1
|
Akhtar P, van Stokkum IHM, Lambrev PH. The Quenching of Long-Wavelength Fluorescence by the Closed Reaction Center in Photosystem I in Thermostichus vulcanus at 77 K. Int J Mol Sci 2024; 25:12430. [PMID: 39596495 PMCID: PMC11594324 DOI: 10.3390/ijms252212430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Photosystem I in most organisms contains long-wavelength or "Red" chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700+), which has broad absorption in the near-infrared region. This study investigates the excitation dynamics of Red Chls in Photosystem I from the cyanobacterium Thermostichus vulcanus at cryogenic temperatures (77 K) and examines the role of the oxidized RC in modulating their fluorescence kinetics. Using time-resolved fluorescence spectroscopy, the kinetics of Red Chls were recorded for samples with open (neutral P700) and closed (P700+) RCs. We found that emission lifetimes in the range of 710-720 nm remained unaffected by the RC state, while more red-shifted emissions (>730 nm) decayed significantly faster when the RC was closed. A kinetic model describing the quenching by the oxidized RC was constructed based on simultaneous fitting to the recorded fluorescence emission in Photosystem I with open and closed RCs. The analysis resolved multiple Red Chl forms and variable quenching efficiencies correlated with their spectral properties. Only the most red-shifted Chls, with emission beyond 730 nm, are efficiently quenched by P700+, with rate constants of up to 6 ns-1. The modeling results support the notion that structural and energetic disorder in Photosystem I can have a comparable or larger effect on the excitation dynamics than the geometric arrangement of Chls.
Collapse
Affiliation(s)
- Parveen Akhtar
- HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary;
| | - Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
| | - Petar H. Lambrev
- HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary;
| |
Collapse
|
2
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
3
|
Akhtar P, Caspy I, Nowakowski PJ, Malavath T, Nelson N, Tan HS, Lambrev PH. Two-Dimensional Electronic Spectroscopy of a Minimal Photosystem I Complex Reveals the Rate of Primary Charge Separation. J Am Chem Soc 2021; 143:14601-14612. [PMID: 34472838 DOI: 10.1021/jacs.1c05010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI), found in all oxygenic photosynthetic organisms, uses solar energy to drive electron transport with nearly 100% quantum efficiency, thanks to fast energy transfer among antenna chlorophylls and charge separation in the reaction center. There is no complete consensus regarding the kinetics of the elementary steps involved in the overall trapping, especially the rate of primary charge separation. In this work, we employed two-dimensional coherent electronic spectroscopy to follow the dynamics of energy and electron transfer in a monomeric PSI complex from Synechocystis PCC 6803, containing only subunits A-E, K, and M, at 77 K. We also determined the structure of the complex to 4.3 Å resolution by cryoelectron microscopy with refinements to 2.5 Å. We applied structure-based modeling using a combined Redfield-Förster theory to compute the excitation dynamics. The absorptive 2D electronic spectra revealed fast excitonic/vibronic relaxation on time scales of 50-100 fs from the high-energy side of the absorption spectrum. Antenna excitations were funneled within 1 ps to a small pool of chlorophylls absorbing around 687 nm, thereafter decaying with 4-20 ps lifetimes, independently of excitation wavelength. Redfield-Förster energy transfer computations showed that the kinetics is limited by transfer from these red-shifted pigments. The rate of primary charge separation, upon direct excitation of the reaction center, was determined to be 1.2-1.5 ps-1. This result implies activationless electron transfer in PSI.
