1
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pawlowska D, Erdmann N, Folz M, Langner A, Dobner B, Wölk C, Brezesinski G. Ionizable lipids based on branched fatty acids - An explorative study on Langmuir monolayers. Eur J Pharm Biopharm 2024; 200:114338. [PMID: 38789063 DOI: 10.1016/j.ejpb.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Ionizable lipids are a class of pharmaceutical excipients with a main application in lipid nanoparticles for nucleic acid delivery. New ionizable lipids are needed to tune characteristics of lipid-based nucleic acid delivery systems, e.g. stability, nucleic acid loading capacity and binding strength, as well as bio-distribution. Herein, we present the synthesis of three novel ionizable lipids as putative excipients for lipid-based nucleic acid delivery systems. Langmuir monolayer experiments with classical surface pressure/area isotherm evaluation were used to understand the self-assembly behavior of the lipids. Additional experiments with surface sensitive techniques, namely grazing incidence x-ray scattering and infrared reflection-absorption spectroscopy (IRRAS), were performed to understand structural characteristics of lipid associates. The latter technique was also used to investigate the nucleic acid binding process between DNA and the ionizable lipids. Finally, first transfection experiments with the novel lipids formulated as cationic liposomes were performed providing first efficacy data. Although the alkyl chain pattern was comparable for all three ionizable lipids, the results demonstrated that with increasing head-group size the DNA binding capacity changed and the alkyl chain fluidity was increased. The lipid with the lowest phase transition temperature and the smallest packing parameter showed the highest DNA transfer efficiency.
Collapse
Affiliation(s)
- Dorota Pawlowska
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nicole Erdmann
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manuela Folz
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Andreas Langner
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Bodo Dobner
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Christian Wölk
- Leipzig University, Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Eilenburger Strasse 15a, 04317 Leipzig, Germany.
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Giulimondi F, Digiacomo L, Renzi S, Cassone C, Pirrottina A, Molfetta R, Palamà IE, Maiorano G, Gigli G, Amenitsch H, Pozzi D, Zingoni A, Caracciolo G. Optimizing Transfection Efficiency in CAR-T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3746-3757. [PMID: 38775109 DOI: 10.1021/acsabm.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.
Collapse
Affiliation(s)
- Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Serena Renzi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Chiara Cassone
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Andrea Pirrottina
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | | | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, Lecce 73100, Italy
- Department of Medicine, University of Salento, Arnesano street c/o Campus Ecotekne, Lecce 73100, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| |
Collapse
|
4
|
Delehedde C, Ciganek I, Laroui N, Rameix N, Perche F, Pichon C. Messenger RNA Lipid-Based Nanoparticles: Optimization of Formulations in the Lab. Methods Mol Biol 2024; 2786:255-287. [PMID: 38814399 DOI: 10.1007/978-1-0716-3770-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Among the large variety of messenger RNA (mRNA) delivery systems, those developed with lipid-based formulations were the most widely used and efficient. In our lab, we produced different mRNA formulations made with liposomes, hybrid lipid polymer, and lipid nanoparticles. Our formulations were made with lipids bearing imidazole groups that trigger the endosomal escape of nanoparticles once protonated inside the mild acidic milieu of endosomes upon their cell uptake. Herein, we describe protocols that we used to produce, optimize, and characterize those formulations. The transfection efficiency is influenced by various factors including the physicochemical parameters of the nanoparticles, their efficiency to be internalized in cells, and their intracellular routing as well as their capacity to induce immune system sensors. We provide details on how to quantify the amount of mRNA nanoparticles uptake by cells and evaluate the acidity of the intracellular compartments where they are located, to investigate the endosomal escape, and to assess the activation of innate immune sensors as phosphorylation of PKR hampering mRNA translation.
Collapse
Affiliation(s)
- Christophe Delehedde
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Ivan Ciganek
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
- Inserm, ART-ARNm Inserm US55, Orléans, France
| | - Nabila Laroui
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
- Inserm, ART-ARNm Inserm US55, Orléans, France
| | - Nathalie Rameix
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Federico Perche
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
| | - Chantal Pichon
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France.
- Orléans University, Château de la Source, Orleans, France.
- Institut Universitaire de France, Paris, France.
- Inserm, ART-ARNm Inserm US55, Orléans, France.
| |
Collapse
|
5
|
Pozzi D, Caracciolo G. Looking Back, Moving Forward: Lipid Nanoparticles as a Promising Frontier in Gene Delivery. ACS Pharmacol Transl Sci 2023; 6:1561-1573. [PMID: 37974625 PMCID: PMC10644400 DOI: 10.1021/acsptsci.3c00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/19/2023]
Abstract
Lipid nanoparticles (LNPs) have shown remarkable success in delivering genetic materials like COVID-19 LNP vaccines, such as mRNA-1273/SpikeVax by Moderna and BNT162b2/Comirnaty by BioNTech/Pfizer, as well as siRNA for rare inherited diseases, such as Onpattro from Alnylam Pharmaceuticals. These LNPs are advantageous since they minimize side effects, target specific cells, and regulate payload delivery. There has been a surge of interest in these particles due to their success stories; however, we still do not know much about how they work. This perspective will recapitulate the evolution of lipid-based gene delivery, starting with Felgner's pioneering 1987 PNAS paper, which introduced the initial DNA-transfection method utilizing a synthetic cationic lipid. Our journey takes us to the early 2020s, a time when advancements in bionano interactions enabled us to create biomimetic lipoplexes characterized by a remarkable ability to evade capture by immune cells in vivo. Through this overview, we propose leveraging previous achievements to assist us in formulating improved research goals when optimizing LNPs for medical conditions such as infectious diseases, cancer, and heritable disorders.
Collapse
Affiliation(s)
- Daniela Pozzi
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| |
Collapse
|
6
|
Wei Y, He T, Bi Q, Yang H, Hu X, Jin R, Liang H, Zhu Y, Tong R, Nie Y. A cationic lipid with advanced membrane fusion performance for pDNA and mRNA delivery. J Mater Chem B 2023; 11:2095-2107. [PMID: 36810919 DOI: 10.1039/d2tb02783f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The success of mRNA vaccines for COVID-19 prevention raised global awareness of the importance of nucleic acid drugs. The approved systems for nucleic acid delivery were mainly formulations of different lipids, yielding lipid nanoparticles (LNPs) with complex internal structures. Due to the multiple components, the relationship between the structure of each component and the overall biological activity of LNPs is hard to study. However, ionizable lipids have been extensively explored. In contrast to former studies on the optimization of hydrophilic parts in single-component self-assemblies, we report in this study on structural alterations of the hydrophobic segment. We synthesize a library of amphiphilic cationic lipids by varying the lengths (C = 8-18), numbers (N = 2, 4), and unsaturation degrees (Ω = 0, 1) of hydrophobic tails. Notably, all self-assemblies with nucleic acid have significant differences in particle size, stability in serum, membrane fusion, and fluidity. Moreover, the novel mRNA/pDNA formulations are characterized by overall low cytotoxicity, efficient compaction, protection, and release of nucleic acids. We find that the length of hydrophobic tails dominates the formation and stability of the assembly. And at a certain length, the unsaturated hydrophobic tails enhance the membrane fusion and fluidity of assemblies and thus significantly affect the transgene expression, followed by the number of hydrophobic tails.
