1
|
Sule K, Anikovskiy M, Prenner EJ. Lipid Structure Determines the Differential Impact of Single Metal Additions and Binary Mixtures of Manganese, Calcium and Magnesium on Membrane Fluidity and Liposome Size. Int J Mol Sci 2023; 24:1066. [PMID: 36674581 PMCID: PMC9860990 DOI: 10.3390/ijms24021066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Unilamellar vesicles of the biologically relevant lipids phosphatidic acid (PA) and phosphatidylserine (PS) with fully saturated (DM-) or partly unsaturated (PO-) acyl side chains were exposed to Ca, Mn and Mg in single metal additions; in equimolar mixtures or by sequential additions of one metal at a time. Laurdan generalized polarization measured the membrane fluidity, while dynamic light scattering reported liposome size changes complemented by zeta potential. All metals induced membrane rigidity and increased liposome sizes across all systems. Mn had the strongest effect overall, but Mg was comparable for DMPS. Lipid side chain architecture was important as GP values for binary mixtures were higher than expected from the sum of values for single additions added to POPS but smaller for DMPS. Sequential additions were predominantly different for Ca:Mg mixtures. Mn induced the strongest increase of liposome size in saturated lipids whereas Ca effects dominated unsaturated matrices. Binary additions induced larger sizes than the sum of single additions for POPS, but much lower changes in DMPA. The order of addition was relevant for PS systems. Thus, lipid structure determines metal effects, but their impact is modulated by other ions. Thus, metal effects may differ with the local lipid architecture and metal concentrations within cells.
Collapse
Affiliation(s)
- Kevin Sule
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Max Anikovskiy
- Department of Chemistry, Nanoscience Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Elmar J. Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Sule K, Prenner EJ. Lipid headgroup and side chain architecture determine manganese-induced dose dependent membrane rigidification and liposome size increase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:205-223. [PMID: 35166865 DOI: 10.1007/s00249-022-01589-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/25/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Metal ion-membrane interactions have gained appreciable attention over the years resulting in increasing investigations into the mode of action of toxic and essential metals. More work has focused on essential ions like Ca or Mg and toxic metals like Cd and Pb, whereas this study investigates the effects of the abundant essential trace metal manganese with model lipid systems by screening zwitterionic and anionic glycerophospholipids. Despite its essentiality, deleterious impact towards cell survival is known under Mn stress. The fluorescent dyes Laurdan and diphenylhexatriene were used to assess changes in membrane fluidity both in the head group and hydrophobic core region of the membrane, respectively. Mn-rigidified membranes composed of the anionic phospholipids, phosphatidic acid, phosphatidylglycerol, cardiolipin, and phosphatidylserine. Strong binding resulted in large shifts of the phase transition temperature. The increase was in the order phosphatidylserine > phosphatidylglycerol > cardiolipin, and in all cases, saturated analogues > mono-unsaturated forms. Dynamic light scattering measurements revealed that Mn caused extensive aggregation of liposomes composed of saturated analogues of phosphatidic acid and phosphatidylserine, whilst the mono-unsaturated analogue had significant membrane swelling. Increased membrane rigidity may interfere with permeability of ions and small molecules, possibly disrupting cellular homeostasis. Moreover, liposome size changes could indicate fusion, which could also be detrimental to cellular transport. Overall, this study provided further understanding into the effects of Mn with biomembranes, whereby the altered membrane properties are consequential to the proper structural and signalling functions of membrane lipids.
Collapse
Affiliation(s)
- Kevin Sule
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
3
|
Cochleate drug delivery systems: An approach to their characterization. Int J Pharm 2021; 610:121225. [PMID: 34710542 DOI: 10.1016/j.ijpharm.2021.121225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
Cochleate systems formed from phospholipids have very useful properties as drug delivery systems with sustained release capabilities, which are able to improve bioavailability and efficacy, reduce toxicity and increase the shelf-life of encapsulated molecules. These nanometric or micrometric structures are usually obtained after interaction of negatively charged liposomes with a positively charged bridging agent. Many different methods are now available to prepare cochleates and there are also numerous techniques that can be used to characterize them, some of which can be easily applied while others require more sophisticated equipment or analysis. The present review describes the important features of this drug delivery system; including their structural properties and potential applications, as well as a brief account of methods for their preparation and an extensive description of the techniques used for their characterization. This information could guide formulators in their choice of methods of characterization that would be best suited to their needs in terms of time, precision and technological difficulty.