Collapse
Affiliation(s)
- Parveen Akhtar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore.,Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary.,ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paweł J Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
4
|
Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803. Biochem J 2021; 478:1333-1346. [PMID: 33687054 DOI: 10.1042/bcj20210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
Collapse
|
5
|
Energy transfer and primary charge separation upon selective femtosecond excitation at 810 nm in the reaction center complex from Heliobacterium modesticaldum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:895-905. [DOI: 10.1016/j.bbabio.2017.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022]
|
7
|
Kompanets V, Shubin V, Terekhova I, Kotova E, Kozlovsky V, Novoderezhkin V, Chekalin S, Karapetyan N, Razjivin A. Red chlorophyll excitation dynamics in Arthrospira platensis photosystem I trimeric complexes as studied by femtosecond transient absorption spectroscopy. FEBS Lett 2014; 588:3441-4. [PMID: 25128457 DOI: 10.1016/j.febslet.2014.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/25/2014] [Accepted: 07/31/2014] [Indexed: 12/01/2022]
Abstract
Femtosecond absorption spectroscopy was applied to study for the first time excitation dynamics in isolated photosystem I trimers from Arthrospira platensis, which display extremely long-wavelength absorption peaks. Pump-probe spectra observed at 77K in the timescale of dozens of picoseconds upon 70-fs excitation revealed two maxima near 710 and 730 nm, which correspond to red chlorophyll forms. Bleaching at 680 nm developed in ∼ 200 fs, whereas the bleaching kinetics at 710 and 730 nm exhibited two components with time constants of 1 and 5.5 ps. Comparison of the kinetics of bleaching development at 710 nm and 730 nm with that of bleaching decay at 680 nm indicated that both long-wavelength forms of trimers are populated mainly via direct energy transfer from bulk chlorophyll.
Collapse
Affiliation(s)
- Viktor Kompanets
- Institute of Spectroscopy RAS, 142190 Troitsk, Moscow Region, Russia
| | - Vladimir Shubin
- A.N. Bach Institute of Biochemistry RAS, 119071 Moscow, Russia
| | - Irina Terekhova
- A.N. Bach Institute of Biochemistry RAS, 119071 Moscow, Russia
| | - Elena Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Kozlovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Novoderezhkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey Chekalin
- Institute of Spectroscopy RAS, 142190 Troitsk, Moscow Region, Russia
| | | | - Andrei Razjivin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
8
|
Tian L, Farooq S, van Amerongen H. Probing the picosecond kinetics of the photosystem II core complex in vivo. Phys Chem Chem Phys 2013; 15:3146-54. [DOI: 10.1039/c3cp43813a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, Schulten K. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chemphyschem 2011; 12:518-31. [PMID: 21344591 DOI: 10.1002/cphc.201000944] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 2010; 49:4740-51. [PMID: 20359245 DOI: 10.1021/bi901807p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al. (2001) Nature 411 (6840), 909-917]. Here we show the possibility of isolating from this cyanobacterium the intact monomeric PS1 complex which preserves all subunits and the photochemical activity of the isolated trimeric complex. Moreover, the equilibrium between these complexes in the thylakoid membrane can be shifted by a high-salt treatment in favor of monomeric PS1 which can be quantitatively extracted below the phase transition temperature. Both monomers and trimers exhibit identical posttranslational modifications of their subunits and the same reaction centers but differ in the long-wavelength antenna chlorophylls. Their chlorophyll/P700 ratio (108 for the monomer and 112 for the trimer) is slightly higher than in the crystal structure, confirming mild preparation conditions. Interaction of antenna chlorophylls of the monomers within the trimer leads to a larger amount of long-wavelength chlorophylls, resulting in a higher photochemical activity of the trimers under red or far-red illumination. The dynamic equilibrium between monomers and trimers in the thylakoid membrane may indicate a transient monomer population in the course of biogenesis and could also be the basis for short-term adaptation of the cell to changing environmental conditions.