Collapse
Affiliation(s)
- Yu Wei
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ting He
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Huan Yang
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xueyi Hu
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yongqun Zhu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
mRNA Lipoplexes with Cationic and Ionizable α-Amino-lipophosphonates: Membrane Fusion, Transfection, mRNA Translation and Conformation. Pharmaceutics 2022; 14:pharmaceutics14030581. [PMID: 35335957 PMCID: PMC8952827 DOI: 10.3390/pharmaceutics14030581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Cationic liposomes are attractive carriers for mRNA delivery. Here, mRNA lipoplexes (LX) were prepared with the cationic lipids α-aminolipophosphonate (3b) or imidazolium lipophosphoramidate (2) associated with various α-aminolipophosphonates co-lipids comprising protonable groups (imidazole or pyridine) and DOPE. Physicochemical parameters of liposomes and their membrane fusion activity were measured. LXs comprising either 3b- or 2- allowed transfection of ~25% and 40% of dendritic cells with low cytotoxicity, respectively; the efficiency increased up to 80% when 2 was combined with the imidazole-based co-lipid 1. The transfections were high with 3b/1, 3b/DOPE, 2/1 and 2/DOPE LXs. We observed that the transfection level was not well correlated with the acid-mediated membrane fusion activity of liposomes supposed to destabilize endosomes. The mRNA release from LXs and its translation capacity after release were studied for the most efficient LXs. The results showed that the more mRNA was condensed, the poorer the translation efficiency after release was. In contrast to DNA, circular dichroism performed on mRNA complexed with 2/DOPE revealed the presence of denatured mRNA in LXs explaining this lack of translation efficiency. This is an important parameter that should be stressed for the preparation of mRNA LXs with a conserved mRNA translation activity.
Collapse
|
8
|
Aerosol-Mediated Non-Viral Lung Gene Therapy: The Potential of Aminoglycoside-Based Cationic Liposomes. Pharmaceutics 2021; 14:pharmaceutics14010025. [PMID: 35056921 PMCID: PMC8778791 DOI: 10.3390/pharmaceutics14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Aerosol lung gene therapy using non-viral delivery systems represents a credible therapeutic strategy for chronic respiratory diseases, such as cystic fibrosis (CF). Progress in CF clinical setting using the lipidic formulation GL67A has demonstrated the relevance of such a strategy while emphasizing the need for more potent gene transfer agents. In recent years, many novel non-viral gene delivery vehicles were proposed as potential alternatives to GL67 cationic lipid. However, they were usually evaluated using procedures difficult or even impossible to implement in clinical practice. In this study, a clinically-relevant administration protocol via aerosol in murine lungs was used to conduct a comparative study with GL67A. Diverse lipidic compounds were used to prepare a series of formulations inspired by the composition of GL67A. While some of these formulations were ineffective at transfecting murine lungs, others demonstrated modest-to-very-efficient activities and a series of structure-activity relationships were unveiled. Lipidic aminoglycoside derivative-based formulations were found to be at least as efficient as GL67A following aerosol delivery of a luciferase-encoding plasmid DNA. A single aerosol treatment with one such formulation was found to mediate long-term lung transgene expression, exceeding half the animal's lifetime. This study clearly supports the potential of aminoglycoside-based cationic lipids as potent GL67-alternative scaffolds for further enhanced aerosol non-viral lung gene therapy for diseases such as CF.
Collapse
|
9
|
Zhang H, Keskin D, de Haan-Visser WH, Zu G, van Rijn P, Zuhorn IS. Aliphatic Quaternary Ammonium Functionalized Nanogels for Gene Delivery. Pharmaceutics 2021; 13:1964. [PMID: 34834380 PMCID: PMC8618000 DOI: 10.3390/pharmaceutics13111964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is a promising treatment for hereditary diseases, as well as acquired genetic diseases, including cancer. Facing the complicated physiological and pathological environment in vivo, developing efficient non-viral gene vectors is needed for their clinical application. Here, poly(N-isopropylacrylamide) (p(NIPAM)) nanogels are presented with either protonatable tertiary amine groups or permanently charged quaternized ammonium groups to achieve DNA complexation ability. In addition, a quaternary ammonium-functionalized nanogel was further provided with an aliphatic moiety using 1-bromododecane to add a membrane-interacting structure to ultimately facilitate intracellular release of the genetic material. The ability of the tertiary amine-, quaternized ammonium-, and aliphatic quaternized ammonium-functionalized p(NIPAM) nanogels (i.e., NGs, NGs-MI, and NGs-BDD, respectively) to mediate gene transfection was evaluated by fluorescence microscopy and flow cytometry. It is observed that NGs-BDD/pDNA complexes exhibit efficient gene loading, gene protection ability, and intracellular uptake similar to that of NGs-MI/pDNA complexes. However, only the NGs-BDD/pDNA complexes show a notable gene transfer efficiency, which can be ascribed to their ability to mediate DNA escape from endosomes. We conclude that NGs-BDD displays a cationic lipid-like behavior that facilitates endosomal escape by perturbing the endosomal/lysosomal membrane. These findings demonstrate that the presence of aliphatic chains within the nanogel is instrumental in accomplishing gene delivery, which provides a rationale for the further development of nanogel-based gene delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (H.Z.); (D.K.); (W.H.d.H.-V.); (G.Z.)
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (H.Z.); (D.K.); (W.H.d.H.-V.); (G.Z.)
| |
Collapse
|
10
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
11
|
Rak M, Góra-Sochacka A, Madeja Z. Lipofection-Based Delivery of DNA Vaccines. Methods Mol Biol 2021; 2183:391-404. [PMID: 32959255 DOI: 10.1007/978-1-0716-0795-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The preventive and therapeutic potential of DNA vaccines combined with benefits of lipid-based delivery (lipofection) allow efficient nucleic acid transfer and immunization applicable in treatment of infections, cancer or autoimmune disorders. Lipofecting compositions consisting of cationic and neutral lipids can be used for both in vitro and in vivo applications and may also play the role of adjuvants. Here we describe a simple protocol of DNA vaccine carrier preparation based on cationic polyprenyl derivatives (PTAI-trimethylpolyprenylammonium iodides) and commonly used helper lipids with use of basic laboratory equipment. Such formulas have proven effective for immunization of animals as well as for cell transfection.
Collapse
Affiliation(s)
- Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Rak M, Ochałek A, Gawarecka K, Masnyk M, Chmielewski M, Chojnacki T, Swiezewska E, Madeja Z. Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions. Eur J Pharm Biopharm 2020; 155:199-209. [PMID: 32750413 DOI: 10.1016/j.ejpb.2020.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Lipofection is a widely used molecular biology technique and one of the most promising non-viral gene therapy strategies. However, one of the main drawbacks of using cationic lipids-based lipoplexes in DNA/RNA delivery is serum-associated inhibition of transfection. We have addressed this issue using PTAI (trimethylpolyprenylammonium iodides)-based lipofection model. To overcome serum-sensitivity we used 100 different formulations based on different PTAI, various helper lipids compositions, lipoplex surface modifications with polyethylene glycol (PEG), and precondensation of DNA with poly-L-lysine (PLL). Multicomponent helper lipids compositions boosted serum resistance and largely improved long-term storage of PTAI-based reagents. This was observed, in particular, for PTAI with longer isoprenoid chains. Additionally, our PTAI-based carriers were efficient for DNA and RNA delivery and safe for human red blood cells (RBC). Moreover, a broad array of the modifications used resulted in an important observation - a diverse susceptibility of various cell types to different compositions was noted. Overall, our results show that helper lipids composition mediates efficient serum-resistant DNA/RNA lipofection. Additionally, multicomponent PTAI-based reagents are promising gene delivery carriers both, at the cellular and organismal level.