Collapse
|
4
|
Akutsu H. Structure and dynamics of phospholipids in membranes elucidated by combined use of NMR and vibrational spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183352. [DOI: 10.1016/j.bbamem.2020.183352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
5
|
Valentine ML, Cardenas AE, Elber R, Baiz CR. Calcium-Lipid Interactions Observed with Isotope-Edited Infrared Spectroscopy. Biophys J 2020; 118:2694-2702. [PMID: 32362342 DOI: 10.1016/j.bpj.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 01/17/2023] Open
Abstract
Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - Alfredo E Cardenas
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
6
|
Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J Chem Theory Comput 2019; 16:738-748. [PMID: 31762275 DOI: 10.1021/acs.jctc.9b00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylserine (PS) lipids are important signaling molecules and the most common negatively charged lipids in eukaryotic membranes. The signaling can be often regulated by calcium, but its interactions with PS headgroups are not fully understood. Classical molecular dynamics (MD) simulations can potentially give detailed description of lipid-ion interactions, but the results strongly depend on the used force field. Here, we apply the electronic continuum correction (ECC) to the Amber Lipid17 parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipid to improve its interactions with K+, Na+, and Ca2+ ions. The partial charges of the headgroup, glycerol backbone, and carbonyls of POPS, bearing a unit negative charge, were scaled with a factor of 0.75, derived for monovalent ions, and the Lennard-Jones σ parameters of the same segments were scaled with a factor of 0.89. The resulting ECC-POPS model gives more realistic interactions with Na+ and Ca2+ cations than the original Amber Lipid17 parameters when validated using headgroup order parameters and the "electrometer concept". In ECC-lipids simulations, populations of complexes of Ca2+ cations with more than two PS lipids are negligible, and interactions of Ca2+ cations with only carboxylate groups are twice more likely than with only phosphate groups, while interactions with carbonyls almost entirely involve other groups as well. Our results pave the way for more realistic MD simulations of biomolecular systems with anionic membranes, allowing signaling processes involving PS and Ca2+ to be elucidated.
Collapse
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Tiago M Ferreira
- NMR Group-Institut for Physics , Martin-Luther University Halle-Wittenberg , 06120 Halle , Germany
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic
| | - O H Samuli Ollila
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Institute of Biotechnology , University of Helsinki , Helsinki FI-00014 , Finland
| |
Collapse
|
7
|
Melcr J, Piquemal JP. Accurate Biomolecular Simulations Account for Electronic Polarization. Front Mol Biosci 2019; 6:143. [PMID: 31867342 PMCID: PMC6904368 DOI: 10.3389/fmolb.2019.00143] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022] Open
Abstract
In this perspective, we discuss where and how accounting for electronic many-body polarization affects the accuracy of classical molecular dynamics simulations of biomolecules. While the effects of electronic polarization are highly pronounced for molecules with an opposite total charge, they are also non-negligible for interactions with overall neutral molecules. For instance, neglecting these effects in important biomolecules like amino acids and phospholipids affects the structure of proteins and membranes having a large impact on interpreting experimental data as well as building coarse grained models. With the combined advances in theory, algorithms and computational power it is currently realistic to perform simulations with explicit polarizable dipoles on systems with relevant sizes and complexity. Alternatively, the effects of electronic polarization can also be included at zero additional computational cost compared to standard fixed-charge force fields using the electronic continuum correction, as was recently demonstrated for several classes of biomolecules.
