1
|
Honda K, Takahashi H, Hata S, Abe R, Saito T, Saido TC, Taru H, Sobu Y, Ando K, Yamamoto T, Suzuki T. Suppression of the amyloidogenic metabolism of APP and the accumulation of Aβ by alcadein α in the brain during aging. Sci Rep 2024; 14:18471. [PMID: 39122814 PMCID: PMC11316129 DOI: 10.1038/s41598-024-69400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Generation and accumulation of amyloid-β (Aβ) protein in the brain are the primary causes of Alzheimer's disease (AD). Alcadeins (Alcs composed of Alcα, Alcβ and Alcγ family) are a neuronal membrane protein that is subject to proteolytic processing, as is Aβ protein precursor (APP), by APP secretases. Previous observations suggest that Alcs are involved in the pathophysiology of Alzheimer's disease (AD). Here, we generated new mouse AppNL-F (APP-KI) lines with either Alcα- or Alcβ-deficient background and analyzed APP processing and Aβ accumulation through the aging process. The Alcα-deficient APP-KI (APP-KI/Alcα-KO) mice enhanced brain Aβ accumulation along with increased amyloidogenic β-site cleavage of APP through the aging process whereas Alcβ-deficient APP-KI (APP-KI/Alcβ-KO) mice neither affected APP metabolism nor Aβ accumulation at any age. More colocalization of APP and BACE1 was observed in the endolysosomal pathway in neurons of APP-KI/Alcα-KO mice compared to APP-KI and APP-KI/Alcβ-KO mice. These results indicate that Alcα plays an important role in the neuroprotective function by suppressing the amyloidogenic cleavage of APP by BACE1 in the brain, which is distinct from the neuroprotective function of Alcβ, in which p3-Alcβ peptides derived from Alcβ restores the viability in neurons impaired by toxic Aβ.
Collapse
Affiliation(s)
- Keiko Honda
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Ruriko Abe
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan.
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
2
|
Singh R, Rai S, Bharti PS, Zehra S, Gorai PK, Modi GP, Rani N, Dev K, Inampudi KK, Y VV, Chatterjee P, Nikolajeff F, Kumar S. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction. BMC Med 2024; 22:254. [PMID: 38902659 PMCID: PMC11188177 DOI: 10.1186/s12916-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-β and tau pathologies, and their correlation with AD progression. METHODS A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1β, and GFAP antibodies. AD-specific markers, amyloid-β (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-β (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-β (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1β, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS Elevated PsEVs, upregulated amyloid-β (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Vishnu V Y
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden.
| |
Collapse
|
3
|
Schröder VE, Skrozic A, Erz D, Kaysen A, Fritz JV, Loureiro JM, McIntyre D, Pauly L, Kemp J, Schmitz SK, Wagner S, Reyes M, Soare R, Satagopam V, Vega C, Gawron P, Roomp K, Conde PM, Klucken J, Köhler S, Hartmann T, Dodel R, Leist AK, Kalbe E, Krüger R. Programme Dementia Prevention (pdp): A Nationwide Program for Personalized Prevention in Luxembourg. J Alzheimers Dis 2024; 97:791-804. [PMID: 38189752 PMCID: PMC10836551 DOI: 10.3233/jad-230794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND With continuously aging societies, an increase in the number of people with cognitive decline is to be expected. Aside from the development of causative treatments, the successful implementation of prevention strategies is of utmost importance to reduce the high societal burden caused by neurodegenerative diseases leading to dementia among which the most common cause is Alzheimer's disease. OBJECTIVE The aim of the Luxembourgish "programme dementia prevention (pdp)" is to prevent or at least delay dementia in an at-risk population through personalized multi-domain lifestyle interventions. The current work aims to provide a detailed overview of the methodology and presents initial results regarding the cohort characteristics and the implementation process. METHODS In the frame of the pdp, an extensive neuropsychological evaluation and risk factor assessment are conducted for each participant. Based on the results, individualized multi-domain lifestyle interventions are suggested. RESULTS A total number of 450 participants (Mean age = 69.5 years; SD = 10.8) have been screened at different recruitment sites throughout the country, among whom 425 participants (94.4%) met the selection criteria. CONCLUSIONS We provide evidence supporting the feasibility of implementing a nationwide dementia prevention program and achieving successful recruitment of the target population by establishing a network of different healthcare providers.
Collapse
Affiliation(s)
- Valerie E. Schröder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Amna Skrozic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Dorothee Erz
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joëlle V. Fritz
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Joao M. Loureiro
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Deborah McIntyre
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Laure Pauly
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jennifer Kemp
- Department of Geriatrics, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Sabine K. Schmitz
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Wagner
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Margarita Reyes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ruxandra Soare
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carlos Vega
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patricia Martins Conde
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen Klucken
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Digital Medicine, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Digital Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Sebastian Köhler
- Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Medical Faculty, Saarland University, Homburg, Germany
- Department of Experimental Neurology, Saarland University, Homburg, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| | - Anja K. Leist
- Institute for Research on Socio-Economic Inequality (IRSEI), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elke Kalbe
- Department of Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
4
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Zhang Y, Kiryu H. Identification of oxidative stress-related genes differentially expressed in Alzheimer's disease and construction of a hub gene-based diagnostic model. Sci Rep 2023; 13:6817. [PMID: 37100862 PMCID: PMC10133299 DOI: 10.1038/s41598-023-34021-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia disorder globally, and there are still no effective interventions for slowing or stopping the underlying pathogenic mechanisms. There is strong evidence implicating neural oxidative stress (OS) and ensuing neuroinflammation in the progressive neurodegeneration observed in the AD brain both during and prior to symptom emergence. Thus, OS-related biomarkers may be valuable for prognosis and provide clues to therapeutic targets during the early presymptomatic phase. In the current study, we gathered brain RNA-seq data of AD patients and matched controls from the Gene Expression Omnibus (GEO) to identify differentially expressed OS-related genes (OSRGs). These OSRGs were analyzed for cellular functions using the Gene Ontology (GO) database and used to construct a weighted gene co-expression network (WGCN) and protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were then constructed to identify network hub genes. A diagnostic model was established based on these hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) and ROC analyses. Immune-related functions were examined by assessing correlations between hub gene expression and immune cell brain infiltration scores. Further, target drugs were predicted using the Drug-Gene Interaction database, while regulatory miRNAs and transcription factors were predicted using miRNet. In total, 156 candidate genes were identified among 11046 differentially expressed genes, 7098 genes in WGCN modules, and 446 OSRGs, and 5 hub genes (MAPK9, FOXO1, BCL2, ETS1, and SP1) were identified by ROC curve analyses. These hub genes were enriched in GO annotations "Alzheimer's disease pathway," "Parkinson's Disease," "Ribosome," and "Chronic myeloid leukemia." In addition, 78 drugs were predicted to target FOXO1, SP1, MAPK9, and BCL2, including fluorouracil, cyclophosphamide, and epirubicin. A hub gene-miRNA regulatory network with 43 miRNAs and hub gene-transcription factor (TF) network with 36 TFs were also generated. These hub genes may serve as biomarkers for AD diagnosis and provide clues to novel potential treatment targets.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Stanciu GD, Ababei DC, Rusu RN, Bild V, Tamba BI. Exploring the Involvement of the Amyloid Precursor Protein A673T Mutation against Amyloid Pathology and Alzheimer's Disease in Relation to Therapeutic Editing Tools. Pharmaceutics 2022; 14:1270. [PMID: 35745842 PMCID: PMC9228826 DOI: 10.3390/pharmaceutics14061270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is biologically defined as a complex neurodegenerative condition with a multilayered nature that leads to a progressive decline in cognitive function and irreversible neuronal loss. It is one of the primary diseases among elderly individuals. With an increasing incidence and a high failure rate for pharmaceutical options that are merely symptom-targeting and supportive with many side effects, there is an urgent need for alternative strategies. Despite extensive knowledge on the molecular basis of AD, progress concerning effective disease-modifying therapies has proven to be a challenge. The ability of the CRISPR-Cas9 gene editing system to help identify target molecules or to generate new preclinical disease models could shed light on the pathogenesis of AD and provide promising therapeutic possibilities. Here, we sought to highlight the current understanding of the involvement of the A673T mutation in amyloid pathology, focusing on its roles in protective mechanisms against AD, in relation to the recent status of available therapeutic editing tools.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (V.B.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (V.B.)
| | - Veronica Bild
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (V.B.)