Collapse
Affiliation(s)
- Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Ochałek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Marek Masnyk
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marek Chmielewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tadeusz Chojnacki
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
13
|
Subhan MA, Torchilin VP. siRNA based drug design, quality, delivery and clinical translation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102239. [PMID: 32544449 DOI: 10.1016/j.nano.2020.102239] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023]
Abstract
Gene silencing by RNA interference represents a promising therapeutic approach. The development of carriers, e.g., polymers, lipids, peptides, antibodies, aptamers, small molecules, exosome and red blood cells, is crucial for the systemic delivery of siRNA. Cell-specific targeting ligands in the nano-carriers can improve the pharmacokinetics, biodistribution, and selectivity of siRNA therapeutics. The safety, effectiveness, quality and prosperity of production and manufacturing are important considerations for selecting the appropriate siRNA carriers. Efficacy of systemic delivery of siRNA requires considerations of trafficking through the blood, off-target effects, innate immune response and endosomal escape avoiding lysosomal degradation for entering into RNAi process. Multifunctional nanocarriers with stimuli-responsive properties such as pH, magnetic and photo-sensitive segments can enhance the efficacy of siRNA delivery. The improved preclinical characterization of suitable siRNA drugs, good laboratory practice, that reduce the differences between in vitro and in vivo results may increase the success of siRNA drugs in clinical settings.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet, Bangladesh.
| | - V P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
14
|
Radchatawedchakoon W, Thongbamrer C, Konbamrung W, Khattawee P, Sakee U, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. The effect of polar headgroups and spacer length on the DNA transfection of cholesterol-based cationic lipids. RSC Med Chem 2020; 11:212-224. [PMID: 33479628 PMCID: PMC7484938 DOI: 10.1039/c9md00459a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 01/31/2023] Open
Abstract
This article is related to the effects of the headgroups and spacer length of cationic lipids on transfection efficiency. To develop highly potent cationic lipids, a series of divalent lysine-diamine conjugated cholesterol-based cationic lipids with three different headgroups (ammonium, trimethyl ammonium, and guanidinium) were synthesized. The newly synthesized cationic lipids (1-6)A formed cationic liposomes in the presence and absence of a zwitterionic helper lipid, DOPE (dioleoylphosphatidylethanolamine). A gel retardation assay showed that most of the prepared lipoplexes could retard DNA migration in the presence of DOPE. We attempted to modify the diverse cationic headgroups to improve the transfection efficiency. However, the lysine-1,3-diaminopropane-conjugated cholesterol-based lipid 4A, having divalent ammonium of unmodified lysine headgroup, exhibited high relative transfection efficiency in HEK293. When the transfection efficiency of 4A was formulated with DOPE (1 : 1 weight ratio), it produced the same range in comparison with that of a commercially available transfection agent, Lipofectamine™ 2000 (L2k). The lipid 4A was studied to optimize the conditions with respect to the lipid/DOPE and DNA/lipid ratios and the amount of DNA. The transfection efficiency of the highly potent lipid 4A was also studied to determine the transfection efficiency of HeLa, PC3, and HC-04 cell lines. This lipid also protected the DNA from a serum and had low toxicity. Lipoplexes 4A with DOPE had the particle size of around 300-600 nm and the zeta potential of around 0-45 mV. In summary, cationic liposomes 4A demonstrated a high performance as DNA carriers.
Collapse
Affiliation(s)
- Widchaya Radchatawedchakoon
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| | - Wuttiphong Konbamrung
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Phakamas Khattawee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| | - Uthai Sakee
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit , Faculty of Tropical Medicine , Mahidol University , Bangkok , 10400 , Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit , Faculty of Tropical Medicine , Mahidol University , Bangkok , 10400 , Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG) , Faculty of Pharmacy , Silpakorn University , Nakhon Pathom , 73000 , Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| |
Collapse
|
15
|
Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res 2019; 214:62-91. [PMID: 31369717 DOI: 10.1016/j.trsl.2019.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Nanocarriers as drug delivery systems are promising and becoming popular, especially for cancer treatment. In addition to improving the pharmacokinetics of poorly soluble hydrophobic drugs by solubilizing them in a hydrophobic core, nanocarriers allow cancer-specific combination drug deliveries by inherent passive targeting phenomena and adoption of active targeting strategies. Nanoparticle-drug formulations can enhance the safety, pharmacokinetic profiles, and bioavailability of locally or systemically administered drugs, leading to improved therapeutic efficacy. Gene silencing by RNA interference (RNAi) is rapidly developing as a personalized field of cancer treatment. Small interfering RNAs (siRNAs) can be used to switch off specific cancer genes, in effect, "silence the gene, silence the cancer." siRNA can be used to silence specific genes that produce harmful or abnormal proteins. The activity of siRNA can be used to harness cellular machinery to destroy a corresponding sequence of mRNA that encodes a disease-causing protein. At present, the main barrier to implementing siRNA therapies in clinical practice is the lack of an effective delivery system that protects the siRNA from nuclease degradation, delivers to it to cancer cells, and releases it into the cytoplasm of targeted cancer cells, without creating adverse effects. This review provides an overview of various nanocarrier formulations in both research and clinical applications with a focus on combinations of siRNA and chemotherapeutic drug delivery systems for the treatment of multidrug resistant cancer. The use of various nanoparticles for siRNA-drug delivery, including liposomes, polymeric nanoparticles, dendrimers, inorganic nanoparticles, exosomes, and red blood cells for targeted drug delivery in cancer is discussed.
Collapse
|
16
|
Degors IS, Wang C, Rehman ZU, Zuhorn IS. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors. Acc Chem Res 2019; 52:1750-1760. [PMID: 31243966 PMCID: PMC6639780 DOI: 10.1021/acs.accounts.9b00177] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 12/31/2022]
Abstract
Over the past decades, major efforts were undertaken to develop devices on a nanoscale level for the efficient and nontoxic delivery of molecules to tissues and cells, for the purpose of either diagnosis or treatment of disease. The application of such devices in drug delivery has proven to be beneficial for matters as diverse as drug solubility, drug targeting, controlled drug release, and transport of drugs across cellular barriers. Multiple nanotherapeutics have been approved for clinical treatment, and more products are being evaluated in preclinical and clinical trials. However, many biological barriers hinder the medical application of nanocarriers. There are two main classes of barriers that need to be overcome by drug nanocarriers: extracellular and intracellular barriers, both of which may capture and/or destroy therapeutics before they reach their target site. This Account discusses major biological barriers that are confronted by nanotherapeutics, following their systemic administration, focusing on cellular entry and endosomal escape of gene delivery vectors. The use of pH-responsive materials to overcome the endosomal barrier is addressed. Historically, cell biologists have studied the interaction between cells and pathogens in order to unveil the mechanisms of endocytosis and cell signaling. Meanwhile, it is becoming clear that cells may respond in similar ways to artificial drug delivery systems and, consequently, that knowledge on the cellular response against both pathogens and nanoparticulate systems will aid in the design of improved nanomedicine. A close collaboration between bioengineers and cell biologists will promote this development. At the same time, we have come to realize that tools that we use to study fundamental cellular processes, including metabolic inhibitors of endocytosis and overexpression/downregulation of proteins, may cause changes in cellular physiology. This calls for the implementation of refined methods to study nanocarrier-cell interactions, as is discussed in this Account. Finally, recent papers on the dynamics of cargo release from endosomes by means of live cell imaging have significantly advanced our understanding of the transfection process. They have initiated discussion (among others) on the limited number of endosomal escape events in transfection, and on the endosomal stage at which genetic cargo is most efficiently released. Advancements in imaging techniques, including super-resolution microscopy, in concert with techniques to label endogenous proteins and/or label proteins with synthetic fluorophores, will contribute to a more detailed understanding of nanocarrier-cell dynamics, which is imperative for the development of safe and efficient nanomedicine.
