viability decreased. In these PKC-delta-depleted cells, PD98059 did not affect caspase-3 activation. CONCLUSIONS AND IMPLICATIONS In PC Cl3 cells, in the cell signalling pathways that lead to cisplatin resistance, PKC-delta controls ERK activity and, together with PKC-beta, also the induction of c-fos. Hence, the protective role of c-fos in thyroid cells has the potential to provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Rosell R, Skrzypski M, Jassem E, Taron M, Bartolucci R, Sanchez JJ, Mendez P, Chaib I, Perez-Roca L, Szymanowska A, Rzyman W, Puma F, Kobierska-Gulida G, Farabi R, Jassem J. BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS One 2007; 2:e1129. [PMID: 17987116 PMCID: PMC2042516 DOI: 10.1371/journal.pone.0001129] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/01/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although early-stage non-small-cell lung cancer (NSCLC) is considered a potentially curable disease following complete resection, patients have a wide spectrum of survival according to stage (IB, II, IIIA). Within each stage, gene expression profiles can identify patients with a higher risk of recurrence. We hypothesized that altered mRNA expression in nine genes could help to predict disease outcome: excision repair cross-complementing 1 (ERCC1), myeloid zinc finger 1 (MZF1) and Twist1 (which regulate N-cadherin expression), ribonucleotide reductase subunit M1 (RRM1), thioredoxin-1 (TRX1), tyrosyl-DNA phosphodiesterase (Tdp1), nuclear factor of activated T cells (NFAT), BRCA1, and the human homolog of yeast budding uninhibited by benzimidazole (BubR1). METHODOLOGY AND PRINCIPAL FINDINGS We performed real-time quantitative polymerase chain reaction (RT-QPCR) in frozen lung cancer tissue specimens from 126 chemonaive NSCLC patients who had undergone surgical resection and evaluated the association between gene expression levels and survival. For validation, we used paraffin-embedded specimens from 58 other NSCLC patients. A strong inter-gene correlation was observed between expression levels of all genes except NFAT. A Cox proportional hazards model indicated that along with disease stage, BRCA1 mRNA expression significantly correlated with overall survival (hazard ratio [HR], 1.98 [95% confidence interval (CI), 1.11-6]; P = 0.02). In the independent cohort of 58 patients, BRCA1 mRNA expression also significantly correlated with survival (HR, 2.4 [95%CI, 1.01-5.92]; P = 0.04). CONCLUSIONS Overexpression of BRCA1 mRNA was strongly associated with poor survival in NSCLC patients, and the validation of this finding in an independent data set further strengthened this association. Since BRCA1 mRNA expression has previously been linked to differential sensitivity to cisplatin and antimicrotubule drugs, BRCA1 mRNA expression may provide additional information for customizing adjuvant antimicrotubule-based chemotherapy, especially in stage IB, where the role of adjuvant chemotherapy has not been clearly demonstrated.
Collapse
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen J, Adikari M, Pallai R, Parekh HK, Simpkins H. Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 2007; 61:979-87. [PMID: 17661040 PMCID: PMC2846169 DOI: 10.1007/s00280-007-0554-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/26/2007] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that overexpression of dihydrodiol dehydrogenase isoform 1 (DDH1) or DDH2 leads to the induction of drug resistance to platinum based drugs in human ovarian, lung, cervical and germ cell tumor cell lines. DDH belongs to a family of aldoketo reductases that are involved in the detoxification of several endogenous and exogenous substrates. DDH1 and DDH2 in particular have been shown to be involved in the detoxification (activation?) of polycyclic aromatic hydrocarbons (PAH). Based on the involvement of DDH in the detoxification of electrophilic PAH intermediates, the effect of DDH on the production of reactive oxygen species (ROS) in a cisplatin-sensitive and -resistant human ovarian carcinoma cell line was investigated in the current study. In addition to the overexpression of DDH1 and DDH2, increased expression of DDH3 was demonstrated in the cisplatin-resistant 2008/C13* cells, compared to the parental 2008 cells. However, as assessed by RT-PCR, neither cell line expressed DDH4. The 2008/C13* cells were eightfold resistant to cisplatin, and transfection experiments utilizing cisplatin-sensitive 2008 cells suggest that this could be mediated by overexpression of either DDH1, DDH2, or DDH3. The 2008/C13* cells had lower basal intracellular ROS level as compared to the 2008 cells and ROS production was decreased in the recombinant 2008 cells with forced, constitutive overexpression of either, DDH1, DDH2, or DDH3. Transfection of siRNA against DDH1 or DDH2 in the cisplatin-resistant 2008/C13* cells not only significantly decreased their cisplatin-resistance index (as assayed by MTT and colony formation assay) but also led to an increase in the basal levels of ROS production (although transfection of siRNA against DDH3 resulted in cell death). The 2008/C13* cells were found to be cross-resistant to the cytotoxic effects of hydrogen peroxide and tert-butyl hydroperoxide and knockdown of either DDH1 or DDH2 expression (using siRNA) resulted in sensitization of the resistant cells to these agents. These results support the conclusion that the increased levels of DDH in the 2008/C13* cells are directly responsible for the reduced production of ROS and that this may play a role in the development of cisplatin resistance.