Collapse
Affiliation(s)
- Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616 CNRS, Paris, France
- Institut Universitaire de France, Paris, France
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Varga K, Jiang ZJ, Gong LW. Phosphatidylserine is critical for vesicle fission during clathrin-mediated endocytosis. J Neurochem 2019; 152:48-60. [PMID: 31587282 DOI: 10.1111/jnc.14886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Collapse
Affiliation(s)
- Kelly Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of North Texas at Dallas, Dallas, Texas, USA
| | - Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Antila H, Buslaev P, Favela-Rosales F, Ferreira TM, Gushchin I, Javanainen M, Kav B, Madsen JJ, Melcr J, Miettinen MS, Määttä J, Nencini R, Ollila OHS, Piggot TJ. Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. J Phys Chem B 2019; 123:9066-9079. [DOI: 10.1021/acs.jpcb.9b06091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pavel Buslaev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Fernando Favela-Rosales
- Departamento de Investigación, Tecnológico Nacional de México, Campus Zacatecas Occidente, C. P. 99102 Zacatecas, México
| | - Tiago M. Ferreira
- NMR Group - Institute for Physics, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Batuhan Kav
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jesper J. Madsen
- Department of Chemistry, The University of Chicago, 60637 Chicago, Illinois, United States of America
- Department of Global Health, College of Public Health, University of South Florida, 33612 Tampa, Florida, United States of America
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jukka Määttä
- Department of Chemistry and Materials Science, Aalto University, 00076 Espoo, Finland
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas J. Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
10
|
Kunitomi Y, Hara ES, Okada M, Nagaoka N, Kuboki T, Nakano T, Kamioka H, Matsumoto T. Biomimetic mineralization using matrix vesicle nanofragments. J Biomed Mater Res A 2019; 107:1021-1030. [PMID: 30675987 PMCID: PMC6594056 DOI: 10.1002/jbm.a.36618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023]
Abstract
In vitro synthesis of bone tissue has been paid attention in recent years; however, current methods to fabricate bone tissue are still ineffective due to some remaining gaps in the understanding of real in vivo bone formation process, and application of the knowledge in bone synthesis. Therefore, the objectives of this study were first, to perform a systematic and ultrastructural investigation of the initial mineral formation during intramembranous ossification of mouse calvaria from a material scientists' viewpoint, and to develop novel mineralization methods based on the in vivo findings. First, the very initial mineral deposition was found to occur at embryonic day E14.0 in mouse calvaria. Analysis of the initial bone formation process showed that it involved the following distinct steps: collagen secretion, matrix vesicle (MV) release, MV mineralization, MV rupture, and collagen fiber mineralization. Next, we performed in vitro mineralization experiments using MVs and hydrogel scaffolds. Intact MVs embedded in collagen gel did not mineralize, whereas, interestingly, MV nanofragments obtained by ultrasonication could promote rapid mineralization. These results indicate that mechanically ruptured MV membrane can be a promising material for in vitro bone tissue synthesis. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1021-1030, 2019.
Collapse
Affiliation(s)
- Yosuke Kunitomi
- Department of BiomaterialsOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
- Department of OrthodonticsOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Emilio Satoshi Hara
- Department of BiomaterialsOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masahiro Okada
- Department of BiomaterialsOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial SciencesOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing ScienceGraduate School of Engineering, Osaka UniversityOsakaJapan
| | - Hiroshi Kamioka
- Department of OrthodonticsOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takuya Matsumoto
- Department of BiomaterialsOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
11
|
Hallock MJ, Greenwood AI, Wang Y, Morrissey JH, Tajkhorshid E, Rienstra CM, Pogorelov TV. Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane. Biochemistry 2018; 57:6897-6905. [PMID: 30456950 DOI: 10.1021/acs.biochem.8b01069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasma membrane of the cell is a complex, tightly regulated, heterogeneous environment shaped by proteins, lipids, and small molecules. Ca2+ ions are important cellular messengers, spatially separated from anionic lipids. After cell injury, disease, or apoptotic events, anionic lipids are externalized to the outer leaflet of the plasma membrane and encounter Ca2+, resulting in dramatic changes in the plasma membrane structure and initiation of signaling cascades. Despite the high chemical and biological significance, the structures of lipid-Ca2+ nanoclusters are still not known. Previously, we demonstrated by solid-state nuclear magnetic resonance (NMR) spectroscopy that upon binding to Ca2+, individual phosphatidylserine lipids populate two distinct yet-to-be-characterized structural environments. Here, we concurrently employ extensive all-atom molecular dynamics (MD) simulations with our accelerated membrane mimetic and detailed NMR measurements to identify lipid-Ca2+ nanocluster conformations. We find that major structural characteristics of these nanoclusters, including interlipid pair distances and chemical shifts, agree with observable NMR parameters. Simulations reveal that lipid-ion nanoclusters are shaped by two characteristic, long-lived lipid structures induced by divalent Ca2+. Using ab initio quantum mechanical calculations of chemical shifts on MD-captured lipid-ion complexes, we show that computationally observed conformations are validated by experimental NMR data. Both NMR measurements of diluted specifically labeled lipids and MD simulations reveal that the basic structural unit that reshapes the membrane is a Ca2+-coordinated phosphatidylserine tetramer. Our combined computational and experimental approach presented here can be applied to other complex systems in which charged membrane-active molecular agents leave structural signatures on lipids.