Collapse
Affiliation(s)
- Isabelle
M. S. Degors
- Department
of Biomedical Engineering, University Medical
Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Cuifeng Wang
- School
of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of
New Drug Design and Evaluation, Sun Yat-sen
University, Guangzhou 510006, P. R. China
| | - Zia Ur Rehman
- Department
of Biotechnology and Genetic Engineering, Kohat University of Sciences and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Inge S. Zuhorn
- Department
of Biomedical Engineering, University Medical
Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Singh P, Mukherjee D, Singha S, Sharma VK, Althagafi II, Ahmed SA, Mukhopadhyay R, Das R, Pal SK. Probing relaxation dynamics of a cationic lipid based non-viral carrier: a time-resolved fluorescence study. RSC Adv 2019; 9:35549-35558. [PMID: 35528090 PMCID: PMC9074709 DOI: 10.1039/c9ra06824d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
Lipid vesicles composed of cationic dioctadecyldimethylammonium bromide (DODAB) and neutral 1-monooleoyl-rac-glycerol (MO) are promising non-viral carriers of nucleic acids for delivery into cells. Among them, higher cell transfection efficiency was displayed by DODAB-rich vesicles than those enriched with MO. Structural relaxation of these mixed lipid vesicles plays a key role in their cell transfection efficiency because structural organization of the DODAB-rich vesicles are different from that of the MO-rich vesicles. Polarization-gated anisotropy in conjunction with picosecond resolved emission transients of a novel fluorophore 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN) has been employed to probe relaxation dynamics in pure DODAB vesicles, and in mixed vesicles of DODAB with varying content of MO. Both orientational relaxation of ACYMAN and relaxation dynamics of its local environment are retarded significantly in mixed lipid vesicles with increasing MO content, from a mole fraction (χMO) of 0.2 to that of 0.8 which is consistent with increased rigidity of the MO-rich (χMO > 0.5) vesicles relative to the DODAB-rich (χMO < 0.5) vesicles. Therefore, higher structural rigidity of the MO-rich vesicles (χMO > 0.5) gives rise to their lower cell transfection efficiency than the more flexible DODAB-rich (χMO < 0.5) vesicles as observed in previous in vivo studies (Biochim. Biophys. Acta, Biomembr., 2014, 1838, 2555–2567). Lipid vesicles composed of cationic dioctadecyldimethylammonium bromide (DODAB) and neutral 1-monooleoyl-rac-glycerol (MO) are promising non-viral carriers of nucleic acids for delivery into cells.![]()
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemical, Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Subhankar Singha
- Centre of Health Science &Technology
- JIS Institute of Advanced Studies
- Kolkata
- India
| | - V. K. Sharma
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Ismail I. Althagafi
- Chemistry Department
- Faculty of Applied Sciences
- Umm Al-Qura University
- 21955 Makkah Al-Mokarramma
- Saudi Arabia
| | - Saleh A. Ahmed
- Chemistry Department
- Faculty of Applied Sciences
- Umm Al-Qura University
- 21955 Makkah Al-Mokarramma
- Saudi Arabia
| | - R. Mukhopadhyay
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Ranjan Das
- Department of Chemistry
- West Bengal State University
- Kolkata 700126
- India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
18
|
Dittrich M, Brauer C, Funari SS, Dobner B, Brezesinski G, Wölk C. Interactions of Cationic Lipids with DNA: A Structural Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14858-14868. [PMID: 30165742 DOI: 10.1021/acs.langmuir.8b01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colloidal nucleic acid carrier systems based on cationic lipids are a promising pharmaceutical tool in the implementation of gene therapeutic strategies. This study demonstrates the complex behavior of DNA at the lipid-solvent interface facilitating structural changes of the lyotropic liquid-crystalline phases. For this study, the structural properties of six malonic acid based cationic lipids were determined using small- and wide-angle X-ray scattering (SAXS and WAXS) as well as differential scanning calorimetry (DSC). Selected lipids (lipid 3 and lipid 6) with high nucleic acid transfer activity have been investigated in detail because of the strong influence of the zwitterionic helper lipid 1,2-di(9 Z-octadecenoyl)- sn-glycero-3-phosphoethanolamine (DOPE) on the structural properties as well as of the complex formation of lipid-DNA complexes (lipoplexes). In the case of lipid 3, DNA stabilizes a metastable cubic mesophase with Im3 m symmetry and an Im3 m Qαc lipoplex is formed, which is rarely described for DNA lipoplexes in literature. In the case of lipid 6, a cubic mesophase with Im3 m symmetry turns into a fluid lamellar phase while mixing with DOPE and complexing DNA.
Collapse
Affiliation(s)
- Matthias Dittrich
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Chris Brauer
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Sergio S Funari
- Photon Science - DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Bodo Dobner
- Institute of Pharmacy, Research Group Biochemical Pharmacy , Martin-Luther-University , Wolfgang-Langenbeck-Strasse 4 , 06120 Halle (Saale) , Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Christian Wölk
- Institute of Pharmacy, Research Group Biochemical Pharmacy , Martin-Luther-University , Wolfgang-Langenbeck-Strasse 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
19
|
Li X, Aghaamoo M, Liu S, Lee DH, Lee AP. Lipoplex-Mediated Single-Cell Transfection via Droplet Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802055. [PMID: 30199137 DOI: 10.1002/smll.201802055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Indexed: 06/08/2023]
Abstract
While lipoplex (cationic lipid-nucleic acid complex)-mediated intracellular delivery is widely adopted in mammalian cell transfection, its transfection efficiency for suspension cells, e.g., lymphatic and hematopoietic cells, is reported at only ≈5% or even lower. Here, efficient and consistent lipoplex-mediated transfection is demonstrated for hard-to-transfect suspension cells via a single-cell, droplet-microfluidics approach. In these microdroplets, monodisperse lipoplexes for effective gene delivery are generated via chaotic mixing induced by the serpentine microchannel and co-confined with single cells. Moreover, the cell membrane permeability increases due to the shear stress exerted on the single cells when they pass through the droplet pinch-off junction. The transfection efficiency, examined by the delivery of the pcDNA3-EGFP plasmid, improves from ≈5% to ≈50% for all three tested suspension cell lines, i.e., K562, THP-1, Jurkat, and with significantly reduced cell-to-cell variation, compared to the bulk method. Efficient targeted knockout of the TP53BP1 gene for K562 cells via the CRISPR (clustered regularly interspaced short palindromic repeats)-CAS9 (CRISPR-associated nuclease 9) mechanism is also achieved using this platform. Lipoplex-mediated single-cell transfection via droplet microfluidics is expected to have broad applications in gene therapy and regenerative medicine by providing high transfection efficiency and low cell-to-cell variation for hard-to-transfect suspension cells.