Collapse
Affiliation(s)
- Jianli Chen
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Room 206, OMS, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | - Mahesha Adikari
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Room 206, OMS, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | - Rajash Pallai
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Room 206, OMS, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hemant K. Parekh
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Room 206, OMS, 3400 N. Broad Street, Philadelphia, PA 19140, USA, Fels Institute of Cancer Research and Molecular Biology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | - Henry Simpkins
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Room 206, OMS, 3400 N. Broad Street, Philadelphia, PA 19140, USA, Fels Institute of Cancer Research and Molecular Biology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
16
|
Christmann M, Tomicic MT, Origer J, Aasland D, Kaina B. c-Fos is required for excision repair of UV-light induced DNA lesions by triggering the re-synthesis of XPF. Nucleic Acids Res 2006; 34:6530-9. [PMID: 17130154 PMCID: PMC1702502 DOI: 10.1093/nar/gkl895] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells deficient in c-Fos are hypersensitive to ultraviolet (UV-C) light. Here we demonstrate that mouse embryonic fibroblasts lacking c-Fos (fos−/−) are defective in the repair of UV-C induced DNA lesions. They show a decreased rate of sealing of repair-mediated DNA strand breaks and are unable to remove cyclobutane pyrimidine dimers from DNA. A search for genes responsible for the DNA repair defect revealed that upon UV-C treatment the level of xpf and xpg mRNA declined but, in contrast to the wild type (wt), did not recover in fos−/− cells. The observed decline in xpf and xpg mRNA is due to impaired re-synthesis, as shown by experiments using actinomycin D. Block of xpf transcription resulted in a lack of XPF protein after irradiation of fos−/− cells, whereas the XPF level normalized quickly in the wt. Although the xpg mRNA level was reduced, the amount of XPG protein was not altered in c-Fos-deficient cells after UV-C, due to higher stability of the XPG protein. The data suggest a new role for c-Fos in cells exposed to genotoxic stress. Being part of the transcription factor AP-1, c-Fos stimulates NER via the upregulation of xpf and thus plays a central role in the recovery of cells from UV light induced DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Bernd Kaina
- To whom correspondence should be addressed. Tel: +49 6131 393 3246; Fax: +49 6131 230506;
| |
Collapse
|
17
|
Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2006; 33:9-23. [PMID: 17084534 PMCID: PMC1855222 DOI: 10.1016/j.ctrv.2006.09.006] [Citation(s) in RCA: 1196] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/06/2006] [Accepted: 09/11/2006] [Indexed: 12/17/2022]
Abstract
Platinating agents, including cisplatin, carboplatin, and oxaliplatin, have been used clinically for nearly 30years as part of the treatment of many types of cancers, including head and neck, testicular, ovarian, cervical, lung, colorectal and relapsed lymphoma. The cytotoxic lesion of platinating agents is thought to be the platinum intrastrand crosslink that forms on DNA, although treatment activates a number of signal transduction pathways. Treatment with these agents is characterized by resistance, both acquired and intrinsic. This resistance can be caused by a number of cellular adaptations, including reduced uptake, inactivation by glutathione and other anti-oxidants, and increased levels of DNA repair or DNA tolerance. Here we investigate the pathways that treatment with platinating agents activate, the mechanisms of resistance, potential candidate genes involved in the development of resistance, and associated clinical toxicities. Although the purpose of this review is to provide an overview of cisplatin, carboplatin, and oxaliplatin, we have focused primarily on preclinical data that has clinical relevance generated over the past five years.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, 5841 S. Maryland Avenue, Box MC2115, Section of Hem-Onc, Chicago, IL 60637, United States
| | | |
Collapse
|
18
|