Collapse
Affiliation(s)
- Michael J Hallock
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Alexander I Greenwood
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yan Wang
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - James H Morrissey
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48103 , United States
| | - Emad Tajkhorshid
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chad M Rienstra
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taras V Pogorelov
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
12
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
13
|
Valentine ML, Cardenas AE, Elber R, Baiz CR. Physiological Calcium Concentrations Slow Dynamics at the Lipid-Water Interface. Biophys J 2018; 115:1541-1551. [PMID: 30269885 PMCID: PMC6260210 DOI: 10.1016/j.bpj.2018.08.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Phospholipids can interact strongly with ions at physiological concentrations, and these interactions can alter membrane properties. Here, we describe the effects of calcium ions on the dynamics in phospholipid membranes. We used a combination of time-resolved ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations. We found that millimolar Ca2+ concentrations lead to slower fluctuations in the local environment at the lipid-water interface of membranes with phosphatidylserine. The effect was only observed in bilayers containing anionic phosphatidylserine; membranes composed of only zwitterionic phosphatidylcholine did not experience a slowdown. Local water dynamics were measured using the ester groups as label-free probes and were found to be up to 50% slower with 2.5 mM Ca2+. Molecular dynamics simulations show that Ca2+ primarily binds to the carboxylate group of phosphatidylserines. These findings have implications for apoptotic and diseased cells in which phosphatidylserine is exposed to extracellular calcium and for the biophysical effects of divalent cations on lipid bilayers.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - Alfredo E Cardenas
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
14
|
Neumann BM, Kenney D, Wen Q, Gericke A. Microfluidic device as a facile in vitro tool to generate and investigate lipid gradients. Chem Phys Lipids 2017; 210:109-121. [PMID: 29102758 DOI: 10.1016/j.chemphyslip.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023]
Abstract
This work describes a method that utilizes a microfluidic gradient generator to develop lateral lipid gradients in supported lipid bilayers (SLB). The new methodology provides freedom of choice with respect to the lipid composition of the SLB. In addition, the device has the ability to create a protein or bivalent cation gradient in the aqueous phase above the lipid bilayer which can elicit a gradient specific response in the SLB. To highlight these features we demonstrate that we can create a phosphoinositide gradient on various length scales, ranging from 2mm to 50μm. We further show that a Ca2+ gradient in the aqueous phase above the SLB causes anionic lipid clustering mirroring the cation gradient. We demonstrate this effect for mixed phosphatidylcholine/phosphatidylinositol-4,5-bisphosphate bilayers and fora mixed phosphatidylcholine/phosphatidylserine bilayers. The biomimetic platform can be combined with a Total Internal Reflection Fluorescence (TIRF) microscopy setup, which allows for the convenient observation of the time evolution of the gradient and the interaction of ligands with the lipid bilayer. The method provides unprecedented access to study the dynamics and mechanics of protein-lipid interactions on membranes with micron level gradients, mimicking plasma membrane gradients observed in organisms such as Dictyostelium discodeum and neutrophils.