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
7
|
Selezneva ND, Gavrilova SI, Roshchina IF, Ponomareva EV. [Citicoline in the treatment of cognitive impairment in first-degree relatives of AD patients: the influence of the ApoE genotype]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:30-36. [PMID: 34870911 DOI: 10.17116/jnevro202112110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the effects of a three-month course of therapy with citicoline, aimed at preventing the progression of cognitive deficit in 1st-degree relatives of patients with Alzheimer's disease (AD), depending on the carriage of the ApoE4(+) genotype. MATERIAL AND METHODS Study participants: 82 blood relatives of AD patients, 66 of them with signs of minimal cognitive dysfunction (group 1) objectively confirmed by clinical neuropsychological examination and 16 people with mild cognitive decline syndrome (group 2). Open comparative multidisciplinary study of the dynamics of cognitive status in relatives of AD patients who received a three-month course of citicoline therapy. The baseline indicators of the cognitive functioning of the relatives of the two groups were compared with the indicators at the end of the three-month course of therapy with citicoline in a daily dose of 1000 mg, depending on whether the treated persons had genotypes ApoE4(+) or ApoE4(-). Clinical-psychopathological, neuropsychological, psychometric, molecular-genetic, statistical. RESULTS An association of the ApoE4(-) genotype with a significantly more pronounced positive effect of the course therapy with citicoline was established according to the general clinical impression (CGI-I scale), indicators of cognitive functioning (MMSE and MoCA scales), as well as according to most psychometric tests (with the exception of the number repetition test in reverse order), as well as for almost all indicators of the neuropsychological «express method» (excluding the parameter of the volume of visual memory). CONCLUSION The results of course therapy with citicoline showed a negative effect of the carriage of the ε4 allele of the ApoE gene on the efficiency of treatment of blood relatives of AD patients who had signs of cognitive decline before the start of therapy, which did not reach the level of dementia. The obtained data can serve as the basis for the development of preventive therapeutic measures aimed at preventing the progression of cognitive deficit and the development of dementia in the group at high risk of developing dementia - in 1st degree relatives of AD patients, especially in carriers of the ApoE4(+) genotype.
Collapse
|
8
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
9
|
Samandari-Bahraseman MR, Elyasi L. Apelin-13 protects human neuroblastoma SH-SY5Y cells against amyloid-beta induced neurotoxicity: Involvement of anti oxidant and anti apoptotic properties. J Basic Clin Physiol Pharmacol 2021; 33:599-605. [PMID: 33977683 DOI: 10.1515/jbcpp-2020-0294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES We investigated the effect of apelin-13 on the cellular model of AD, amyloid-β (Aβ) treated SH-SY5Y cells in rats. METHODS The SH-SY5Y cells were pretreated with different doses of apelin-13 (1, 2.5, 5, and 10 μg/mL), half an hour before adding 50% Aβ treatment. After 24 h, cells were evaluated for survival, oxidative stress, mitochondrial calcium release, caspase-3, and cytochrome c levels, compared to control group (beta-actin). Statistical analysis was performed by SPSS 16. RESULTS Apelin-13 at the dose of 2.5 μg/mL protected against IC50 Aβ (p<0.001). Apelin-13 at doses of 1, 2.5, and 5 μg/mL showed protective effects against the reactive oxygen species (ROS) produced by Aβ (p<0.001). Apelin-13 at doses of 2.5 and 5 μg/mL reduced calcium release, caspase-3, and cytochrome c (all p<0.001). CONCLUSIONS Apelin-13 prevented apoptosis, oxidative stress, and mitochondrial toxicity and can be a suitable option for treatment of AD. The appropriate treatment strategy for humans has to be investigated in future studies.
Collapse
Affiliation(s)
| | - Leila Elyasi
- Golestan Neuroscience Research Center (GNRC), Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
The Protective A673T Mutation of Amyloid Precursor Protein (APP) in Alzheimer's Disease. Mol Neurobiol 2021; 58:4038-4050. [PMID: 33914267 DOI: 10.1007/s12035-021-02385-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular amyloid beta peptides and neurofibrillary tangles consisted of intracellular hyperphosphorylated Tau in the hippocampus and cerebral cortex. Most of the mutations in key genes that code for amyloid precursor protein can lead to significant accumulation of these peptides in the brain and cause Alzheimer's disease. Moreover, some point mutations in amyloid precursor protein can cause familial Alzheimer's disease, such as Swedish mutation (KM670/671NL) and A673V mutation. However, recent studies have found that the A673T mutation in amyloid precursor protein gene can protect against Alzheimer's disease, even if it is located next to the Swedish mutation (KM670/671NL) and at the same site as A673V mutation, which are pathogenic. It makes us curious about the protective A673T mutation. Here, we summarize the most recent insights of A673T mutation, focus on their roles in protective mechanisms against Alzheimer's disease, and discuss their involvement in future treatment.
Collapse
|
11
|
Li NM, Liu KF, Qiu YJ, Zhang HH, Nakanishi H, Qing H. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis. Neural Regen Res 2019; 14:658-665. [PMID: 30632506 PMCID: PMC6352587 DOI: 10.4103/1673-5374.247469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease is pathologically defined by accumulation of extracellular amyloid-β (Aβ). Approximately 25 mutations in β-amyloid precursor protein (APP) are pathogenic and cause autosomal dominant Alzheimer’s disease. To date, the mechanism underlying the effect of APP mutation on Aβ generation is unclear. Therefore, investigating the mechanism of APP mutation on Alzheimer’s disease may help understanding of disease pathogenesis. Thus, APP mutations (A673T, A673V, E682K, E693G, and E693Q) were transiently co-transfected into human embryonic kidney cells. Western blot assay was used to detect expression levels of APP, beta-secretase 1, and presenilin 1 in cells. Enzyme-linked immunosorbent assay was performed to determine Aβ1–40 and Aβ1–42 levels. Liquid chromatography-tandem mass chromatography was used to examine VVIAT, FLF, ITL, VIV, IAT, VIT, TVI, and VVIA peptide levels. Immunofluorescence staining was performed to measure APP and early endosome antigen 1 immunoreactivity. Our results show that the protective A673T mutation decreases Aβ42/Aβ40 rate by downregulating IAT and upregulating VVIA levels. Pathogenic A673V, E682K, and E693Q mutations promote Aβ42/Aβ40 rate by increasing levels of CTF99, Aβ42, Aβ40, and IAT, and decreasing VVIA levels. Pathogenic E693G mutation shows no significant change in Aβ42/Aβ40 ratio because of inhibition of γ-secretase activity. APP mutations can change location from the cell surface to early endosomes. Our findings confirm that certain APP mutations accelerate Aβ generation by affecting the long Aβ cleavage pathway and increasing Aβ42/40 rate, thereby resulting in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nuo-Min Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ke-Fu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun-Jie Qiu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huan-Huan Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018; 70:76-86. [PMID: 29807653 DOI: 10.1016/j.npep.2018.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high outbreak rates. It is estimated that about 35 million individuals around the world suffered from dementia in 2010. AD is expected to increase twofold every 20 years and, by 2030, approximately 65 million people could suffer from this illness. AD is determined clinically by a cognitive impairment and pathologically by the production of amyloid beta (Aβ), neurofibrillary tangles, toxic free radicals and inflammatory mediators in the brain. There is still no treatment to cure or even alter the progressive course of this disease; however, many new therapies are being investigated and are at various stages of clinical trials. Neuropeptides are signaling molecules used by neurons to communicate with each other. One of the important neuropeptides is apelin, which can be isolated from bovine stomach. Apelin and its receptor APJ have been shown to broadly disseminate in the neurons and oligodendrocytes of the central nervous system. Apelin-13 is known to be the predominant neuropeptide in neuroprotection. It is involved in the processes of memory and learning as well as the prevention of neuronal damage. Studies have shown that apelin can directly or indirectly prevent the production of Aβ and reduce its amounts by increasing its degradation. Phosphorylation and accumulation of tau protein may also be inhibited by apelin. Apelin is considered as an anti-inflammatory agent by preventing the production of inflammatory mediators such as interleukin-1β and tumor necrosis factor alpha. It has been shown that in vivo and in vitro anti-apoptotic effects of apelin have prevented the death of neurons. In this review, we describe the various functions of apelin associated with AD and present an integrated overview of recent findings that, in general, recommend apelin as a promising therapeutic agent in the treatment of this ailment.