Collapse
|
11
|
Shibata Y, Yamagishi A, Kawamoto S, Noji T, Itoh S. Kinetically Distinct Three Red Chlorophylls in Photosystem I of Thermosynechococcus elongatus Revealed by Femtosecond Time-Resolved Fluorescence Spectroscopy at 15 K. J Phys Chem B 2010; 114:2954-63. [DOI: 10.1021/jp909583r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Atsushi Yamagishi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Shunsuke Kawamoto
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Tomoyasu Noji
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| |
Collapse
|
12
|
|
13
|
From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW, Webber AN. Two equilibration pools of chlorophylls in the Photosystem I core antenna of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2007; 92:55-63. [PMID: 17611814 DOI: 10.1007/s11120-006-9125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 12/11/2006] [Indexed: 05/16/2023]
Abstract
Femtosecond transient absorption spectroscopy was applied for a comparative study of excitation decay in several different Photosystem I (PSI) core preparations from the green alga Chlamydomonas reinhardtii. For PSI cores with a fully interconnected network of chlorophylls, the excitation energy was equilibrated over a pool of chlorophylls absorbing at approximately 683 nm, independent of excitation wavelength [Gibasiewicz et al. J Phys Chem B 105:11498-11506, 2001; J Phys Chem B 106:6322-6330, 2002]. In preparations with impaired connectivity between chlorophylls, we have found that the spectrum of chlorophylls connected to the reaction center (i.e., with approximately 20 ps decay time) over which the excitation is equilibrated becomes excitation-wavelength-dependent. Excitation at 670 nm is finally equilibrated over chlorophylls absorbing at approximately 675 nm, whereas excitation at 695 nm or 700 nm is equilibrated over chlorophylls absorbing at approximately 683 nm. This indicates that in the vicinity of the reaction center there are two spectrally different and spatially separated pools of chlorophylls that are equally capable of effective excitation energy transfer to the reaction center. We propose that they are related to the two groups of central PSI core chlorophylls lying on the opposite sides of reaction center.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- School of Life Sciences, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Riley KJ, Reinot T, Jankowiak R, Fromme P, Zazubovich V. Red Antenna States of Photosystem I from Cyanobacteria Synechocystis PCC 6803 and Thermosynechococcus elongatus: Single-Complex Spectroscopy and Spectral Hole-Burning Study. J Phys Chem B 2006; 111:286-92. [PMID: 17201451 DOI: 10.1021/jp062664m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hole-burning and single photosynthetic complex spectroscopy were used to study the excitonic structure and excitation energy-transfer processes of cyanobacterial trimeric Photosystem I (PS I) complexes from Synechocystis PCC 6803 and Thermosynechococcus elongatus at low temperatures. It was shown that individual PS I complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e., C706 and C714) reveal only a broad structureless fluorescence band with a maximum near 720 nm, indicating strong electron-phonon coupling for the lowest energy C714 red state. The absence of zero-phonon lines (ZPLs) belonging to the C706 red state in the emission spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient energy transfer with a characteristic transfer time of approximately 5 ps. This finding is in agreement with spectral hole-burning data obtained for bulk samples of Synechocystis PCC 6803. The importance of comparing the results of ensemble (spectral hole burning) and single-complex measurements was demonstrated. The presence of narrow ZPLs near 710 nm in addition to the broad fluorescence band at approximately 730 nm in Thermosynechococcus elongatus (Jelezko et al. J. Phys. Chem. B 2000, 104, 8093-8096) has been confirmed. We also demonstrate that high-quality samples obtained by dissolving crystals of PS I of Thermosynechococcus elongatus exhibit stronger absorption in the red antenna region than any samples studied so far by us and other groups.