Collapse
Affiliation(s)
- Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, USA
| | - Devin Kenney
- Bridgewater State University, Department of Chemical Sciences, USA
| | - Qi Wen
- Worcester Polytechnic Institute, Department of Physics, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, USA.
| |
Collapse
|
15
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Ganesan SJ, Xu H, Matysiak S. Influence of Monovalent Cation Size on Nanodomain Formation in Anionic–Zwitterionic Mixed Bilayers. J Phys Chem B 2017; 121:787-799. [DOI: 10.1021/acs.jpcb.6b10099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sai J. Ganesan
- Fischell
Department of Bioengineering and ‡Biophysics Program, Institute of
Physical Science and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | - Hongcheng Xu
- Fischell
Department of Bioengineering and ‡Biophysics Program, Institute of
Physical Science and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell
Department of Bioengineering and ‡Biophysics Program, Institute of
Physical Science and Technology, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
17
|
Flynn KR, Martin LL, Ackland ML, Torriero AAJ. Real-Time Quartz Crystal Microbalance Monitoring of Free Docosahexaenoic Acid Interactions with Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11717-11727. [PMID: 27728769 DOI: 10.1021/acs.langmuir.6b01984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Docosahexaenoic acid (DHA) is the most abundant polyunsaturated omega-3 fatty acid found in mammalian neuronal cell membranes. Although DHA is known to be important for neuronal cell survival, little is know about how DHA interacts with phospholipid bilayers. This study presents a detailed quartz crystal microbalance with dissipation monitoring (QCM-D) analysis of free DHA interactions with individual and mixed phospholipid supported lipid bilayers (SLB). DHA incorporation and subsequent changes to the SLBs viscoelastic properties were observed to be concentration-dependent, influenced by the phospholipid species, the headgroup charge, and the presence or absence of calcium ions. It was observed that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLBs incorporated the greatest amount of DHA concentration, whereas the presence of phospholipids, phosphatidylserine (PS), and phosphatidylinositol (PI) in a POPC SLB significantly reduced DHA incorporation and changed the SLBs physicochemical properties. These observations are hypothesized to be due to a substitution event occurring between DHA and phospholipid species. PS domain formation in POPC/PS 8:2 SLBs was observed in the presence of calcium ions, which favored DHA incorporation to a similar level as for a POPC only SLB. The changes in SLB thickness observed with different DHA concentrations are also presented. This work contributes to an understanding of the physical changes induced in a lipid bilayer as a consequence of its exposure to different DHA concentrations (from 50 to 200 μM). The capacity of DHA to influence the physical properties of SLBs indicates the potential for dietary DHA supplementation to cause changes in cellular membranes in vivo, with subsequent physiological consequences for cell function.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University , Melbourne, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University , Clayton 3800, Victoria, Australia
| | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University , Melbourne, Australia
| | - Angel A J Torriero
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University , Burwood, Victoria 3125, Australia
| |
Collapse
|
18
|
Nagarsekar K, Ashtikar M, Steiniger F, Thamm J, Schacher F, Fahr A. Understanding cochleate formation: insights into structural development. SOFT MATTER 2016; 12:3797-3809. [PMID: 26997365 DOI: 10.1039/c5sm01469g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the structure and the self-assembly process of cochleates has become increasingly necessary considering the advances of this drug delivery system towards the pharmaceutical industry. It is well known that the addition of cations like calcium to a dispersion of anionic lipids such as phosphatidylserines results in stable, multilamellar cochleates through a spontaneous assembly. In the current investigation we have studied the intermediate structures generated during this self-assembly of cochleates. To achieve this, we have varied the process temperature for altering the rate of cochleate formation. Our findings from electron microscopy studies showed the formation of ribbonlike structures, which with proceeding interaction associate to form lipid stacks, networks and eventually cochleates. We also observed that the variation in lipid acyl chains did not make a remarkable difference to the type of structure evolved during the formation of cochleates. More generally, our observations provide a new insight into the self-assembly process of cochleates based on which we have proposed a pathway for cochleate formation from phosphatidylserine and calcium. This knowledge could be employed in using cochleates for a variety of possible biomedical applications in the future.