Collapse
Affiliation(s)
- Xuan Li
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mohammad Aghaamoo
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shiyue Liu
- Department of Biochemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Do-Hyun Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
20
|
Bono N, Pennetta C, Sganappa A, Giupponi E, Sansone F, Volonterio A, Candiani G. Design and synthesis of biologically active cationic amphiphiles built on the calix[4]arene scaffold. Int J Pharm 2018; 549:436-445. [DOI: 10.1016/j.ijpharm.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
|
21
|
Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharm 2018; 535:473-479. [DOI: 10.1016/j.ijpharm.2017.11.045] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
22
|
Rak M, Ochałek A, Bielecka E, Latasiewicz J, Gawarecka K, Sroka J, Czyż J, Piwowarczyk K, Masnyk M, Chmielewski M, Chojnacki T, Swiezewska E, Madeja Z. Efficient and non-toxic gene delivery by anionic lipoplexes based on polyprenyl ammonium salts and their effects on cell physiology. J Gene Med 2017; 18:331-342. [PMID: 27706881 DOI: 10.1002/jgm.2930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One of the major challenges limiting the development of gene therapy is an absence of efficient and safe gene carriers. Among the nonviral gene delivery methods, lipofection is considered as one of the most promising. In the present study, a set of cationic polyprenyl derivatives [trimethylpolyprenylammonium iodides (PTAI)] with different lengths of polyprenyl chains (from 7, 8 and 11 to 15 isoprene units) was suggested as a component of efficient DNA vehicles. METHODS Optimization studies were conducted for PTAI in combination with co-lipid dioleoylphosphatidylethanolamine on DU145 human prostate cancer cells using: size and zeta potential measurements, confocal microscopy, the fluorescein diacetate/ethidium bromide test, cell counting, time-lapse monitoring of cell movement, gap junctional intercellular coupling analysis, antimicrobial activity assay and a red blood cell hemolysis test. RESULTS The results obtained show that the lipofecting activity of PTAI allows effective transfection of plasmid DNA complexed in negatively-charged lipoplexes of 200-500 nm size into cells without significant side effects on cell physiology (viability, proliferation, morphology, migration and gap junctional intercellular coupling). Moreover, PTAI-based vehicles exhibit a potent bactericidal activity against Staphylococcus aureus and Escherichia coli. The developed anionic lipoplexes are safe towards human red blood cell membranes, which are not disrupted in their presence. CONCLUSIONS The developed carriers constitute a group of promising lipofecting agents of a new type that can be utilized as effective lipofecting agents in vitro and they are also an encouraging basis for in vivo applications.
Collapse
Affiliation(s)
- Monika Rak
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Anna Ochałek
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Ewa Bielecka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Poland
| | - Joanna Latasiewicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biophysics, Poland
| | | | - Jolanta Sroka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Jarosław Czyż
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Katarzyna Piwowarczyk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Marek Masnyk
- Institute of Organic Chemistry PAS, Warsaw, Poland
| | | | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Zbigniew Madeja
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| |
Collapse
|
23
|
Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids Surf B Biointerfaces 2017; 158:93-101. [DOI: 10.1016/j.colsurfb.2017.06.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
|
24
|
Wölk C, Janich C, Bakowsky U, Langner A, Brezesinski G. Malonic acid based cationic lipids - The way to highly efficient DNA-carriers. Adv Colloid Interface Sci 2017; 248:20-34. [PMID: 28842122 DOI: 10.1016/j.cis.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 01/21/2023]
Abstract
Cationic lipids play an important role as non-viral nucleic acid carriers in gene therapy since 3 decades. This review will introduce malonic acid derived cationic lipids as nucleic acid carriers which appeared in the literature dealing with lipofection 10years ago. The family of amino-functionalized branched fatty acid amides will be presented as well as different generations of malonic acid diamides. Both groups of cationic lipids yield lipid mixtures with highly efficient nucleic acid transfer activities in in-vitro cell culture models. The DNA transfer screening of lipid libraries with directed structural variations in the lipophilic as well as in the hydrophilic part of the amphiphiles yields structure/activity relationships. Furthermore, the detailed characterizations of selected lipid composites at the air/water interface and in bulk systems are summarized with regard to transfection determining physical-chemical properties. The findings are also discussed in comparison to results obtained with other families of cationic lipids.
Collapse
Affiliation(s)
- Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany.
| | - Christopher Janich
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Andreas Langner
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
25
|
Sharma M, El-Sayed NS, Do H, Parang K, Tiwari RK, Aliabadi HM. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates. Sci Rep 2017; 7:6093. [PMID: 28733622 PMCID: PMC5522445 DOI: 10.1038/s41598-017-06381-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-targeted carriers provide efficient delivery of chemotherapeutic agents to tumor tissue. CGKRK is one of the well-known tumor targeting peptides with significant specificity for angiogenic blood vessels and tumor cells. Here, we designed fatty acyl conjugated CGKRK peptides, based on the hypothesis that hydrophobically-modified CGKRK peptide could enhance cellular permeation and delivery of siRNA targeted to tumor cells for effective silencing of selected proteins. We synthesized six fatty acyl-peptide conjugates, using a diverse chain of saturated and unsaturated fatty acids to study the efficiency of this approach. At peptide:siRNA weight/weight ratio of 10:1 (N/P ≈ 13.6), almost all the peptides showed complete binding with siRNA, and at a w/w ratio of 20:1 (N/P ≈ 27.3), complete protection of siRNA from early enzymatic degradation was observed. Conjugated peptides and peptide/siRNA complexes did not show significant cytotoxicity in selected cell lines. The oleic acid-conjugated peptide showed the highest efficiency in siRNA uptake and silencing of kinesin spindle protein at peptide:siRNA w/w ratio of 80:1 (N/P ≈ 109). The siRNA internalization into non-tumorigenic kidney cells was negligible with all fatty acyl-peptide conjugates. These results indicate that conjugation of fatty acids to CGKRK could create an efficient delivery system for siRNA silencing specifically in tumor cells.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
- Cellulose and Paper Department, National Research Center, Dokki, 12622, Cairo, Egypt
| | - Hung Do
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| |
Collapse
|
26
|
Luchese AM, Di Vitta C, Marzorati L, Yamaoka P, Funari SS. Lipid Matrices Destabilization Induced by Some Newly Synthesized Pyridinium Salts. ChemistrySelect 2017. [DOI: 10.1002/slct.201601588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Angélica M. Luchese
- Departamento de Ciências, Exatas, Área de Química; Universidade Estadual de Feira de Santana; Feira de Santana 44031 460 - Bahia Brazil
| | - Cláudio Di Vitta
- Instituto de Química; Universidade de São Paulo; Av. Lineu Prestes 748 05508 900 - São Paulo Brazil
| | - Liliana Marzorati
- Instituto de Química; Universidade de São Paulo; Av. Lineu Prestes 748 05508 900 - São Paulo Brazil
| | - Patrícia Yamaoka
- Instituto de Química; Universidade de São Paulo; Av. Lineu Prestes 748 05508 900 - São Paulo Brazil
| | | |
Collapse
|
27
|
Luque-Caballero G, Maldonado-Valderrama J, Quesada-Pérez M, Martín-Molina A. Atomic force microscopy as a tool to study the adsorption of DNA onto lipid interfaces. Microsc Res Tech 2016; 80:11-17. [PMID: 27014963 DOI: 10.1002/jemt.22654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 11/08/2022]
Abstract
The Atomic Force Microscopy (AFM) technique appears as a central tool for the characterization of DNA adsorption onto lipid interfaces. Regardless of the huge number of surveys devoted to this issue, there are still fascinating phenomena in this field that have not been explored in detail by AFM. For instance, adsorption of DNA onto like-charged lipid surfaces mediated by cations is still not fully understood even though it is gaining popularity nowadays in gene therapy and nanotechnology. Studies related to the complexation of DNA with anionic lipids as a non-viral gene delivery vehicle as well as the formation of self-assembled nanoscale DNA constructs (DNA origami) are two of the most attractive systems. Unfortunately, molecular mechanisms underlying the adsorption of DNA onto anionic lipid interfaces remain unclear so far. In view of that, AFM becomes an appropriate technique to provide valuable information to understand the adsorption of DNA to anionic lipid surfaces. As a second part of this review we provide an illustrative example of application of the AFM technique to probe the DNA adsorption onto a model lipid monolayer negatively charged. Microsc. Res. Tech. 80:11-17, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Germán Luque-Caballero
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, Granada, 18071, Spain
| | - Julia Maldonado-Valderrama
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, Granada, 18071, Spain
| | - Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, Jaén, 23700, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, Granada, 18071, Spain
| |
Collapse
|
28
|
Hersey JS, LaManna CM, Lusic H, Grinstaff MW. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids. Chem Phys Lipids 2016; 196:52-60. [PMID: 26896839 DOI: 10.1016/j.chemphyslip.2016.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release.