Collapse
Affiliation(s)
- Kerry J Riley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
16
|
Vaswani HM, Stenger J, Fromme P, Fleming GR. One- and Two-Color Photon Echo Peak Shift Studies of Photosystem I. J Phys Chem B 2006; 110:26303-12. [PMID: 17181289 DOI: 10.1021/jp061008j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Wavelength-dependent one- and two-color photon echo peak shift spectroscopy was performed on the chlorophyll Qy band of trimeric photosystem I from Thermosynechococcus elongatus. Sub-100 fs energy transfer steps were observed in addition to longer time scales previously measured by others. In the main PSI absorption peak (675-700 nm), the peak shift decays more slowly with increasing wavelength, implying that energy transfer between pigments of similar excitation energy is slower for pigments with lower site energies. In the far-red region (715 nm), the decay of the peak shift is more rapid and is complete by 1 ps, a consequence of the strong electron-phonon coupling present in this spectral region. Two-color photon echo peak shift data show strong excitonic coupling between pigments absorbing at 675 nm and those absorbing at 700 nm. The one- and two-color peak shifts were simulated using the previously developed energy transfer model (J. Phys. Chem. B 2002, 106, 10251; Biophysical Journal 2003, 85, 140). The simulations agree well with the experimental data. Two-color photon echo peak shift is shown to be far more sensitive to variations in the molecular Hamiltonian than one-color photon echo peak shift spectroscopy.
Collapse
Affiliation(s)
- Harsha M Vaswani
- Department of Chemistry, University of California at Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
17
|
Sener MK, Park S, Lu D, Damjanovic A, Ritz T, Fromme P, Schulten K. Excitation migration in trimeric cyanobacterial photosystem I. J Chem Phys 2006; 120:11183-95. [PMID: 15268148 DOI: 10.1063/1.1739400] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A structure-based description of excitation migration in multireaction center light harvesting systems is introduced. The description is an extension of the sojourn expansion, which decomposes excitation migration in terms of repeated detrapping and recapture events. The approach is applied to light harvesting in the trimeric form of cyanobacterial photosystem I (PSI). Excitation is found to be shared between PSI monomers and the chlorophylls providing the strongest respective links are identified. Excitation sharing is investigated by computing cross-monomer excitation trapping probabilities. It is seen that on the average there is a nearly 40% chance of excitation cross transfer and trapping, indicating efficient coupling between monomers. The robustness and optimality of the chlorophyll network of trimeric PSI is examined.
Collapse
Affiliation(s)
- Melih K Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
19
|
Melkozernov AN, Barber J, Blankenship RE. Light Harvesting in Photosystem I Supercomplexes,. Biochemistry 2005; 45:331-45. [PMID: 16401064 DOI: 10.1021/bi051932o] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.
Collapse
Affiliation(s)
- Alexander N Melkozernov
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA.
| | | | | |
Collapse
|
20
|
Melkozernov AN, Kargul J, Lin S, Barber J, Blankenship RE. Spectral and kinetic analysis of the energy coupling in the PS I-LHC I supercomplex from the green alga Chlamydomonas reinhardtii at 77 K. PHOTOSYNTHESIS RESEARCH 2005; 86:203-15. [PMID: 16172939 DOI: 10.1007/s11120-005-4118-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 03/18/2005] [Indexed: 05/04/2023]
Abstract
Energy transfer processes in the chlorophyll antenna of the PS I-LHCI supercomplexes from the green alga Chlamydomonas reinhardtii have been studied at 77 K using transient absorption spectroscopy with multicolor excitation in the 640-670 nm region. Comparison of the kinetic data obtained at low and room temperatures indicates that the slow approximately approximately 100 ps excitation equilibration phase that is characteristic of energy coupling of the LHCI peripheral antenna to the PS I core at physiological temperatures (Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2004) J Phys Chem B 108: 10547-10555) is not observed in the excitation dynamics of the PS I-LHCI supercomplex at 77 K. This suggests that at low temperatures the peripheral antenna is energetically uncoupled from the PS I core antenna. Under these conditions the observed kinetic phases on the time scales from subpicoseconds to tens of picoseconds represent the superposition of the processes occurring independently in the PS I core antenna and the Chl a/b containing LHCI antenna. In the PS I-LHCI supercomplex with two uncoupled antennas the excitation is channeled to the excitation sinks formed at low temperature by clusters of red pigments. A better spectral resolution of the transient absorption spectra at 77 K results in detection of two DeltaA bands originating from the rise of photobleaching on the picosecond time scale of two clearly distinguished pools of low energy absorbing Chls in the PS I-LHCI supercomplex. The first pool of low energy pigments absorbing at 687 nm is likely to originate from the red pigments in the LHCI where the Lhca1 protein is most abundant. The second pool at 697 nm is suggested to result either from the structural interaction of the LHCI and the PS I core or from other Lhca proteins in the antenna. The kinetic data are discussed based on recent structural models of the PS I-LHCI. It is proposed that the uncoupling of pigment pools may be a control mechanism that regulates energy flow in Photosystem I.