Collapse
Affiliation(s)
- Javad Masoumi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abbasloui
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Centre for Pharmaceotical Nanotechnology, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Abstract
Amyloid fibrils are protein homopolymers that adopt diverse cross-β conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases. Summary: This Review showcases important advances in our understanding of amyloid structure, assembly and disassembly, which are inspiring novel therapeutic strategies for amyloid disorders.
Collapse
Affiliation(s)
- Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Acacia M Hori
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA .,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Bauer CM, Cabral HJ, Killiany RJ. Multimodal Discrimination between Normal Aging, Mild Cognitive Impairment and Alzheimer's Disease and Prediction of Cognitive Decline. Diagnostics (Basel) 2018; 8:diagnostics8010014. [PMID: 29415470 PMCID: PMC5871997 DOI: 10.3390/diagnostics8010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s Disease (AD) and mild cognitive impairment (MCI) are associated with widespread changes in brain structure and function, as indicated by magnetic resonance imaging (MRI) morphometry and 18-fluorodeoxyglucose position emission tomography (FDG PET) metabolism. Nevertheless, the ability to differentiate between AD, MCI and normal aging groups can be difficult. Thus, the goal of this study was to identify the combination of cerebrospinal fluid (CSF) biomarkers, MRI morphometry, FDG PET metabolism and neuropsychological test scores to that best differentiate between a sample of normal aging subjects and those with MCI and AD from the Alzheimer’s Disease Neuroimaging Initiative. The secondary goal was to determine the neuroimaging variables from MRI, FDG PET and CSF biomarkers that can predict future cognitive decline within each group. To achieve these aims, a series of multivariate stepwise logistic and linear regression models were generated. Combining all neuroimaging modalities and cognitive test scores significantly improved the index of discrimination, especially at the earliest stages of the disease, whereas MRI gray matter morphometry variables best predicted future cognitive decline compared to other neuroimaging variables. Overall these findings demonstrate that a multimodal approach using MRI morphometry, FDG PET metabolism, neuropsychological test scores and CSF biomarkers may provide significantly better discrimination than any modality alone.
Collapse
Affiliation(s)
- Corinna M Bauer
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Howard J Cabral
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| | - Ronald J Killiany
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA.
- Department of Anatomy and Neurobiology, Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
15
|
Abstract
Pharmacogenetics is the study of how genetics influences drug treatment outcomes. Much research has been conducted to identify and characterize gene variants that impact the pharmacokinetic and pharmacodynamic aspects of medications used to treat neurologic and psychiatric disorders. This chapter reviews the current state of pharmacogenetic aspects of these treatments. Medications with supporting pharmacogenetic information in product labeling, clinical guidelines, or important mechanistic implications are discussed. At this time, clinically relevant genetic variation in drug metabolizing enzymes may inform drug dosing for a number of medications metabolized in the liver. Additionally, genetic variation in immunological genes may be tested to assess risk for severe hypersensitivity reactions to some anticonvulsant drugs. Finally, a growing body of research highlights that genetic polymorphisms in drug targets may influence symptom response or tolerability to some treatments.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
16
|
Overexpression of N141I PS2 increases γ-secretase activity through up-regulation of Presenilin and Pen-2 in brain mitochondria of NSE/hPS2m transgenic mice. Lab Anim Res 2016; 32:249-256. [PMID: 28053619 PMCID: PMC5206232 DOI: 10.5625/lar.2016.32.4.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is known to induce alterations of mitochondrial function such as elevation of oxidative stress and activation of apopotosis. The aim of this study was to investigate the effects of human Presenilin 2 mutant (hPS2m) overexpression on the γ-secretase complex in the mitochondrial fraction. To achieve this, alterations of γ-secretase complex expression and activity were detected in the mitochondrial fraction derived from brains of NSE/hPS2m Tg mice and Non-Tg mice. Herein, the following were observed: i) overexpression of the hPS2m gene significantly up-regulated the deposition of Aβ-42 peptides in the hippocampus and cortex of brain, ii) overexpression of hPS2m protein induced alterations of γ-secretase components such as main component protein and activator protein but not stabilization-related proteins, iii) changes in γ-secretase components induced by overexpression of hPS2m protein up-regulated γ-secretase activity in the mitochondrial fraction, and iv) elevation of γ-secretase activity induced production of Aβ-42 peptides in the mitochondrial fraction. Based on these observations, these results indicate that alteration of γ-secretase activity in cells upon overexpression of hPS2m is tightly linked to mitochondrial dysfunction under the specific physiological and pathological conditions of AD.
Collapse
|
17
|
Day GS, Musiek ES, Roe CM, Norton J, Goate AM, Cruchaga C, Cairns NJ, Morris JC. Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease: A Single-Family Case-Control Study. JAMA Neurol 2016; 73:1125-32. [PMID: 27454811 PMCID: PMC5025942 DOI: 10.1001/jamaneurol.2016.1236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IMPORTANCE The amyloid hypothesis posits that disrupted β-amyloid homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant AD (ADAD) has an early symptomatic onset and is caused by single-gene mutations that result in overproduction of β-amyloid 42. To the extent that sporadic late-onset AD (LOAD) also results from dysregulated β-amyloid 42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. OBJECTIVE To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) gene mutation to mitigate the potential confound of age when comparing ADAD and LOAD. DESIGN, SETTING, AND PARTICIPANTS This case-control study was conducted at the Knight Alzheimer Disease Research Center at Washington University, St Louis, Missouri, and other National Institutes of Aging-funded AD centers in the United States. Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD and 12 noncarrier family members were followed up at the Knight Alzheimer Disease Research Center (1985-2015) and 1115 individuals with neuropathologically confirmed LOAD were included from the National Alzheimer Coordinating Center database (September 2005-December 2014). Data analysis was completed in January 2016, including Knight Alzheimer Disease Research Center patient data collected up until the end of 2015. MAIN OUTCOMES AND MEASURES Planned comparison of clinical characteristics between cohorts, including age at symptom onset, associated symptoms and signs, rates of progression, and disease duration. RESULTS Of the PSEN1 A79V carriers in the family with late-onset ADAD, 4 were female (57%); among those with LOAD, 529 were female (47%). Seven mutation carriers (70%) developed AD dementia, while 3 were yet asymptomatic in their seventh and eighth decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptom onset (mutation carriers: mean, 75 years [range, 63-77 years] vs those with LOAD: mean, 74 years [range, 60-101 years]; P = .29), presenting symptoms (memory loss in 7 of 7 mutation carriers [100%] vs 958 of 1063 individuals with LOAD [90.1%]; P ≥ .99) and duration (mutation carriers: mean, 9.9 years [range, 2.3-12.8 years] vs those with LOAD: 9 years [range, 1-27 years]; P = .73), and rate of progression of dementia (median annualized change in Clinical Dementia Rating-Sum of Boxes score, mutation carriers: 1.2 [range, 0.1-3.3] vs those with LOAD: 1.9 [range, -3.5 to 11.9]; P = .73). Early emergence of comorbid hallucinations and delusions were observed in 57% of individuals with ADAD (4 of 7) vs 19% of individuals with LOAD (137 of 706) (P = .03). Three of 12 noncarriers (25%) from the PSEN1 A79V family are potential phenocopies as they also developed AD dementia (median age at onset, 76.0 years). CONCLUSIONS AND RELEVANCE In this family, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects.