Li J, Wood WH, Becker KG, Weeraratna AT, Morin PJ. Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 2006; 26:2860-72. [PMID: 17072341 DOI: 10.1038/sj.onc.1210086] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular pathways activated in response to acute cisplatin exposure, as well as the mechanisms involved in the long-term development of cisplatin-resistant cancer cells remain unclear. Using whole genome oligonucleotide microarrays, we have examined the kinetics of gene expression changes in a cisplatin-sensitive cell line, A2780, and its cisplatin-resistant derivative, ACRP. Both sensitive and resistant cell lines exhibited a very similar response of p53-inducible genes as early as 16 h after treatment. This p53 response was further increased at the 24-h time point. These experiments identify p53 as the main pathway producing a large-scale transcriptional response after cisplatin treatment in these cells containing wild-type p53. Consistent with a role for the p53 response in cisplatin sensitivity, knockdown of the p53 protein with small interfering RNA led to a twofold decrease in cell survival in the resistant cells. In addition, our analysis also allowed the identification of several genes that are differentially expressed between sensitive and resistant cells. These genes include GJA1 (encoding connexin 43 (Cx43)) and TWIST1, which are highly upregulated in cisplatin-resistant cells. The importance of Cx43 in drug resistance was demonstrated through functional analyses, although paradoxically, inhibition of Cx43 function in high expressing cells led to an increase in drug resistance. The pathways important in cisplatin response, as well as the genes found differentially expressed between cisplatin-resistant and -sensitive cells, may represent targets for therapy aimed at reversing drug resistance.
Collapse
Affiliation(s)
- J Li
- Laboratory of Cellular and Molecular Biology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Members of the Fos family (c-Fos, FosB and its smaller splice variants, Fra-1 and Fra-2) dimerise with Jun proteins to form the AP-1 transcription factor complex. Based on the rapidly growing amount of data from experimental studies, animal models and investigations on clinical tumour samples, this review summarises the current knowledge about the role of these proteins in carcinogenesis. In addition to c-Fos, which has oncogenic activity and is frequently overexpressed in tumour cells, Fra-1 seems to play a role in the progression of many carcinomas. The results obtained from various studies show different implications for these transcription factors according to tumour type, i.e., Fra-1 overexpression enhances the motility and invasion of breast and colorectal cancer cells, but inhibits the tumourigenicity of cervical carcinoma cell lines. Knowledge about regulation of invasion and metastasis in different malignant tumours in vivo might open promising perspectives to targeted therapeutic approaches.
Collapse
Affiliation(s)
- Karin Milde-Langosch
- Institute of Pathology, University Clinics Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.
| |
Collapse
|
20
|
Kang WK, Lee I, Park C. Characterization of RhoA-mediated chemoresistance in gastric cancer cells. Cancer Res Treat 2005; 37:251-6. [PMID: 19956523 DOI: 10.4143/crt.2005.37.4.251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 07/06/2005] [Indexed: 12/28/2022] Open
Abstract
PURPOSE RhoA is a critical transducer of extracellular signals, which leads to organization of actin cytoskeleton, motility, adhesion and gene regulation. The present study aimed to explore whether RhoA influences the susceptibility of gastric cancer cells to chemotherapeutic drugs. MATERIALS AND METHODS SNU638 cells were transfected with a mock vector (pcDNA3.1), RhoA (pcDNA/RhoA), or constitutively active RhoA (pcDNA/caRhoA). MTT assay and Western blot analysis were performed to study the growth response to several chemotherapeutic drugs in the gastric cancer cell line, SNU638, with different RhoA levels. RESULTS RhoA significantly enhanced the resistance to lovastatin, 5-FU, taxol and vincristine, but did not affect the sensitivity to cisplatin or etoposide in SNU638. In the Western blot analysis, RhoA decreased the PARP cleavage, which was accompanied by a concurrent reduction in cell death. The gene expression profile after a cDNA microarray analysis demonstrated that RhoA was associated with the differential expression of 19 genes, including those involved in anti-oxidant defense, glucose metabolism, anti-apoptosis and protein turnover. CONCLUSION Gastric cancer cells with a high expression of RhoA could be resistant to chemotherapeutic drugs, such as taxol or vincristine, implying that treatment strategies aimed at inactivation of RhoA might be promising for improving the efficacy of these chemotherapeutic drugs.