Collapse
Affiliation(s)
- Kalpa Nagarsekar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| | - Mukul Ashtikar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Jana Thamm
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| | - Felix Schacher
- Institut für Organische Chemie und Makromolekulare Chemie Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany and Jena Center for Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Alfred Fahr
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| |
Collapse
|
19
|
Botan A, Favela-Rosales F, Fuchs PFJ, Javanainen M, Kanduč M, Kulig W, Lamberg A, Loison C, Lyubartsev A, Miettinen MS, Monticelli L, Määttä J, Ollila OHS, Retegan M, Róg T, Santuz H, Tynkkynen J. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. J Phys Chem B 2015; 119:15075-88. [PMID: 26509669 PMCID: PMC4677354 DOI: 10.1021/acs.jpcb.5b04878] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/19/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https://zenodo.org/collection/user-nmrlipids ) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
Collapse
Affiliation(s)
- Alexandru Botan
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Fernando Favela-Rosales
- Departamento
de Física, Centro de Investigación
y de Estudios Avanzados del IPN, Apartado, Postal 14-740, Mexico City, 07000 México
D.F., México
| | - Patrick F. J. Fuchs
- Institut
Jacques Monod, UMR 7592 CNRS, Université Paris
Diderot, Sorbonne, Paris Cité, F-75205 Paris, France
| | - Matti Javanainen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Matej Kanduč
- Fachbereich
Physik, Freie Universität Berlin, Berlin, 14195 Germany
| | - Waldemar Kulig
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Antti Lamberg
- Department
of Chemical Engineering, Kyoto University, 615-8510 Kyoto, Japan
| | - Claire Loison
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Alexander Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | - Luca Monticelli
- Institut
de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5086, Lyon 69 367, France
| | - Jukka Määttä
- Department of Chemistry, Aalto University, 00076 Aalto, Finland
| | - O. H. Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Marius Retegan
- Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Hubert Santuz
- INSERM, UMR_S 1134, DSIMB, Paris 75739, France
- Université
Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France
- Institut
National de la Transfusion Sanguine (INTS), Paris 75739, France
- Laboratoire d’Excellence GR-Ex, Paris 75015, France
| | - Joona Tynkkynen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| |
Collapse
|
20
|
Role of electrolyte in the occurrence of the voltage induced phase transitions in a dioleoyl phosphatidylcholine monolayer on Hg. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Pawar A, Bothiraja C, Shaikh K, Mali A. An insight into cochleates, a potential drug delivery system. RSC Adv 2015. [DOI: 10.1039/c5ra08550k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochleates are solid particulates made up of large continuous lipid bilayer sheets rolled up in a spiral structure with little or no internal aqueous phase. Cochleates improve the oral bioavailability and efficacy of the drugs by decreasing side effects.
Collapse
Affiliation(s)
- Atmaram Pawar
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| | - C. Bothiraja
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| | | | - Ashwin Mali
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| |
Collapse
|
22
|
Tarafdar PK, Chakraborty H, Dennison SM, Lentz BR. Phosphatidylserine inhibits and calcium promotes model membrane fusion. Biophys J 2013. [PMID: 23199916 DOI: 10.1016/j.bpj.2012.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
PEG-mediated fusion of SUVs composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, cholesterol, and dioleoylphosphatidylserine was examined to investigate the effects of PS on the fusion mechanism. Lipid mixing, content mixing, and content leakage measurements were carried out with vesicles containing from 0 to 8 mol % PS and similar amounts of phosphatidylglycerol. Fitting these time courses globally to a 3-state (aggregate, intermediate, pore) sequential model established rate constants for each step and probabilities of lipid mixing, content mixing, and leakage in each state. Charged lipids inhibited both the rates of intermediate and pore formation as well as the extents of lipid and contents mixing, although electrostatics were not solely responsible for inhibition. Ca(2+) counteracted this inhibition and increased the extent of fusion in the presence of PS to well beyond that seen in the absence of charged lipids. The effects of both PS and Ca(2+) could be interpreted in terms of a previous proposal for the nature of lipid fluctuations that account for transition states for the two steps of the fusion process examined. The results suggest a more significant role for Ca(2+)-lipid interactions than is acknowledged in current thinking about cell membrane fusion.
Collapse
Affiliation(s)
- Pradip K Tarafdar
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
23
|
Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IAPP. Biophys J 2013; 104:173-84. [PMID: 23332070 DOI: 10.1016/j.bpj.2012.11.3811] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/09/2012] [Accepted: 11/21/2012] [Indexed: 12/15/2022] Open
Abstract
Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca(2+) ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca(2+) ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity.