Collapse
Affiliation(s)
- Gregory S Day
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Erik S Musiek
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Catherine M Roe
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Joanne Norton
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri3Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Alison M Goate
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri3Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Carlos Cruchaga
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri3Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Nigel J Cairns
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri4Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - John C Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, St Louis, Missouri2Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
18
|
Chami B, Steel AJ, De La Monte SM, Sutherland GT. The rise and fall of insulin signaling in Alzheimer's disease. Metab Brain Dis 2016; 31:497-515. [PMID: 26883429 DOI: 10.1007/s11011-016-9806-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of both diabetes and Alzheimer's disease (AD) are reaching epidemic proportions worldwide. Alarmingly, diabetes is also a risk factor for Alzheimer's disease. The AD brain is characterised by the accumulation of peptides called Aβ as plaques in the neuropil and hyperphosphorylated tau protein in the form of neurofibrillary tangles within neurons. How diabetes confers risk is unknown but a simple linear relationship has been proposed whereby the hyperinsulinemia associated with type 2 diabetes leads to decreased insulin signaling in the brain, with downregulation of the PI3K/AKT signalling pathway and its inhibition of the major tau kinase, glycogen synthase kinase 3β. The earliest studies of post mortem AD brain tissue largely confirmed this cascade of events but subsequent studies have generally found either an upregulation of AKT activity, or that the relationship between insulin signaling and AD is independent of glycogen synthase kinase 3β altogether. Given the lack of success of beta-amyloid-reducing therapies in clinical trials, there is intense interest in finding alternative or adjunctive therapeutic targets for AD. Insulin signaling is a neuroprotective pathway and represents an attractive therapeutic option. However, this incredibly complex signaling pathway is not fully understood in the human brain and particularly in the context of AD. Here, we review the ups and downs of the research efforts aimed at understanding how diabetes modifies AD risk.
Collapse
Affiliation(s)
- B Chami
- Redox Biology, The University of Sydney, Sydney, NSW,, 2006, Australia
| | - A J Steel
- Neuropathology Group, Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - S M De La Monte
- Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurosurgery, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Greg T Sutherland
- Neuropathology Group, Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
19
|
Wendland JR, Ehlers MD. Translating Neurogenomics Into New Medicines. Biol Psychiatry 2016; 79:650-6. [PMID: 26140822 DOI: 10.1016/j.biopsych.2015.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Brain disorders remain one of the defining challenges of modern medicine and among the most poorly served with new therapeutics. Advances in human neurogenetics have begun to shed light on the genomic architecture of complex diseases of mood, cognition, brain development, and neurodegeneration. From genome-wide association studies to rare variants, these findings hold promise for defining the pathogenesis of brain disorders that have resisted simple molecular description. However, the path from genetics to new medicines is far from clear and can take decades, even for the most well-understood genetic disorders. In this review, we define three challenges for the field of neurogenetics that we believe must be addressed to translate human genetics efficiently into new therapeutics for brain disorders.
Collapse
Affiliation(s)
- Jens R Wendland
- PharmaTherapeutics Clinical Research, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Michael D Ehlers
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts.
| |
Collapse
|
20
|
Suzuki A, Shibata N, Kasanuki K, Nagata T, Shinagawa S, Kobayashi N, Ohnuma T, Takeshita Y, Kawai E, Takayama T, Nishioka K, Motoi Y, Hattori N, Nakayama K, Yamada H, Arai H. Genetic Association between Presenilin 2 Polymorphisms and Alzheimer's Disease and Dementia of Lewy Body Type in a Japanese Population. Dement Geriatr Cogn Dis Extra 2016; 6:90-7. [PMID: 27065294 PMCID: PMC4821141 DOI: 10.1159/000444080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background/Aims Mutations in the presenilin 2 (PSEN2) gene cause familial Alzheimer's disease (AD). Common polymorphisms affect gene activity and increase the risk of AD. Nonsynonymous polymorphisms in the PSEN2 gene showed Lewy body dementia (LBD) phenotypes clinically. Therefore, we aimed to investigate whether PSEN2 gene polymorphisms were associated with AD or LBD. Methods Seven single nucleotide polymorphisms (SNPs) of the gene were analyzed using a case-control study design comprising 288 AD patients, 76 LBD patients, and 105 age-matched controls. Results Linkage disequilibrium (LD) examination showed strong LD from rs1295645 to rs8383 on the gene in our cases from Japan. There were no associations between the SNPs studied here and AD onset, and haplotypic analyses did not detect genetic associations between AD and the PSEN2 gene. Although the number of the cases was small, the SNPs studied did not modify the risk of developing LBD in a Japanese population. Conclusion The common SNPs of the PSEN2 gene did not affect the risk of AD or LBD in a Japanese population. Because genetic variability of the PSEN2 gene is associated with behavioral and psychological symptoms of dementia (BPSD) in AD and LBD, further detailed analyses considering BPSD of both diseases would be required.
Collapse
Affiliation(s)
- Ayako Suzuki
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kasanuki
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Nagata
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan; Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Shunichiro Shinagawa
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihide Takeshita
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Eri Kawai
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Takayama
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Departments of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Departments of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Departments of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhiko Nakayama
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hisashi Yamada
- Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Heii Arai
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Eisele YS, Duyckaerts C. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016; 131:5-25. [PMID: 26715565 DOI: 10.1007/s00401-015-1516-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
In brains of patients with Alzheimer's disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way-although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term "propagons". Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.
Collapse
Affiliation(s)
- Yvonne S Eisele
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Raymond-Escourolle, Hopital de la Pitie-Salpetriere, 47, boulevard de l'Hopital, 75651, Paris Cedex 13, France.
- ICM, equipe Alzheimer-Prion, 47, boulevard de l'Hopital, 750713, Paris, France.
| |
Collapse
|
22
|
Schmitz L, Conley D. Modeling Gene-Environment Interactions With Quasi-Natural Experiments. J Pers 2015; 85:10-21. [PMID: 26340722 DOI: 10.1111/jopy.12227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This overview develops new empirical models that can effectively document Gene × Environment (G×E) interactions in observational data. Current G×E studies are often unable to support causal inference because they use endogenous measures of the environment or fail to adequately address the nonrandom distribution of genes across environments, confounding estimates. Comprehensive measures of genetic variation are incorporated into quasi-natural experimental designs to exploit exogenous environmental shocks or isolate variation in environmental exposure to avoid potential confounders. In addition, we offer insights from population genetics that improve upon extant approaches to address problems from population stratification. Together, these tools offer a powerful way forward for G×E research on the origin and development of social inequality across the life course.