Collapse
Affiliation(s)
- Won Ki Kang
- Cancer Center, Samsung Medical Center, and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
21
|
Macleod K, Mullen P, Sewell J, Rabiasz G, Lawrie S, Miller E, Smyth JF, Langdon SP. Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer Res 2005; 65:6789-800. [PMID: 16061661 DOI: 10.1158/0008-5472.can-04-2684] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of ovarian cancer patients are treated with platinum-based chemotherapy, but the emergence of resistance to such chemotherapy severely limits its overall effectiveness. We have shown that development of resistance to this treatment can modify cell signaling responses in a model system wherein cisplatin treatment has altered cell responsiveness to ligands of the erbB receptor family. A cisplatin-resistant ovarian carcinoma cell line PE01CDDP was derived from the parent PE01 line by exposure to increasing concentrations of cisplatin, eventually obtaining a 20-fold level of resistance. Whereas PE01 cells were growth stimulated by the erbB receptor-activating ligands, such as transforming growth factor-alpha (TGFalpha), NRG1alpha, and NRG1beta, the PE01CDDP line was growth inhibited by TGFalpha and NRG1beta but unaffected by NRG1alpha. TGFalpha increased apoptosis in PE01CDDP cells but decreased apoptosis in PE01 cells. Differences in extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling were also found, which may be implicated in the altered cell response to ligands. Microarray analysis revealed 51 genes whose mRNA increased by at least 2-fold in PE01CDDP cells relative to PE01 (including FRA1, ETV4, MCM2, AXL, MT3, TRAP1, and FANCG), whereas 36 genes (including IGFBP3, TRAM1, and KRT4 and KRT19) decreased by a similar amount. Differential display reverse transcriptase-PCR identified altered mRNA expression for TCP1, SLP1, proliferating cell nuclear antigen, and ZXDA. Small interfering RNA inhibition of FRA1, TCP1, and MCM2 expression was associated with reduced growth and FRA1 inhibition with enhanced cisplatin sensitivity. Altered expression of these genes by cytotoxic exposure may provide survival advantages to cells including deregulation of signaling pathways, which may be critical in the development of drug resistance.
Collapse
Affiliation(s)
- Kenneth Macleod
- Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Youn CK, Kim MH, Cho HJ, Kim HB, Chang IY, Chung MH, You HJ. Oncogenic H-Ras Up-Regulates Expression of ERCC1 to Protect Cells from Platinum-Based Anticancer Agents. Cancer Res 2004; 64:4849-57. [PMID: 15256455 DOI: 10.1158/0008-5472.can-04-0348] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumors frequently contain mutations in the ras genes, resulting in the constitutive activation of the Ras-activated signaling pathway. The activation of Ras is involved not only in tumor progression but also in the development of resistance of the tumor cells to platinum-based chemotherapeutic agents. To investigate the potential mechanisms underlying this resistance, we analyzed the effect of activated H-Ras on the expression of the nucleotide excision repair genes. Here we identified ERCC1, which is one of the key enzymes involved in nucleotide excision repair, as being markedly up-regulated by the activated H-Ras. From promoter analysis of ERCC1, an increase in the Ap1 transcriptional activity as a result of the expression of the oncogenic H-Ras was found to be crucial for this induction. In addition, ERCC1 small interfering RNA expression was shown to reduce the oncogenic H-Ras-mediated increase in the DNA repair activity as well as to suppress the oncogenic H-Ras-mediated resistance of the cells to platinum-containing chemotherapeutic agents. These results suggest that the oncogenic H-Ras-induced ERCC1, which activates the DNA repair capacity, may be involved in the protection of the cells against platinum-based anticancer agents.