Collapse
Affiliation(s)
- Alexander N Melkozernov
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Tempe, AZ 85287-1604, USA.
| | | | | | | | | |
Collapse
|
21
|
Vaitekonis S, Trinkunas G, Valkunas L. Red chlorophylls in the exciton model of photosystem I. PHOTOSYNTHESIS RESEARCH 2005; 86:185-201. [PMID: 16172938 DOI: 10.1007/s11120-005-2747-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 02/21/2005] [Indexed: 05/04/2023]
Abstract
Structural arrangement of pigment molecules of Photosystem I of photosynthetic cyanobacterium Synechococcus elongatus is used for theoretical modeling of the excitation energy spectrum. It is demonstrated that a straightforward application of the exciton theory with the assumption of the same molecular transition energy does not describe the red side of the absorption spectrum. Since the inhomogeneity in the molecular transition energies caused by a dispersive interaction with the molecular surrounding cannot be identified directly from the structural model, the evolutionary search procedure is used for fitting the low temperature absorption and circular dichroism spectra. As a result, one dimer, three trimers and one tetramer of chlorophyll molecules responsible for the red side of the absorption spectrum with their assignment to the spectroscopically established three bands at 708, 714 and 719 nm are determined. All of them are found to be situated not in the very close vicinity of the reaction center but are encircling it almost at the same distance. In order to explain the unusual broadening on the red side of the spectrum the exciton state mixing with the charge transfer (CT) states is considered. It is shown that two effects can be distinguished as caused by mixing of those states: (i) the oscillator strength borrowing by the CT state from the exciton transition and (ii) the borrowing of the high density of the CT state by the exciton state. The intermolecular vibrations between two counter-charged molecules determine the high density in the CT state. From the broad red absorption wing it is concluded that the CT state should be the lowest state in the complexes under consideration. Such mixing effect enables resolving the diversity in the molecular transition energies as determined by different theoretical approaches.
Collapse
|
22
|
Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R, Schulten K. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J 2005; 89:1630-42. [PMID: 15994896 PMCID: PMC1366667 DOI: 10.1529/biophysj.105.066464] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of approximately 49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering.
Collapse
Affiliation(s)
- Melih K Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW, Webber AN. Excitonic interactions in wild-type and mutant PSI reaction centers. Biophys J 2004; 85:2547-59. [PMID: 14507717 PMCID: PMC1303478 DOI: 10.1016/s0006-3495(03)74677-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Femtosecond excitation of the red edge of the chlorophyll a Q(Y) transition band in photosystem I (PSI), with light of wavelength > or = 700 nm, leads to wide transient (subpicosecond) absorbance changes: positive DeltaA between 635 and 665 nm, and four negative DeltaA bands at 667, 675, 683, and 695 nm. Here we compare the transient absorbance changes after excitation at 700, 705, and 710 nm at 20 K in several PSI preparations of Chlamydomonas reinhardtii where amino acid ligands of the primary donor, primary acceptor, or connecting chlorophylls have been mutated. Most of these mutations influence the spectrum of the absorbance changes. This supports the view that the chlorophylls of the electron transfer chain as well as the connecting chlorophylls are engaged in the observed absorbance changes. The wide absorption spectrum of the electron transfer chain revealed by the transient measurements may contribute to the high efficiency of energy trapping in photosystem 1. Exciton calculations, based on the recent PSI structure, allow an assignment of the DeltaA bands to particular chlorophylls: the bands at 675 and 695 nm to the dimers of primary acceptor and accessory chlorophyll and the band at 683 nm to the connecting chlorophylls. The subpicosecond transient absorption bands decay may reflect rapid charge separation in the PSI reaction center.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601 USA