Collapse
|
23
|
Abstract
Alzheimer's disease (AD) has increased from a few cases in a country at the beginning of the 20th century to an incidence of recording a case every 7 seconds in the world. From a rare disease it has reached the top 8 of major health problems in the world. One of the epidemiological problems of AD is the fact that authors from different countries use different reporting units. Some report numbers to 100,000 inhabitants, others to 1,000 inhabitants and others report the total number of cases in a country. Standardization of these reports is strictly necessary. The rise in incidence and prevalence with age is known, but interesting to see is that the incidence and prevalence do not rise in a parallel manner with age as simple logic would assume. Between the ages of 60 and 90, the incidence in men increases two times and in women 41 times, prevalence increase in men is 55.25-fold and in women 77-fold. Regarding the women/men ratio, the incidence is 20.5-fold increased, and prevalence is merely 1.3936-fold increased. These numbers raise concerns about the evolution of the disease. Regarding mild cognitive impairment (MCI)/AD ratio, only about 1 in 2 people get AD (raising?) issues about the pathogenic disease relatedness.
Collapse
Affiliation(s)
- Gavril Cornutiu
- Clinic of Psychiatry, Faculty of Medicine and Pharmacy, University of Oradea, 26 Louis Pasteur Street, 410154 Oradea, Bihor, Romania.
| |
Collapse
|
24
|
Puzzo D, Gulisano W, Palmeri A, Arancio O. Rodent models for Alzheimer's disease drug discovery. Expert Opin Drug Discov 2015; 10:703-11. [PMID: 25927677 DOI: 10.1517/17460441.2015.1041913] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes, leading to dementia. Histopathological hallmarks are represented by aggregates of beta-amyloid peptide (Aβ) in senile plaques and deposition of hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Rare forms of early onset familial Alzheimer's disease are due to gene mutations. This has prompted researchers to develop genetically modified animals that could recapitulate the main features of the disease. The use of these models is complemented by non-genetically modified animals. AREAS COVERED This review summarizes the characteristics of the most used transgenic (Tg) and non-Tg models of AD. The authors have focused on models mainly used in their laboratories including amyloid precursor protein (APP) Tg2576, APP/presenilin 1, 3xAD, single h-Tau, non-Tg mice treated with acute injections of Aβ or tau, and models of physiological aging. EXPERT OPINION Animal models of disease might be very useful for studying the pathophysiology of the disease and for testing new therapeutics in preclinical studies but they do not reproduce the entire clinical features of human AD. When selecting a model, researchers should consider the various factors that might influence the phenotype. They should also consider the timing of testing/treating animals since the age at which each model develops certain aspects of the AD pathology varies.
Collapse
Affiliation(s)
- Daniela Puzzo
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology , Catania 95100 , Italy
| | | | | | | |
Collapse
|
25
|
Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 2015; 129:511-25. [PMID: 25618528 PMCID: PMC4366542 DOI: 10.1007/s00401-015-1382-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective treatment is available. Increased insight into the disease mechanism in early stages of pathology is required for the development of a successful therapy. Over the years, numerous studies have shown that cell cycle proteins are expressed in neurons of AD patients. Traditionally, neurons are considered to be post-mitotic, which means that they permanently retract from the cell cycle. The expression of cell cycle proteins in adult neurons of AD patients has therefore been suggested to promote or even instigate pathomechanisms underlying AD. Interestingly, expression of cell cycle proteins is detected in post-mitotic neurons of healthy controls as well, albeit to a lesser extent than in AD patients. This indicates that cell cycle proteins may serve important physiological functions in differentiated neurons. Here, we provide an overview of studies that support a role of cell cycle proteins in DNA repair and neuroplasticity in post-mitotic neurons. Aberrant control of these processes could, in turn, contribute to cell cycle-mediated neurodegeneration. The balance between regenerative and degenerative effects of cell cycle proteins in post-mitotic neurons might change throughout the different stages of AD. In the early stages of AD pathology, cell cycle protein expression may primarily occur to aid in the repair of sublethal double-strand breaks in DNA. With the accumulation of pathology, cell cycle-mediated neuroplasticity and neurodegeneration may become more predominant. Understanding the physiological and pathophysiological role of cell cycle proteins in AD could give us more insight into the neurodegenerative process in AD.
Collapse
|
26
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
27
|
Hanson JE, Pare JF, Deng L, Smith Y, Zhou Q. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer's disease. Neurobiol Dis 2014; 74:254-62. [PMID: 25484285 DOI: 10.1016/j.nbd.2014.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022] Open
Abstract
GluN2B subunit containing NMDARs (GluN2B-NMDARs) mediate pathophysiological effects of acutely applied amyloid beta (Aβ), including impaired long-term potentiation (LTP). However, in transgenic Alzheimer's disease (AD) mouse models which feature gradual Aβ accumulation, the function of GluN2B-NMDARs and their contribution to synaptic plasticity are unknown. Therefore, we examined the role of GluN2B-NMDARs in synaptic function and plasticity in the hippocampus of PS2APP transgenic mice. Although LTP induced by theta burst stimulation (TBS) was normal in PS2APP mice, it was significantly reduced by the selective GluN2B-NMDAR antagonist Ro25-6981 (Ro25) in PS2APP mice, but not wild type (wt) mice. While NMDARs activated by single synaptic stimuli were not blocked by Ro25, NMDARs recruited during burst stimulation showed larger blockade by Ro25 in PS2APP mice. Thus, the unusual dependence of LTP on GluN2B-NMDARs in PS2APP mice suggests that non-synaptic GluN2B-NMDARs are activated by glutamate that spills out of synaptic cleft during the burst stimulation used to induce LTP. While long-term depression (LTD) was normal in PS2APP mice, and Ro25 had no impact on LTD in wt mice, Ro25 impaired LTD in PS2APP mice, again demonstrating aberrant GluN2B-NMDAR function during plasticity. Together these results demonstrate altered GluN2B-NMDAR function in a model of early AD pathology that has implications for the therapeutic targeting of NMDARs in AD.
Collapse
Affiliation(s)
- Jesse E Hanson
- Genentech Inc., Department of Neuroscience, 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA.
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Department of Neurology, UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, USA
| | - Lunbin Deng
- Genentech Inc., Department of Neuroscience, 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology, UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, USA
| | - Qiang Zhou
- Genentech Inc., Department of Neuroscience, 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA.
| |
Collapse
|
28
|
Combating neurodegenerative disease with chemical probes and model systems. Nat Chem Biol 2014; 10:911-20. [PMID: 25325702 DOI: 10.1038/nchembio.1663] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022]
Abstract
The disheartening results of recent clinical trials for neurodegenerative disease (ND) therapeutics underscore the need for a more comprehensive understanding of the underlying disease biology before effective therapies can be devised. One hallmark of many NDs is a disruption in protein homeostasis. Therefore, investigating the role of protein homeostasis in these diseases is central to delineating their underlying pathobiology. Here, we review the seminal role that chemical biology has played in furthering the research on and treatment of dysfunctional protein homeostasis in NDs. We also discuss the vital and predictive role of model systems in identifying conserved homeostasis pathways and genes therein that are altered in neurodegeneration. Integrating approaches from chemical biology with the use of model systems yields a powerful toolkit with which to unravel the complexities of ND biology.
Collapse
|
29
|
Christensen DZ, Huettenrauch M, Mitkovski M, Pradier L, Wirths O. Axonal degeneration in an Alzheimer mouse model is PS1 gene dose dependent and linked to intraneuronal Aβ accumulation. Front Aging Neurosci 2014; 6:139. [PMID: 25018730 PMCID: PMC4073286 DOI: 10.3389/fnagi.2014.00139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022] Open
Abstract
Abnormalities and impairments in axonal transport are suggested to strongly contribute to the pathological alterations underlying AD. The exact mechanisms leading to axonopathy are currently unclear, but it was recently suggested that APP expression itself triggers axonal degeneration. We used APP transgenic mice and crossed them on a hemi- or homozygous PS1 knock-in background (APP/PS1KI). Depending on the mutant PS1 dosage, we demonstrate a clear aggravation in both plaque-associated and plaque-distant axonal degeneration, despite of an unchanged APP expression level. Amyloid-β (Aβ) peptides were found to accumulate in axonal swellings as well as in axons and apical dendrites proximate to neurons accumulating intraneuronal Aβ in their cell bodies. This suggests that Aβ can be transported within neurites thereby contributing to axonal deficits. In addition, diffuse extracellular Aβ deposits were observed in the close vicinity of axonal spheroids accumulating intracellular Aβ, which might be indicative of a local Aβ release from sites of axonal damage.