Collapse
Affiliation(s)
- Cha-Kyung Youn
- Research Center for Proteineous Materials, School of Medicine, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Wilson LA, Yamamoto H, Singh G. Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.823.3.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Cisplatin is a DNA damaging agent widely used as a chemotherapeutic agent. A major limitation of the use of this agent is the development of drug resistance within tumors. Several in vitro models exist which enable the investigation of resistance mechanisms, including 2008/C13* ovarian carcinoma cells. C13* cells are variants of 2008 cells, displaying cisplatin resistance following 13 consecutive cisplatin treatments. This model system has led to the identification of several mechanisms that play parts in the multifactorial nature of cisplatin resistance. In this study, we have examined the contribution of a transcription factor, Ets-1, to the cisplatin resistance of C13* cells. Ets-1 is up-regulated in C13* cells as compared with the cisplatin-sensitive 2008 cells and overexpression of this protein in 2008 cells led to a 7-fold increase in resistance. Further studies on a colorectal carcinoma cell line overexpressing Ets-1 indicated that this phenomenon is not cell specific—increased cisplatin resistance correlated to Ets-1 expression. The mechanism of cisplatin resistance elicited by Ets-1 is potentially via transcriptional activation of genes whose products have well-described functions in reducing cisplatin toxicity. Examples, identified via microarray analysis, include metallothioneins and DNA repair enzymes. This is the first report to our knowledge associating expression of Ets-1, a transcription factor whose expression often signals poor prognosis in various cancer types, to cisplatin resistance.
Collapse
Affiliation(s)
- Leigh A. Wilson
- 1Juravinski Cancer Center and Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada and
| | - Hirotaka Yamamoto
- 2The Chicago Institute of Neurosurgery and Neuroresearch, Chicago, Illinois
| | - Gurmit Singh
- 1Juravinski Cancer Center and Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada and
| |
Collapse
|
24
|
Kalayda GV, Jansen BAJ, Molenaar C, Wielaard P, Tanke HJ, Reedijk J. Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part II. Cellular processing in A2780 cisplatin-resistant human ovarian carcinoma cells: new insights into the mechanism of resistance. J Biol Inorg Chem 2004; 9:414-22. [PMID: 15071768 DOI: 10.1007/s00775-004-0540-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/11/2004] [Indexed: 11/24/2022]
Abstract
The cellular processing of three fluorescent N, N'-bis(aminoalkyl)-1,4-diaminoanthraquinones (aminoalkyl=2-aminoethyl, 3-aminoprop-1-yl or 4-aminobut-1-yl) and their dinuclear platinum complexes in A2780 human ovarian carcinoma cells with acquired resistance to cisplatin has been monitored over time by time-lapse fluorescence microscopy. The results were compared with the previously reported observations in the parent A2780 cell line. The cellular distribution pattern for the free ligands is similar in sensitive and resistant cells, whereas significant differences in cellular distribution were observed in the case of the platinum complexes. In the cisplatin-resistant cell line the platinum complexes were found to be sequestrated in acidic vesicles in the cytosol from the very beginning of the incubation. This sequestration was not observed in the case of sensitive cells. Platinum accumulation in vesicles possibly presents a mechanism of resistance to platinum complexes. This mechanism appears to be unrelated to the mechanism of deactivation of platinum compounds by glutathione. Encapsulation of the dinuclear platinum complexes in lysosomal vesicles provides a plausible explanation for the decreased activity of these compounds in the resistant cell line, as compared to the sensitive cell line.
Collapse
Affiliation(s)
- Ganna V Kalayda
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Vekris A, Meynard D, Haaz MC, Bayssas M, Bonnet J, Robert J. Molecular Determinants of the Cytotoxicity of Platinum Compounds. Cancer Res 2004; 64:356-62. [PMID: 14729645 DOI: 10.1158/0008-5472.can-03-2258] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene expression profiling of tumors allows the establishment of relationships between gene expression profiles and sensitivity to anticancer drugs. In an attempt to study the molecular determinants of the activity of platinum compounds, we explored the publicly available databases of the National Cancer Institute (NCI; http://dtp.nci.nih.gov), which allow access to the gene expression profiles of the 60 cell lines for which drug cytotoxicity patterns already existed. Using this database, we have conducted an in silico research to identify the genes the expression of which was positively or negatively correlated to the sensitivity to four platinum compounds (cisplatin, carboplatin, oxaliplatin and tetraplatin). Important similarities were noticed between cisplatin and carboplatin on one hand, and tetraplatin and oxaliplatin on the other hand. In the restricted panel of 1416 genes and molecular markers, we identified 204 markers, among which 120 corresponded to identified genes, that significantly correlated (P < 0.001) with the cytotoxicity of at least one platinum compound. For example, the functionality of the p53-activated pathway appeared positively correlated with the cytotoxicity of all platinum compounds. More specific are the positive correlations between RAS gene mutations and MYC expression and the cellular sensitivity to oxaliplatin. Among the parameters already known as related to the sensitivity to platinum compounds, we identified, in the complete set of 9400 genes, numerous significant relationships, such as the negative correlations between ERB-B2 and BCL-X(L) expressions and the cytotoxicity of the platinum compounds. Public databases mining, therefore, appears to be a valuable tool for the identification of determinants of anticancer drug activity in tumors.