| | | | | | | | | | | |
Collapse
|
24
|
Yang M, Fleming GR. Construction of kinetic domains in energy trapping processes and application to a photosynthetic light harvesting complex. J Chem Phys 2003. [DOI: 10.1063/1.1599347] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Yang M, Damjanović A, Vaswani HM, Fleming GR. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 2003; 85:140-58. [PMID: 12829471 PMCID: PMC1303072 DOI: 10.1016/s0006-3495(03)74461-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 03/07/2003] [Indexed: 10/21/2022] Open
Abstract
We model the energy transfer and trapping kinetics in PSI. Rather than simply applying Förster theory, we develop a new approach to self-consistently describe energy transfer in a complex with heterogeneous couplings. Experimentally determined spectral densities are employed to calculate the energy transfer rates. The absorption spectrum and fluorescence decay time components of the complex at room temperature were reasonably reproduced. The roles of the special chlorophylls (red, linker, and reaction center, respectively) molecules are discussed. A formally exact expression for the trapping time is derived in terms of the intrinsic trapping time, mean first passage time to trap, and detrapping time. The energy transfer mechanism is discussed and the slowest steps of the arrival at the primary electron donor are found to contain two dominant steps: transfer-to-reaction-center, and transfer-to-trap-from-reaction-center. The intrinsic charge transfer time is estimated to be 0.8 approximately 1.7 ps. The optimality with respect to the trapping time of the calculated transition energies and the orientation of Chls is discussed.
Collapse
Affiliation(s)
- Mino Yang
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
26
|
Melkozernov AN, Bibby TS, Lin S, Barber J, Blankenship RE. Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core. Biochemistry 2003; 42:3893-903. [PMID: 12667080 DOI: 10.1021/bi026987u] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitation energy transfer and trapping processes in an iron stress-induced supercomplex of photosystem I from the cyanobacterium Synechocystis sp. PCC6803 were studied by time-resolved absorption and fluorescence spectroscopy on femtosecond and picosecond time scales. The data provide evidence that the energy transfer dynamics of the CP43'-PSI supercomplex are consistent with energy transfer processes that occur in the Chl a network of the PSI trimer antenna. The most significant absorbance changes in the CP43'-PSI supercomplex are observed within the first several picoseconds after the excitation into the spectral region of CP43' absorption (665 nm). The difference time-resolved spectra (DeltaDeltaA) resulting from subtraction of the PSI trimer kinetic data from the CP43'-PSI supercomplex data indicate three energy transfer processes with time constants of 0.2, 1.7, and 10 ps. The 0.2 ps kinetic phase is tentatively interpreted as arising from energy transfer processes originating within or between the CP43' complexes. The 1.7 ps phase is interpreted as possibly arising from energy transfer from the CP43' ring to the PSI trimer via closely located clusters of Chl a in CP43' and the PSI core, while the slower 10 ps process might reflect the overall excitation transfer from the CP43' ring to the PSI trimer. These three fast kinetic phases are followed by a 40 ps overall excitation decay in the supercomplex, in contrast to a 25 ps overall decay observed in the trimer complex without CP43'. Excitation of Chl a in both the CP43'-PSI antenna supercomplex and the PSI trimer completely decays within 100 ps, resulting in the formation of P700(+). The data indicate that there is a rapid and efficient energy transfer between the outer antenna ring and the PSI reaction center complex.