Collapse
Affiliation(s)
- Joseph S Hersey
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA
| | - Caroline M LaManna
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA
| | - Hrvoje Lusic
- Boston University, Chemistry Department, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA; Boston University, Chemistry Department, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation. Bioorg Med Chem 2015; 23:6364-78. [PMID: 26346671 DOI: 10.1016/j.bmc.2015.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation.
Collapse
|
30
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
31
|
|
32
|
Huang Z, Liu YH, Zhang YM, Zhang J, Liu Q, Yu XQ. Cyclen-based cationic lipids containing a pH-sensitive moiety as gene delivery vectors. Org Biomol Chem 2015; 13:620-30. [DOI: 10.1039/c4ob01856g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Imidazole-functionalized cationic lipids with a cyclen headgroup were synthesized, and the structure–activity relationship in gene delivery mediated by these lipids was discussed.
Collapse
Affiliation(s)
- Zheng Huang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qiang Liu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
33
|
Kowalski PS, Kuninty PR, Bijlsma KT, Stuart MCA, Leus NGJ, Ruiters MHJ, Molema G, Kamps JAAM. SAINT-liposome-polycation particles, a new carrier for improved delivery of siRNAs to inflamed endothelial cells. Eur J Pharm Biopharm 2014; 89:40-7. [PMID: 25460585 DOI: 10.1016/j.ejpb.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
Interference with acute and chronic inflammatory processes by means of delivery of siRNAs into microvascular endothelial cells at a site of inflammation demands specific, non-toxic and effective siRNA delivery system. In the current work we describe the design and characterization of siRNA carriers based on cationic pyridinium-derived lipid 1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride) (SAINT-C18) and the transfection enhancer protamine, complexed with siRNA/carrier DNA or siRNA only. These carriers, called SAINT-liposome-polycation-DNA (S-LPD) and SAINT-liposome-polycation (S-LP), have a high efficiency of siRNA encapsulation, low cellular toxicity, and superior efficacy of gene downregulation in endothelial cells in vitro as compared to DOTAP-LPD. Incorporation of 10 mol% PEG and anti-E-selectin antibody in these formulations resulted in selective siRNA delivery into activated endothelial cells. Furthermore, we showed that the physicochemical characteristics of S-LPD and S-LP, including size-stability and maintenance of the siRNA integrity in the presence of serum at 37 °C, comply with requirements for in vivo application.
Collapse
Affiliation(s)
- Piotr S Kowalski
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands
| | - Praneeth R Kuninty
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands
| | - Klaas T Bijlsma
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands
| | - Marc C A Stuart
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, The Netherlands; Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Niek G J Leus
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands
| | - Marcel H J Ruiters
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands; Synvolux Therapeutics, Groningen, The Netherlands
| | - Grietje Molema
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands
| | - Jan A A M Kamps
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands.
| |
Collapse
|
34
|
Borrajo E, Vidal A, Alonso MJ, Garcia‐Fuentes M. How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? POLYMERS IN REGENERATIVE MEDICINE 2014:285-336. [DOI: 10.1002/9781118356692.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
35
|
Koloskova OO, Budanova UA, Sumina AM, Sarychev GA, Sebyakin YL. Ornithine and lysine based lipotripeptides: synthesis and comparison of transfection efficiency. MENDELEEV COMMUNICATIONS 2014. [DOI: 10.1016/j.mencom.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Damen M, Cristóbal-Lecina E, Sanmartí GC, van Dongen SFM, García Rodríguez CL, Dolbnya IP, Nolte RJM, Feiters MC. Structure-delivery relationships of lysine-based gemini surfactants and their lipoplexes. SOFT MATTER 2014; 10:5702-5714. [PMID: 24969740 DOI: 10.1039/c4sm00881b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The synthesis and properties of gemini surfactants of the type (R(1)(CO)-Lys(H)-NH)2(CH2)n are reported. For a spacer length of n = 6, the hydrophobic acyl tail was varied in length (R(1) = C8, C10, C12, C14, C16, and C18) and, for R(1) = C18, the degree of unsaturation. For R(1)(CO) = oleoyl (C18:1 Z) the spacer length (n = 2-8) and the stereochemistry of the lysine building block were varied; a 'half-gemini' derivative with a single oleoyl tail and head group was also prepared. The potential of the gemini surfactants to transfer polynucleotides across a cell membrane was investigated by transfection of HeLa cells with beta-galactosidase, both in the presence and absence of the helper lipid DOPE. Oleoyl was found to be by far the best hydrophobic tail for this biological activity, whereas the effect of the lysine stereochemistry was less pronounced. The effect of an optimum spacer length (n = 6) was observed only in the absence of helper lipid. The most active surfactant, i.e. the one with oleoyl chains and n = 6, formed liposomes with sizes in the range of 60-350 nm, and its lipoplex underwent a transition from a lamellar to a hexagonal morphology upon lowering the pH from 7 to 3.