Collapse
|
26
|
Mayer F, Honecker F, Looijenga LHJ, Bokemeyer C. Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors. Ann Oncol 2003; 14:825-32. [PMID: 12796018 DOI: 10.1093/annonc/mdg242] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemotherapy is far more successful in young male patients with germ-cell tumors than in adults suffering from almost any other solid tumor. Various attempts have been made to understand the sensitivity of these tumors towards cisplatin-based chemotherapy; however, to date no explanation has been generally accepted. Recent data underline the need to seek further explanations, other than the previously postulated high intrinsic level of wild-type P53 protein, for the exquisite curability of germ-cell tumors. In this regard, the DNA repair pathways, in particular the DNA mismatch repair and nucleotide excision repair pathways, have received attention. This review summarizes the data currently available on the cellular basis for chemotherapy response in these tumors by systematically following cisplatin-presumably the most active drug in the treatment of this disease-on its course from entering the cell to the execution of apoptosis. The emerging picture points towards a multifactorial explanation for the unique chemosensitivity of germ-cell tumors, including a lack of export pumps, an inability to detoxify cisplatin and repair the respective DNA damage, and an intact apoptotic cascade not disturbed by anti-apoptotic stimuli. Even though no uniform pattern of relevant resistance factors has been identified in patients suffering from refractory disease, a significant number of these cases may be caused by defects in the DNA mismatch repair pathway.
Collapse
Affiliation(s)
- F Mayer
- Department of Oncology, Hematology, Immunology and Rheumatology, University of Tübingen Medical Center, Tübingen, Germany
| | | | | | | |
Collapse
|
27
|
Chauhan SS, Liang XJ, Su AW, Pai-Panandiker A, Shen DW, Hanover JA, Gottesman MM. Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br J Cancer 2003; 88:1327-34. [PMID: 12698203 PMCID: PMC2747565 DOI: 10.1038/sj.bjc.6600861] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We isolated human KB adenocarcinoma cisplatin-resistant (CP-r) cell lines with multidrug-resistance phenotypes because of reduced accumulation of cisplatin and other cytotoxic compounds such as methotrexate and heavy metals. The uptake of horseradish peroxidase (HRPO) and Texas Red dextran was decreased several-fold in KB-CP-r cells, indicating a general defect in fluid-phase endocytosis. In contrast, although EGF receptors were decreased in amount, the kinetics of EGF uptake, a marker of receptor-mediated endocytosis, was similar in sensitive and resistant cells. However, 40-60% of the (125)I-EGF released into the medium after uptake into lysosomes of KB-CP-r cells was TCA precipitable as compared to only 10% released by sensitive cells. These results indicate inefficient degradation of internalised (125)I-EGF in the lysosomes of KB-CP-r cells, consistent with slower processing of cathepsin L, a lysosomal cysteine protease. Treatment of KB cells by bafilomycin A(1), a known inhibitor of the vacuolar proton pump, mimicked the phenotype seen in KB-CP-r cells with reduced uptake of HRPO, (125)I-EGF, (14)C-carboplatin, and release of TCA precipitable (125)I-EGF. KB-CP-r cells also had less acidic lysosomes. KB-CP-r cells were crossresistant to Pseudomonas exotoxin, and Pseudomonas exotoxin-resistant KB cells were crossresistant to cisplatin. Since cells with endosomal acidification defects are known to be resistant to Pseudomonas exotoxin and blocking of endosomal acidification mimics the CP-r phenotype, we conclude that defective endosomal acidification may contribute to acquired cisplatin resistance.