Collapse
Affiliation(s)
- Ditte Z Christensen
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University Goettingen, Germany
| | - Melanie Huettenrauch
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University Goettingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine Goettingen, Germany
| | - Laurent Pradier
- Central Nervous System Department, Centre de Recherche Vitry-Alfortville, Sanofi-Aventis Vitry-sur-Seine, France
| | - Oliver Wirths
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University Goettingen, Germany
| |
Collapse
|
30
|
Nagpure BV, Bian JS. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One 2014; 9:e88508. [PMID: 24523906 PMCID: PMC3921165 DOI: 10.1371/journal.pone.0088508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 01/11/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM) attenuated HENECA (a selective A2A receptor agonist, 10-200 nM) induced β-amyloid (1-42) (Aβ42) production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP) by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1) showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB). NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist) alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor), but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.
Collapse
Affiliation(s)
- Bhushan Vijay Nagpure
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
31
|
Sheta EA, Appel SH, Goldknopf IL. 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev Proteomics 2014; 3:45-62. [PMID: 16445350 DOI: 10.1586/14789450.3.1.45] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review addresses the challenges of neuroproteomics and recent progress in biomarkers and tests for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The review will discuss how the application of quantitative 2D gel electrophoresis, combined with appropriate single-variable and multivariate biostatistics, allows for selection of disease-specific serum biomarkers. It will also address how the use of large cohorts of specifically targeted patient blood serum samples and complimentary age-matched controls, in parallel with the use of selected panels of these biomarkers, are being applied to the development of blood tests to specifically address unmet pressing needs in the differential diagnosis of these diseases, and to provide potential avenues for mechanism-based drug targeting and treatment monitoring. While exploring recent findings in this area, the review discusses differences in critical pathways of immune/inflammation and amyloid formation between Parkinson's disease and amyotrophic lateral sclerosis, as well as discernable synergistic relationships between these pathways that are revealed by this approach. The potential for pathway measurement in blood tests for differential diagnosis, disease burden and therapeutic monitoring is also outlined.
Collapse
Affiliation(s)
- Essam A Sheta
- Power3 Medical Products, Inc., The Woodlands, TX 77381, USA.
| | | | | |
Collapse
|
32
|
Abstract
A number of neurodegenerative diseases principally affect humans as they age and are characterized by the loss of specific groups of neurons in different brain regions. Although these disorders are generally sporadic, it is now clear that many of them have a substantial genetic component. As genes are the raw material with which evolution works, we might benefit from understanding these genes in an evolutionary framework. Here, I will discuss how we can understand whether evolution has shaped genes involved in neurodegeneration and the implications for practical issues, such as our choice of model systems for studying these diseases, and more theoretical concerns, such as the level of selection against these phenotypes.
Collapse
Affiliation(s)
- Mark R Cookson
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892-3707, USA.
| |
Collapse
|
33
|
Good gene, bad gene: New APP variant may be both. Prog Neurobiol 2012; 99:281-92. [DOI: 10.1016/j.pneurobio.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
|
34
|
Abstract
Neurodegenerative diseases are a burden of our century. Although significant efforts were made to find a cure or relief to this scourge, their pathophysiology remains vague and the cellular function of the key involved proteins is still unclear. However, in the case of amyloid β (Aβ), a key protein concerned in Alzheimer disease, we are now a step closer in the unscrambling of its cellular functions. Interestingly, whereas the exact role of Aβ in the pathophysiology of Alzheimer disease is still unresolved, a recent study revealed a neuroprotective function of Aβ in multiple sclerosis with possibly promising therapeutic benefits.
Collapse
Affiliation(s)
- Juliane Proft
- Hotchkiss Brain Institute; Department of Clinical Neuroscience; Calgary, AB Canada
| | | |
Collapse
|
35
|
Ishizuka T, Nakamura M, Ichiba M, Fujita S, Takeuchi K, Fujimoto T, Sano A. Different clinical phenotypes in siblings with a presenilin-1 P264L mutation. Dement Geriatr Cogn Disord 2012; 33:132-40. [PMID: 22572737 DOI: 10.1159/000338394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the presenilin-1 gene (PSEN1) have been identified in autosomal dominant early-onset cases of Alzheimer's disease (AD). AIMS To investigate different clinical phenotypes of siblings possessing the same heterozygous P264L mutation in the PSEN1 gene. METHODS We evaluated clinical features, neuroimaging results, and neuropsychological examinations. The PSEN1 gene and other dementia-related gene mutations were screened. RESULTS We clinically diagnosed the proband as atypical AD with frontotemporal dementia features and diagnosed the elder brother of the proband as typical AD, based on neuropsychological symptoms and a brain imaging examination including amyloid imaging data. A heterozygous P264L mutation in the PSEN1 gene was identified in both siblings. CONCLUSION This study is one of few reports of AD siblings possessing the same mutation but exhibiting different clinical phenotypes in a Japanese family possessing a P264L mutation in the PSEN1 gene. The current results suggest that unknown modifiers, including both genetic and epigenetic factors, may alter the pathological and clinical phenotypes of a genetically predetermined disease.
Collapse
Affiliation(s)
- Takanori Ishizuka
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
To date, nearly 35.6 million people world wide live with dementia, and the situation is going to get worse by 2050 with 115.4 million cases.(1) In the western world, the prevalence for dementia in people over the age of 60 is greater than 5% and two thirds are due to Alzheimer disease,(2) (-) (5) the most common form of dementias. Alzheimer disease (AD), first described as "presenile dementia" by the German psychiatrist and neuropathologist Alois Alzheimer in 1906,(6) is a devastating disease characterized by progressive cognitive deterioration, as well as impairments in behavior, language, and visuospatial skills.(7) Furthermore, Alzheimer discovered the presence of intraneuronal tangles and extracellular amyloid plaques in the diseased-damaged brain, the hallmarks of Alzheimer disease.
Collapse
Affiliation(s)
- Juliane Proft
- Hotchkiss Brain Institute; Department of Clinical Neuroscience; Calgary, AB Canada
| | | |
Collapse
|
37
|
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012; 7:52. [PMID: 23039869 PMCID: PMC3507664 DOI: 10.1186/1750-1326-7-52] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated. Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road of a vicious cycle contributing to Aβ production.