Collapse
Affiliation(s)
- Mark Damen
- Radboud University Nijmegen, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cardoso AM, Morais CM, Silva SG, Marques EF, de Lima MCP, Jurado MAS. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions. Int J Pharm 2014; 474:57-69. [PMID: 25111434 DOI: 10.1016/j.ijpharm.2014.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 01/02/2023]
Abstract
Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Catarina M Morais
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra G Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - Eduardo F Marques
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria Amália S Jurado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
38
|
Le Gall T, Barbeau J, Barrier S, Berchel M, Lemiègre L, Jeftić J, Meriadec C, Artzner F, Gill DR, Hyde SC, Férec C, Lehn P, Jaffrès PA, Benvegnu T, Montier T. Effects of a Novel Archaeal Tetraether-Based Colipid on the In Vivo Gene Transfer Activity of Two Cationic Amphiphiles. Mol Pharm 2014; 11:2973-88. [DOI: 10.1021/mp4006276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tony Le Gall
- Unité
INSERM 1078, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, 46 rue Félix Le Dantec, CS51819, 29218 Brest Cedex 02, France
- Plateforme
SynNanoVect, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
| | - Julie Barbeau
- Ecole
Nationale Supérieure de Chimie de Rennes, Université Européenne de Bretagne, CNRS,
UMR 6226, 11 allée de Beaulieu,
CS 50837, 35708 Rennes Cedex 7, France
| | - Sylvain Barrier
- Ecole
Nationale Supérieure de Chimie de Rennes, Université Européenne de Bretagne, CNRS,
UMR 6226, 11 allée de Beaulieu,
CS 50837, 35708 Rennes Cedex 7, France
| | - Mathieu Berchel
- CEMCA,
CNRS UMR 6521, SFR ScInBioS, Université Européenne de Bretagne, Université de Brest, Brest, France
| | - Loïc Lemiègre
- Plateforme
SynNanoVect, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
- Ecole
Nationale Supérieure de Chimie de Rennes, Université Européenne de Bretagne, CNRS,
UMR 6226, 11 allée de Beaulieu,
CS 50837, 35708 Rennes Cedex 7, France
| | - Jelena Jeftić
- Plateforme
SynNanoVect, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
- Ecole
Nationale Supérieure de Chimie de Rennes, Université Européenne de Bretagne, CNRS,
UMR 6226, 11 allée de Beaulieu,
CS 50837, 35708 Rennes Cedex 7, France
| | - Cristelle Meriadec
- Institut
de Physique de Rennes, Université Européenne de Bretagne, Université de Rennes 1, UMR-CNRS 6251, Campus Beaulieu Bat.
11A, 35042 Rennes
Cedex, France
| | - Franck Artzner
- Institut
de Physique de Rennes, Université Européenne de Bretagne, Université de Rennes 1, UMR-CNRS 6251, Campus Beaulieu Bat.
11A, 35042 Rennes
Cedex, France
| | - Deborah R. Gill
- Gene Medicine
Group, Nuffield Division of Clinical Laboratory Sciences, University of Oxford,
John Radcliffe Hospital, Oxford, United Kingdom
| | - Stephen C. Hyde
- Gene Medicine
Group, Nuffield Division of Clinical Laboratory Sciences, University of Oxford,
John Radcliffe Hospital, Oxford, United Kingdom
| | - Claude Férec
- Unité
INSERM 1078, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, 46 rue Félix Le Dantec, CS51819, 29218 Brest Cedex 02, France
| | - Pierre Lehn
- Unité
INSERM 1078, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, 46 rue Félix Le Dantec, CS51819, 29218 Brest Cedex 02, France
| | - Paul-Alain Jaffrès
- Plateforme
SynNanoVect, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
- CEMCA,
CNRS UMR 6521, SFR ScInBioS, Université Européenne de Bretagne, Université de Brest, Brest, France
| | - Thierry Benvegnu
- Plateforme
SynNanoVect, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
- Ecole
Nationale Supérieure de Chimie de Rennes, Université Européenne de Bretagne, CNRS,
UMR 6226, 11 allée de Beaulieu,
CS 50837, 35708 Rennes Cedex 7, France
| | - Tristan Montier
- Unité
INSERM 1078, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, 46 rue Félix Le Dantec, CS51819, 29218 Brest Cedex 02, France
- Plateforme
SynNanoVect, SFR ScInBioS; Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
| |
Collapse
|
39
|
Silva JPN, Oliveira IMSC, Oliveira ACN, Lúcio M, Gomes AC, Coutinho PJG, Oliveira MECDR. Structural dynamics and physicochemical properties of pDNA/DODAB:MO lipoplexes: effect of pH and anionic lipids in inverted non-lamellar phases versus lamellar phases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2555-67. [PMID: 24976292 DOI: 10.1016/j.bbamem.2014.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022]
Abstract
Dioctadecyldimethylammonium bromide (DODAB):Monoolein (MO) lipoplexes have mainly been studied within the range of high molar ratios of DODAB, with noticeable transfection efficiencies in the Human Embryonic Kidney (HEK, a.k.a. 293T) cell line. In this work, we intend to study the effect of high MO content on the structure and physicochemical properties of pDNA/DODAB:MO lipoplexes to achieve some correlation with their transfection efficiency. Static/Dynamic Light Scattering and Cryo-TEM imaging were used to characterize the size/morphology of DNA/DODAB:MO lipoplexes at different DODAB:MO contents (2:1, 1:1, 1:2) and charge ratios (CRs) (+/-). Nile Red fluorescence emission was performed to detect changes in microviscosity, hydration and polarity of DNA/DODAB:MO systems. Lipoplexes stability at physiological pH values and in the presence of anionic lipids was evaluated by Förster Resonance Energy Transfer (FRET). Physicochemical/structural data were complemented with transfection studies in HEK cells using the β-galactosidase reporter gene activity assay. This work reports the coexistence of multilamellar and non-lamellar inverted phases in MO-richer lipoplexes (DODAB:MO 1:2 and 1:4), leading to transfection efficiencies comparable to those of multilamellar (DODAB-richer) lipoplexes, but at higher charge ratios [CR (+/-)=6.0] and without dose-effect response. These results may be related to the structural changes of lipoplexes promoted by high MO content.
Collapse
Affiliation(s)
- J P Neves Silva
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - I M S C Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A C N Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M Lúcio
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - P J G Coutinho
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M E C D Real Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
40
|
Wu FG, Wu RG, Sun HY, Zheng YZ, Yu ZW. Demixing and crystallization of DODAB in DPPC-DODAB binary mixtures. Phys Chem Chem Phys 2014; 16:15307-18. [PMID: 24943895 DOI: 10.1039/c4cp01707b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The crystallization mechanism of one lipid component within multicomponent lipid mixtures remains unclear. To shed light on this issue, we studied the demixing and crystallization behaviors of a binary lipid system using neutral dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DODAB) as model molecules. The results indicate that when DODAB is no more than equimolar (e.g., DPPC/DODAB = 2/1 and 1/1), DPPC is miscible with DODAB and hinders the crystallization of DODAB, and the samples undergo reversible gel-fluid phase transitions upon heating and cooling. However, when DODAB is dominant in the mixture (DPPC/DODAB = 1/2), cooling of the mixed fluid phase results in the formation of a DODAB-rich gel domain and a DPPC-DODAB mixed gel domain. Such phase-separated mixed gels can undergo further demixing and crystallization, producing a DODAB-rich crystalline domain and a DPPC-rich tilted gel domain upon prolonged (or plus low-temperature) incubation. Besides, evidence has been given that the crystallized DODAB-rich domain remains in the same lipid bilayer as the DPPC-rich domain. All the three binary lipid mixtures can hold large amounts of water in the lipid interlamellar regions, allowing the incorporation of a large number of water-soluble substances such as DNA or proteins, which can be used for the fabrication of functional biofilms and biomaterials. Influences of water content and salt concentration on the phase structures (e.g., repeat distances) of the binary mixtures have also been studied.