Collapse
|
24
|
Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations. Biophys J 2012; 102:2095-103. [PMID: 22824273 DOI: 10.1016/j.bpj.2012.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022] Open
Abstract
It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2+), respectively.
Collapse
|
25
|
Tumolo T, Nakamura M, Araki K, Baptista MS. Effect of cations/polycations on the efficiency of formation of a hybrid bilayer membrane that mimics the inner mitochondrial membrane. Colloids Surf B Biointerfaces 2012; 91:1-9. [DOI: 10.1016/j.colsurfb.2011.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/22/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
|
26
|
Luna C, Stroka KM, Bermudez H, Aranda-Espinoza H. Thermodynamics of monolayers formed by mixtures of phosphatidylcholine/phosphatidylserine. Colloids Surf B Biointerfaces 2011; 85:293-300. [PMID: 21440423 PMCID: PMC3081974 DOI: 10.1016/j.colsurfb.2011.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/26/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
In this work we obtain the thermodynamic properties of mixed (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) PC and (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)) PS monolayers. Measurements of compressibility (isotherms, bulk modulus, and excess area per molecule) and surface potential show that the properties of monolayers at the air-water interface depend on the concentration of ions (Na(+) and K(+)) and the proportion of PS in the mixture. The dependence on PS arises because the molecule is originally bound to a Na(+) counterion; by increasing the concentration of ions the entropy changes, creating a favorable system for the bound counterions of PS to join the bulk, leaving a negatively charged molecule. This change leads to an increase in electrostatic repulsions which is reflected by the increase in area per molecule versus surface pressure and a higher surface potential. The results lead to the conclusion that this mixture of phospholipids follows a non ideal behavior and can help to understand the thermodynamic behavior of membranes made of binary mixtures of a zwitterionic and an anionic phospholipid with a bound counterion.
Collapse
Affiliation(s)
- Carlos Luna
- Fischell Department of Bioengineering, University of Maryland at College Park, College Park, MD 20740
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland at College Park, College Park, MD 20740
| | - Harry Bermudez
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland at College Park, College Park, MD 20740
| |
Collapse
|
27
|
Boettcher JM, Davis-Harrison RL, Clay MC, Nieuwkoop AJ, Ohkubo YZ, Tajkhorshid E, Morrissey JH, Rienstra CM. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 2011; 50:2264-73. [PMID: 21294564 PMCID: PMC3069658 DOI: 10.1021/bi1013694] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membranes play key regulatory roles in biological processes, with bilayer composition exerting marked effects on binding affinities and catalytic activities of a number of membrane-associated proteins. In particular, proteins involved in diverse processes such as vesicle fusion, intracellular signaling cascades, and blood coagulation interact specifically with anionic lipids such as phosphatidylserine (PS) in the presence of Ca(2+) ions. While Ca(2+) is suspected to induce PS clustering in mixed phospholipid bilayers, the detailed structural effects of this ion on anionic lipids are not established. In this study, combining magic angle spinning (MAS) solid-state NMR (SSNMR) measurements of isotopically labeled serine headgroups in mixed lipid bilayers with molecular dynamics (MD) simulations of PS lipid bilayers in the presence of different counterions, we provide site-resolved insights into the effects of Ca(2+) on the structure and dynamics of lipid bilayers. Ca(2+)-induced conformational changes of PS in mixed bilayers are observed in both liposomes and Nanodiscs, a nanoscale membrane mimetic of bilayer patches. Site-resolved multidimensional correlation SSNMR spectra of bilayers containing (13)C,(15)N-labeled PS demonstrate that Ca(2+) ions promote two major PS headgroup conformations, which are well resolved in two-dimensional (13)C-(13)C, (15)N-(13)C, and (31)P-(13)C spectra. The results of MD simulations performed on PS lipid bilayers in the presence or absence of Ca(2+) provide an atomic view of the conformational effects underlying the observed spectra.