Collapse
Affiliation(s)
- Linda Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, 06560 Valbonne, France
| | | |
Collapse
|
38
|
Ramamoorthy M, Sykora P, Scheibye-Knudsen M, Dunn C, Kasmer C, Zhang Y, Becker KG, Croteau DL, Bohr VA. Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radic Biol Med 2012; 53:1371-80. [PMID: 22885031 PMCID: PMC4617209 DOI: 10.1016/j.freeradbiomed.2012.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 11/16/2022]
Abstract
Alzheimer disease (AD) is a major health problem in the United States, affecting one in eight Americans over the age of 65. The number of elderly suffering from AD is expected to continue to increase over the next decade, as the average age of the U.S. population increases. The risk factors for and etiology of AD are not well understood; however, recent studies suggest that exposure to oxidative stress may be a contributing factor. Here, microarray gene expression signatures were compared in AD-patient-derived fibroblasts and normal fibroblasts exposed to hydrogen peroxide or menadione (to simulate conditions of oxidative stress). Using the 23K Illumina cDNA microarray to screen expression of >14,000 human genes, we identified a total of 1017 genes that are chronically up- or downregulated in AD fibroblasts, 215 of which were also differentially expressed in normal human fibroblasts within 12h after exposure to hydrogen peroxide or menadione. Pathway analysis of these 215 genes and their associated pathways revealed cellular functions that may be critically dysregulated by oxidative stress and play a critical role in the etiology and/or pathology of AD. We then examined the AD fibroblasts for the presence of oxidative DNA damage and found increased accumulation of 8-oxo-guanine. These results indicate the possible role of oxidative stress in the gene expression profile seen in AD.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Peter Sykora
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Christopher Dunn
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Cindy Kasmer
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
39
|
Abstract
Alzheimer's disease (AD), the most common cause of dementia in aged populations, is believed to be caused by both environmental factors and genetic variations. Extensive linkage and association studies have established that a broad range of loci are associated with AD, including both causative and susceptibility (risk factor) genes. So far, at least three genes, APP, PS1, and PS2, have been identified as causative genes. Mutations in these genes have been found to cause mainly early-onset AD. On the other hand, APOE has been identified to be the most common high genetic risk factor for late-onset AD. Polymorphisms in the coding region, intron, and promoter region of certain genes constitute another kind of genetic variation associated with AD. A number of other genes or loci have been reported to have linkage with AD, but many show only a weak linkage or the results are not well reproduced. Currently, the measurable genetic associations account for about 50% of the population risk for AD. It is believed that more new loci will be found to associate with AD, either as causative genes or genetic risk factors, and that eventually the understanding of genetic factors in the pathogenesis of AD will be important for our efforts to cure this illness.
Collapse
Affiliation(s)
- Ya-Ping Tang
- Department of Psychiatry, The University of Chicago, 5841 S Maryland Avenue, Chicago, III, USA
| | | |
Collapse
|
40
|
Guan F, Gu J, Hu F, Zhu Y, Wang W. Association between α1-antichymotrypsin signal peptide -15A/T polymorphism and the risk of Alzheimer's disease: a meta-analysis. Mol Biol Rep 2012; 39:6661-9. [PMID: 22294107 DOI: 10.1007/s11033-012-1472-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/23/2012] [Indexed: 11/26/2022]
Abstract
No consensus has been recently reached at the relationship between the α1-antichymotrypsin (ACT) signal peptide -15A/T polymorphism and Alzheimer’s disease (AD) risk. Thus, our study aimed to better assess this association by performing a meta-analysis, including 4,212 cases and 4,039 controls from 29 studies. Odds ratios (ORs) with the 95% confidence interval (CI) were used to assess the strength of relationship between ACT -15A/T polymorphism and AD risk. Overall, a borderline statistically significant association was detected under recessive model comparison in all subjects (AA vs. AT+TT: OR 1.12, 95% CI 1.01-1.25, P = 0.04). But in subgroup analysis by ethnicity, no significant association was found in Caucasians, Asians, or Africans. Moreover, after exclusion of one study which affect the heterogeneity, the ACT A allele and AA genotype were statistically associated with late-onset AD (LOAD) risk (AA vs. TT: OR 1.25, 95% CI 1.06-1.48, P = 0.007, A vs. T: OR 1.12, 95% CI 1.03-1.21, P = 0.008), especially in Caucasians. In conclusion, our study suggests that the common α1-antichymotrypsin signal peptide -15A/T polymorphism may not be a major risk factor for AD. However, the polymorphism is capable of increasing LOAD risk.
Collapse
Affiliation(s)
- Fulin Guan
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
41
|
A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012; 488:96-9. [DOI: 10.1038/nature11283] [Citation(s) in RCA: 1228] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/06/2012] [Indexed: 11/09/2022]
|
42
|
Benjamin DJ, Cesarini D, Chabris CF, Glaeser EL, Laibson DI, Guðnason V, Harris TB, Launer LJ, Purcell S, Smith AV, Johannesson M, Magnusson PKE, Beauchamp JP, Christakis NA, Atwood CS, Hebert B, Freese J, Hauser RM, Hauser TS, Grankvist A, Hultman CM, Lichtenstein P. The Promises and Pitfalls of Genoeconomics*. ANNUAL REVIEW OF ECONOMICS 2012; 4:627-662. [PMID: 23482589 PMCID: PMC3592970 DOI: 10.1146/annurev-economics-080511-110939] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This article reviews existing research at the intersection of genetics and economics, presents some new findings that illustrate the state of genoeconomics research, and surveys the prospects of this emerging field. Twin studies suggest that economic outcomes and preferences, once corrected for measurement error, appear to be about as heritable as many medical conditions and personality traits. Consistent with this pattern, we present new evidence on the heritability of permanent income and wealth. Turning to genetic association studies, we survey the main ways that the direct measurement of genetic variation across individuals is likely to contribute to economics, and we outline the challenges that have slowed progress in making these contributions. The most urgent problem facing researchers in this field is that most existing efforts to find associations between genetic variation and economic behavior are based on samples that are too small to ensure adequate statistical power. This has led to many false positives in the literature. We suggest a number of possible strategies to improve and remedy this problem: (a) pooling data sets, (b) using statistical techniques that exploit the greater information content of many genes considered jointly, and (c) focusing on economically relevant traits that are most proximate to known biological mechanisms.
Collapse
Affiliation(s)
- Daniel J Benjamin
- Department of Economics, Cornell University, Ithaca, New York 14853; National Bureau of Economic Research, Cambridge, Massachusetts 02138;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodgers SP, Born HA, Das P, Jankowsky JL. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult. Mol Neurodegener 2012; 7:28. [PMID: 22709352 PMCID: PMC3457908 DOI: 10.1186/1750-1326-7-28] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/06/2012] [Indexed: 01/17/2023] Open
Abstract
Background Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. Results We show that overexpression of the Alzheimer’s-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Conclusions Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer’s disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.
Collapse
Affiliation(s)
- Shaefali P Rodgers
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Hata S, Taniguchi M, Piao Y, Ikeuchi T, Fagan AM, Holtzman DM, Bateman R, Sohrabi HR, Martins RN, Gandy S, Urakami K, Suzuki T. Multiple γ-secretase product peptides are coordinately increased in concentration in the cerebrospinal fluid of a subpopulation of sporadic Alzheimer's disease subjects. Mol Neurodegener 2012; 7:16. [PMID: 22534039 PMCID: PMC3422204 DOI: 10.1186/1750-1326-7-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/25/2012] [Indexed: 11/12/2022] Open
Abstract
Background Alcadeinα (Alcα) is a neuronal membrane protein that colocalizes with the Alzheimer's amyloid-β precursor protein (APP). Successive cleavage of APP by β- and γ-secretases generates the aggregatable amyloid-β peptide (Aβ), while cleavage of APP or Alcα by α- and γ-secretases generates non-aggregatable p3 or p3-Alcα peptides. Aβ and p3-Alcα can be recovered from human cerebrospinal fluid (CSF). We have previously reported alternative processing of APP and Alcα in the CSF of some patients with sporadic mild cognitive impairment (MCI) and AD (SAD). Results Using the sandwich enzyme-linked immunosorbent assay (ELISA) system that detects total p3-Alcα, we determined levels of total p3-Alcα in CSF from subjects in one of four diagnostic categories (elderly controls, MCI, SAD, or other neurological disease) derived from three independent cohorts. Levels of Aβ40 correlated with levels of total p3-Alcα in all cohorts. Conclusions We confirm that Aβ40 is the most abundant Aβ species, and we propose a model in which CSF p3-Alcα can serve as a either (1) a nonaggregatable surrogate marker for γ-secretase activity; (2) as a marker for clearance of transmembrane domain peptides derived from integral protein catabolism; or (3) both. We propose the specification of an MCI/SAD endophenotype characterized by co-elevation of levels of both CSF p3-Alcα and Aβ40, and we propose that subjects in this category might be especially responsive to therapeutics aimed at modulation of γ-secretase function and/or transmembrane domain peptide clearance. These peptides may also be used to monitor the efficacy of therapeutics that target these steps in Aβ metabolism
Collapse
Affiliation(s)
- Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cai H, Cong WN, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. Curr Alzheimer Res 2012; 9:5-17. [PMID: 22329649 DOI: 10.2174/156720512799015064] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/17/2011] [Accepted: 08/09/2011] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.