Collapse
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Silva JPN, Oliveira ACN, Lúcio M, Gomes AC, Coutinho PJG, Oliveira MECDR. Tunable pDNA/DODAB:MO lipoplexes: the effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency. Colloids Surf B Biointerfaces 2014; 121:371-9. [PMID: 25023903 DOI: 10.1016/j.colsurfb.2014.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/20/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
Dioctadecyldimethylammonium bromide (DODAB):1-monooleoyl-rac-glycerol (MO) cationic liposomes were reported as a promising alternative to common transfection agents, showing superior effectiveness on the transfection of the 293T mammalian cell line with pSV-β-gal plasmid DNA. The study of DODAB:MO aggregates in the absence of DNA has indicated that their morphology depends on the balance between DODAB's tendency to form bilayer structures and MO's propensity to form inverted non-lamellar structures. Other parameters, such as the temperature have proved to be crucial in the definition of the morphology of the developed nanocarrier. Therefore, in this work, a step forward to the current gene carrier system will be given by studying the effect of the tunable parameters (incubation temperature and MO content) on the structure of pDNA:DODAB:MO lipoplexes. More importantly, the implications that these tunable parameters could have in terms of lipoplex transfection efficiency will be investigated. Dynamic light scattering (DLS), zeta (ζ) potential, cryo-transmission electron microscopy (cryo-TEM) and ethidium bromide (EtBr) exclusion were used to assess the formation, structure and destabilization of pDNA:DODAB:MO lipoplexes at DODAB molar fractions of (1:1) and above equimolarity (2:1, 4:1) prepared at incubation temperatures from 25 to 50°C. Experimental results indicate that pDNA:DODAB:MO's structure is sensitive to the lipoplex incubation temperature, resulting in particles of distinct size, superficial charge and structure. These variations are also visible on the complexation dynamics of pDNA, and subsequent release upon incubation with the model proteoglycan heparin (HEP), at 25 and 50°C. Increase in temperature leads to re-organization of DODAB and MO molecules within the liposomal formulation, causing a positive charge re-localization in the lipoplex surface, which not only alters its structure but also its transfection efficiency. Altogether, these results confirm that in the DODAB:MO carriers, an increase in the incubation temperature has a similar effect on aggregate morphology as the observed with an increase in MO content. This conclusion is extended to the pDNA:DODAB:MO lipoplexes morphology and subsequent transfection efficiency defining new strategies in lipoplexes preparation that could be used to modulate the properties of other lipid formulations for nonviral gene delivery applications.
Collapse
Affiliation(s)
- João P Neves Silva
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana C N Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Paulo J G Coutinho
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M Elisabete C D Real Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
42
|
TACN-based cationic lipids with amino acid backbone and double tails: Materials for non-viral gene delivery. Bioorg Med Chem Lett 2014; 24:1771-5. [DOI: 10.1016/j.bmcl.2014.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
|
43
|
Zhang Y, Arrington L, Boardman D, Davis J, Xu Y, DiFelice K, Stirdivant S, Wang W, Budzik B, Bawiec J, Deng J, Beutner G, Seifried D, Stanton M, Gindy M, Leone A. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery. J Control Release 2013; 174:7-14. [PMID: 24240015 DOI: 10.1016/j.jconrel.2013.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/13/2013] [Accepted: 11/04/2013] [Indexed: 12/12/2022]
Abstract
In order to rapidly screen and select lead candidates for in vivo evaluation of lipid nanoparticles (LNPs) for systemic small interfering RNA (siRNA) delivery, an in vitro assay amenable to high-throughput screening (HTS) is developed. The strategy is to mimic the in vivo experience of LNPs after systemic administration, such as interactions with serum components, exposure to endosomal pH environments, and interactions with endosomal membrane lipids. It is postulated that the amount of siRNA released from LNPs after going through these treatments can be used as a screening tool to rank order the effectiveness of siRNA delivery by lipid nanoparticles in vivo. LNPs were incubated with 50% serum from different species (i.e. mouse, rat, or rhesus) at 37°C. The resulting samples were then reacted with anionic, endosomal-mimicking lipids at different pHs. The amount of siRNA released from LNPs was determined using spectrophotometry employing the fluorescent indicator SYBR Gold. Our results indicated that the amount of siRNA liberated was highly dependent upon the species of serum used and the pH to which it was exposed. LNPs treated with mouse serum showed higher levels of siRNA release, as did those subjected to endosomal pH (6.0), compared to physiological pH. Most interestingly, a good correlation between the amount of siRNA released and the in vivo efficacy was observed. In conclusion, an in vitro siRNA release assay was developed to screen and rank order LNPs for in vivo evaluation.
Collapse
Affiliation(s)
- Ye Zhang
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA.
| | - Leticia Arrington
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - David Boardman
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Jared Davis
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Yan Xu
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Katie DiFelice
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Steve Stirdivant
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Weimin Wang
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Brian Budzik
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Jack Bawiec
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - James Deng
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Greg Beutner
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Darla Seifried
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Matthew Stanton
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Marian Gindy
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| | - Anthony Leone
- Department of RNAi Therapeutics, Merck Research Laboratories, 770 Sumneytown Pike, West Point, 19486, USA
| |
Collapse
|
44
|
How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release 2013; 166:46-56. [DOI: 10.1016/j.jconrel.2012.12.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
|
45
|
Wang M, Sun S, Alberti KA, Xu Q. A combinatorial library of unsaturated lipidoids for efficient intracellular gene delivery. ACS Synth Biol 2012; 1:403-7. [PMID: 23651337 DOI: 10.1021/sb300023h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A combinatorial library of unsaturated lipidoids was synthesized through the Michael addition of amines to oleyl acrylamide. Their capability in facilitating in vitro gene delivery was evaluated by transfecting HeLa cells with EGFP-encoding plasmid DNA and mRNA. The preliminary screening results indicated that lipidoids with unsaturated oleyl tails are superior transfection agents compared to saturated lipidoids with n-octadecyl tails under the same conditions. The different transfection abilities of the unsaturated and saturated lipidioids were ascribed to the large, tightly packed lipoplexes of saturated lipidoids. The potential applications of the library of lipidoids were further expanded by looking at their ability to transfect fibroblasts as well as different cancerous cell lines.
Collapse
Affiliation(s)
- Ming Wang
- Department of Biomedical Engineering and ‡Department of Chemical and Biological
Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Shuo Sun
- Department of Biomedical Engineering and ‡Department of Chemical and Biological
Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kyle A. Alberti
- Department of Biomedical Engineering and ‡Department of Chemical and Biological
Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering and ‡Department of Chemical and Biological
Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
46
|
Kapoor M, Burgess DJ. Physicochemical characterization of anionic lipid-based ternary siRNA complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1603-12. [DOI: 10.1016/j.bbamem.2012.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/30/2023]
|
47
|
Goldring WP, Jubeli E, Downs RA, Johnston AJ, Abdul Khalique N, Raju L, Wafadari D, Pungente MD. Novel macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation. Bioorg Med Chem Lett 2012; 22:4686-92. [DOI: 10.1016/j.bmcl.2012.05.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
|
48
|
Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:815-29. [DOI: 10.1007/s00249-012-0830-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 01/14/2023]
|
49
|
Montis C, Milani S, Berti D, Baglioni P. Complexes of nucleolipid liposomes with single-stranded and double-stranded nucleic acids. J Colloid Interface Sci 2012; 373:57-68. [DOI: 10.1016/j.jcis.2011.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 01/10/2023]
|
50
|
Gindy ME, Leone AM, Cunningham JJ. Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics. Expert Opin Drug Deliv 2012; 9:171-82. [DOI: 10.1517/17425247.2012.642363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|