Collapse
Affiliation(s)
- Alexander N Melkozernov
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | |
Collapse
|
27
|
Damjanović A, Vaswani HM, Fromme P, Fleming GR. Chlorophyll Excitations in Photosystem I of Synechococcus elongatus. J Phys Chem B 2002. [DOI: 10.1021/jp020963f] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Damjanović
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Max-Volmer-Laboratorium für Biophysikalische Chemie and Biochemie, Technische Universität Berlin, Berlin, Germany, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Harsha M. Vaswani
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Max-Volmer-Laboratorium für Biophysikalische Chemie and Biochemie, Technische Universität Berlin, Berlin, Germany, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Petra Fromme
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Max-Volmer-Laboratorium für Biophysikalische Chemie and Biochemie, Technische Universität Berlin, Berlin, Germany, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Max-Volmer-Laboratorium für Biophysikalische Chemie and Biochemie, Technische Universität Berlin, Berlin, Germany, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
28
|
Sener MK, Lu D, Ritz T, Park S, Fromme P, Schulten K. Robustness and Optimality of Light Harvesting in Cyanobacterial Photosystem I. J Phys Chem B 2002. [DOI: 10.1021/jp020708v] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melih K. Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Max-Volmer Laboratorium für Biophysikalische Chemie, Institut für Chemie, Fakultät 2, Technische Universität Berlin, D-10623 Berlin, Germany, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Deyu Lu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Max-Volmer Laboratorium für Biophysikalische Chemie, Institut für Chemie, Fakultät 2, Technische Universität Berlin, D-10623 Berlin, Germany, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Thorsten Ritz
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Max-Volmer Laboratorium für Biophysikalische Chemie, Institut für Chemie, Fakultät 2, Technische Universität Berlin, D-10623 Berlin, Germany, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Sanghyun Park
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Max-Volmer Laboratorium für Biophysikalische Chemie, Institut für Chemie, Fakultät 2, Technische Universität Berlin, D-10623 Berlin, Germany, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Petra Fromme
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Max-Volmer Laboratorium für Biophysikalische Chemie, Institut für Chemie, Fakultät 2, Technische Universität Berlin, D-10623 Berlin, Germany, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Max-Volmer Laboratorium für Biophysikalische Chemie, Institut für Chemie, Fakultät 2, Technische Universität Berlin, D-10623 Berlin, Germany, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| |
Collapse
|
29
|
Melkozernov AN. Excitation energy transfer in Photosystem I from oxygenic organisms. PHOTOSYNTHESIS RESEARCH 2001; 70:129-53. [PMID: 16228348 DOI: 10.1023/a:1017909325669] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This Review discusses energy transfer pathways in Photosystem I (PS I) from oxygenic organisms. In the trimeric PS I core from cyanobacteria, the efficiency of solar energy conversion is largely determined by ultrafast excitation transfer processes in the core chlorophyll a (Chl a) antenna network and efficient photochemical trapping in the reaction center (RC). The role of clusters of Chl a in energy equilibration and photochemical trapping in the PS I core is discussed. Dimers of the longest-wavelength absorbing (red) pigments with strongest excitonic interactions localize the excitation in the PS I core antenna. Those dimers that are located closer to the RC participate in a fast energy equilibration with coupled pigments of the RC. This suggests that the function of the red pigments is to concentrate the excitation near the RC. In the PS I holocomplex from algae and higher plants, in addition to the red pigments of the core antenna, spectrally distinct red pigments are bound to the peripheral Chl a/b-binding light-harvesting antenna (LHC I), specifically to the Lhca4 subunit of the LHC I-730 complex. Intramonomeric energy equilibration between pools of Chl b and Chl a in Lhca1 and Lhca4 monomers of the LHC I-730 heterodimer are as fast as the energy equilibration processes within the PS I core. In contrast to the structural stability of the PS I core, the flexible subunit structure of the LHC I would probably determine the observed slow excitation energy equilibration processes in the range of tens of picoseconds. The red pigments in the LHC I are suggested to function largely as photoprotective excitation sinks in the peripheral antenna of PS I.
Collapse
Affiliation(s)
- A N Melkozernov
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, AZ, 85287-1604, USA,
| |
Collapse
|