Collapse
Affiliation(s)
- S S Chauhan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - X J Liang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - A W Su
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - A Pai-Panandiker
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - D W Shen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - J A Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Room 402, Bethesda, MD 20892-0850, USA
| | - M M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA. E-mail:
| |
Collapse
|
28
|
Deng HB, Parekh HK, Chow KC, Simpkins H. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells. J Biol Chem 2002; 277:15035-43. [PMID: 11842089 DOI: 10.1074/jbc.m112028200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We employed cDNA microarrays to identify the differentially expressed genes in a cisplatin-sensitive parental (2008) human ovarian carcinoma cell line and its cisplatin-resistant variant (2008/C13*). Differential expression of five genes was found in the 2008/C13* cells, a result confirmed by semi-quantitative reverse transcription-PCR. The five genes were identified as fibroblast muscle-type tropomyosin and skeletal muscle-type tropomyosin, dihydrodiol dehydrogenase, apolipoprotein J and glucose-6-phosphate dehydrogenase variant-A. Treatment of the 2008 cells with cisplatin (at its IC(50) concentration of 2 microm) induced expression of these genes, as determined by semi-quantitative reverse transcription-PCR analysis using gene-specific primers. In contrast, treatment of the drug-resistant 2008/C13* cells with cisplatin (at its IC(50) concentration of 20 microm) did not lead to the induction of any of the aforementioned genes. Most importantly, constitutive overexpression of dihydrodiol dehydrogenase (but not the other genes) in the 2008 cells led to induction of cisplatin resistance, clearly indicating its role in the development of the resistance phenotype in the 2008/C13* cells. The development of cisplatin resistance in the transfected cells was associated with an increase in the dihydrodiol dehydrogenase enzyme activity. Although at present it is not clear how dihydrodiol dehydrogenase is involved in cisplatin resistance, the identification of this gene as a causal factor suggests the existence of a hitherto undefined pathway resulting in cisplatin resistance.
Collapse
Affiliation(s)
- Hong Bing Deng
- Department of Pathology and Laboratory Medicine, Fels Institute of Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The use of cisplatin in cancer chemotherapy is limited by acquired or intrinsic resistance of cells to the drug. Cisplatin enters the cells and its chloride ligands are replaced by water, forming aquated species that react with nucleophilic sites in cellular macromolecules. The presence of the cisplatin adducts in DNA is thought to trigger cell cycle arrest and apoptosis. Knowledge of the mechanism of action of cisplatin has improved our understanding of resistance. Decreased intracellular concentration due to decreased drug uptake, increased reflux or increased inactivation by sulfhydryl molecules such as glutathione can cause resistance to cisplatin. Increased excision of the adducts from DNA by repair pathways or increased lesion bypass can also result in resistance. Finally, altered expression of regulatory proteins involved in signal transduction pathways that control the apoptotic pathway can also affect sensitivity to the drug. An improved understanding of the mechanisms of resistance operative in vivo has identified targets for intervention and may increase the utility of cisplatin for the treatment of cancer.
Collapse
Affiliation(s)
- M Kartalou
- Division of Bioengineering and Environmental Health and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
30
|
Tachiiri S, Sasai K, Oya N, Hiraoka M. Enhanced cell killing by overexpression of dominant-negative phosphatidylinositol 3-kinase subunit, Deltap85, following genotoxic stresses. Jpn J Cancer Res 2000; 91:1314-8. [PMID: 11123431 PMCID: PMC5926311 DOI: 10.1111/j.1349-7006.2000.tb00919.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3-K) is a heterodimer of a regulatory subunit, p85, and a catalytic subunit, p110. A number of previous reports showed that PI3-K functions in diverse cellular phenomena such as cell proliferation, glucose catabolism, cell adhesion, and vesicle transport. It is also well known that a survival signal from the receptor tyrosine kinases utilizes Akt via PI3-K to protect cells from apoptosis. To examine the role of PI3-K in cellular sensitivity to genotoxic stresses such as cisplatin and ultraviolet (UV), we introduced deletion type p85 (Dp85) into two human glioblastoma cell lines (T98G and A172) and one melanoma cell line (G361). The Deltap85 works in a dominant-negative fashion on PI3-K activity by disrupting its p85 / p110 interaction. In all three transfected cell lines, the overexpression of Deltap85 rendered the cells markedly more sensitive to these DNA-damaging stresses than the cells transfected with the vector alone. Apoptosis was vigorously induced in cells overexpressing Dp85 following the treatment. The present results imply that PI3-K plays a critical role in determining cellular sensitivity to genotoxic stresses in human cancer cells, and that disruption of the p85 / p110 interaction of PI3-K may be a potential molecular target for developing a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- S Tachiiri
- Department of Therapeutic Radiology and Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | |
Collapse
|