Collapse
Affiliation(s)
- Huan Cai
- Metabolism Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kim J, Chang A, Dudak A, Federoff HJ, Lim ST. Characterization of nectin processing mediated by presenilin-dependent γ-secretase. J Neurochem 2011; 119:945-56. [PMID: 21910732 DOI: 10.1111/j.1471-4159.2011.07479.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nectins play an important role in forming various intercellular junctions including synapses. This role is regulated by several secretases present at intercellular junctions. We have investigated presenilin (PS)-dependent secretase-mediated processing of nectins in PS1 KO cells and primary hippocampal neurons. The loss of PS1/γ-secretase activity delayed the processing of nectin-1 and caused the accumulation of its full-length and C-terminal fragments. Over-expression of PS2 in PS1 KO cells compensated for the loss of PS1, suggesting that PS2 also has the ability to regulate nectin-1 processing. In mouse brain slices, a pronounced increase in levels of 30 and 24 kDa C-terminal fragments in response to chemical long-term potentiation was observed. The mouse brain synaptosomal fractionation study indicated that nectin-1 localized to post-synaptic and preferentially pre-synaptic membranes and that shedding occurs in both compartments. These data suggest that nectin-1 shedding and PS-dependent intramembrane cleavage occur at synapses, and is a regulated event during conditions of synaptic plasticity in the brain. Point mutation analysis identified several residues within the transmembrane domain that play a critical role in the positioning of cleavage sites by ectodomain sheddases. Nectin-3, which forms hetero-trans-dimers with nectin-1, also undergoes intramembrane cleavage mediated by PS1/γ-secretase, suggesting that PS1/γ-secreatse activity regulates synapse formation and remodeling by nectin processing.
Collapse
Affiliation(s)
- Jinsook Kim
- Department of Neuroscience, Georgetown University Medical Center, NW, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
47
|
García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease: Cross-Talk with P-tau and β-Amyloid. Front Mol Neurosci 2011; 4:22. [PMID: 21949503 PMCID: PMC3171929 DOI: 10.3389/fnmol.2011.00022] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/24/2011] [Indexed: 11/29/2022] Open
Abstract
A common feature in the Alzheimer’s disease (AD) brain is the presence of acetylcholinesterase (AChE) which is commonly associated with β-amyloid plaques and neurofibrillary tangles (NFT). Although our understanding of the relationship between AChE and the pathological features of AD is incomplete, increasing evidence suggests that both β-amyloid protein (Aβ) and abnormally hyperphosphorylated tau (P-tau) can influence AChE expression. We also review recent findings which suggest the possible role of AChE in the development of a vicious cycle of Aβ and P-tau dysregulation and discuss the limited and temporary effect of therapeutic intervention with AChE inhibitors.
Collapse
|
48
|
Ho GJ, Liang W, Waragai M, Sekiyama K, Masliah E, Hashimoto M. Bridging molecular genetics and biomarkers in lewy body and related disorders. Int J Alzheimers Dis 2011; 2011:842475. [PMID: 21760990 PMCID: PMC3132544 DOI: 10.4061/2011/842475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/20/2011] [Indexed: 12/16/2022] Open
Abstract
Recent advances have been made in defining the genetic and molecular basis of dementia with Lewy bodies (DLBs) and related neurodegenerative disorders such as Parkinson's disease (PD) and Parkinson's disease dementia (PDD) which comprise the spectrum of “Lewy body disorders” (LBDs). The genetic alterations and underlying disease mechanisms in the LBD overlap substantially, suggesting common disease mechanisms. As with the other neurodegenerative dementias, early diagnosis in LBD or even identification prior to symptom onset is key to developing effective therapeutic strategies, but this is dependent upon the development of robust, specific, and sensitive biomarkers as diagnostic tools and therapeutic endpoints. Recently identified mutations in the synucleins and other relevant genes in PD and DLB as well as related biomolecular pathways suggest candidate markers from biological fluids and imaging modalities that reflect the underlying disease mechanisms. In this context, several promising biomarkers for the LBD have already been identified and examined, while other intriguing possible candidates have recently emerged. Challenges remain in defining their correlation with pathological processes and their ability to detect DLB and related disorders, and perhaps a combined array of biomarkers may be needed to distinguish various LBDs.
Collapse
Affiliation(s)
- Gilbert J Ho
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | | | |
Collapse
|
49
|
Silveyra MX, García-Ayllón MS, Serra-Basante C, Mazzoni V, García-Gutierrez MS, Manzanares J, Culvenor JG, Sáez-Valero J. Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiol Aging 2011; 33:627.e27-37. [PMID: 21621296 DOI: 10.1016/j.neurobiolaging.2011.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/10/2011] [Accepted: 04/02/2011] [Indexed: 12/21/2022]
Abstract
We have previously identified presenilin-1 (PS1), the active component of the γ-secretase complex, as an interacting protein of the amyloid-associated enzyme acetylcholinesterase (AChE). In this study, we have explored the consequences of AChE-PS1 interactions. Treatment of SH-SY5Y cells with the AChE-inhibitor tacrine decreased PS1 levels, in parallel with increase in the secretion of amyloid precursor protein APPα, whereas the cholinergic agonist carbachol had no effect on PS1. AChE knockdown with siRNA also decreased PS1 levels, while AChE overexpression exerted opposing effect. AChE-deficient also had decreased PS1. Mice administered with tacrine or donepezil displayed lower levels of brain PS1. However, sustained AChE inhibition failed to exert long-term effect on PS1. This limited duration of response may be due to AChE upregulation caused by chronic inhibition. Finally, we exposed SH-SY5Y cells to β-amyloid (Aβ)42 which triggered elevation of both AChE and PS1 levels. The Aβ42-induced PS1 increase was abolished by siRNA AChE pretreatment, suggesting that AChE may participate in the pathological feedback loop between PS1 and Aβ. Our results provide insight into AChE-amyloid interrelationships.
Collapse
Affiliation(s)
- María-Ximena Silveyra
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Grady BJ, Ritchie MD. Statistical Optimization of Pharmacogenomics Association Studies: Key Considerations from Study Design to Analysis. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:41-66. [PMID: 21887206 PMCID: PMC3163263 DOI: 10.2174/187569211794728805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Research in human genetics and genetic epidemiology has grown significantly over the previous decade, particularly in the field of pharmacogenomics. Pharmacogenomics presents an opportunity for rapid translation of associated genetic polymorphisms into diagnostic measures or tests to guide therapy as part of a move towards personalized medicine. Expansion in genotyping technology has cleared the way for widespread use of whole-genome genotyping in the effort to identify novel biology and new genetic markers associated with pharmacokinetic and pharmacodynamic endpoints. With new technology and methodology regularly becoming available for use in genetic studies, a discussion on the application of such tools becomes necessary. In particular, quality control criteria have evolved with the use of GWAS as we have come to understand potential systematic errors which can be introduced into the data during genotyping. There have been several replicated pharmacogenomic associations, some of which have moved to the clinic to enact change in treatment decisions. These examples of translation illustrate the strength of evidence necessary to successfully and effectively translate a genetic discovery. In this review, the design of pharmacogenomic association studies is examined with the goal of optimizing the impact and utility of this research. Issues of ascertainment, genotyping, quality control, analysis and interpretation are considered.
Collapse
Affiliation(s)
- Benjamin J. Grady
- Department of Molecular Physiology & Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Marylyn D. Ritchie
- Department of Molecular Physiology & Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|