Collapse
Affiliation(s)
- John M. Boettcher
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Mary C. Clay
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrew J. Nieuwkoop
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Y. Zenmei Ohkubo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - James H. Morrissey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
28
|
Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:818-39. [PMID: 21134351 PMCID: PMC5176272 DOI: 10.1016/j.bbamem.2010.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
29
|
Kotova S, Vijayasarathy C, Dimitriadis EK, Ikonomou L, Jaffe H, Sieving PA. Retinoschisin (RS1) interacts with negatively charged lipid bilayers in the presence of Ca2+: an atomic force microscopy study. Biochemistry 2010; 49:7023-32. [PMID: 20677810 DOI: 10.1021/bi1007029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retinoschisin (RS1) is a retina-specific secreted protein encoding a conserved discoidin domain sequence. As an adhesion molecule, RS1 preserves the retinal cell architecture and promotes visual signal transduction. In young males, loss-of-function mutations in the X-linked retinoschisis gene (RS1) cause X-linked retinoschisis, a form of progressive blindness. Neither the structure of RS1 nor the nature of its anchoring and organization on the plasma membranes is fully understood. The discoidin C2 domains of coagulation factors V and VIII are known to interact with extracellular phosphatidylserine (PS). In this study we have used atomic force microscopy (AFM) to study the interactions of murine retinoschisin (Rs1) with supported anionic lipid bilayers in the presence of Ca(2+). The bilayers consisting of a single lipid, PS, and mixtures of lipids with or without PS were used. Consistent with previous X-ray diffraction studies, AFM imaging showed two distinct domains in pure PS bilayers when Ca(2+) was present. Upon Rs1 adsorption, these PS and PS-containing mixed bilayers underwent fast and extensive reorganization. Protein localization was ascertained by immunolabeling. AFM imaging showed the Rs1 antibody bound exclusively to the calcium-rich ordered phase of the bilayers pointing to the sequestration of Rs1 within those domains. This was further supported by the increased mechanical strength of these domains after Rs1 binding. Besides, changes in bilayer thickness suggested that Rs1 was partially embedded into the bilayer. These findings support a model whereby the Rs1 protein binds to PS in the retinal cell plasma membranes in a calcium-dependent manner.
Collapse
Affiliation(s)
- Svetlana Kotova
- LBPS, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Phase separation in lipid bilayers triggered by low pH. Biochem Biophys Res Commun 2010; 399:571-4. [DOI: 10.1016/j.bbrc.2010.07.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 11/21/2022]
|
31
|
Phase separation of a mixture of charged and neutral lipids on a giant vesicle induced by small cations. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Schultz ZD, Pazos IM, McNeil-Watson FK, Lewis EN, Levin IW. Magnesium-induced lipid bilayer microdomain reorganizations: implications for membrane fusion. J Phys Chem B 2009; 113:9932-41. [PMID: 19603842 PMCID: PMC2754194 DOI: 10.1021/jp9011944] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS), combined both as binary lipid bilayer assemblies and separately, under the influence of divalent Mg2+, a membrane bilayer fusogenic agent, are reported. Infrared vibrational spectroscopic analyses of the lipid acyl chain methylene symmetric stretching modes indicate that aggregates of the two phospholipid components exist as domains heterogeneously distributed throughout the binary bilayer system. In the presence of Mg2+, DPPS maintains an ordered orthorhombic subcell gel phase structure through the phase transition temperature, while the DPPC component is only minimally perturbed with respect to the gel to liquid crystalline phase change. The addition of Mg2+ induces a reorganization of the lipid domains in which the gel phase acyl chain planes rearrange from a hexagonal configuration toward a triclinic, parallel chain subcell. Examination of the acyl chain methylene deformation modes at low temperatures allows a determination of DPPS microdomain sizes, which decrease upon the addition of DPPC-d62 in the absence of Mg2+. On adding Mg2+, a uniform DPPS domain size is observed in the binary mixtures. In either the presence or absence of Mg2+, DPPC-d62 aggregates remain in a configuration for which microdomain sizes are not spectroscopically measurable. Analysis of the acyl chain methylene deformation modes for DPPC-d62 in the binary system suggests that clusters of the deuterated lipids are distributed throughout the DPPS matrix. Light scattering and fluorescence measurements indicate that Mg2+ induces both the aggregation and the fusion of the lipid assemblies as a function of the ratio of DPPS to DPPC. The structural reorganizations of the lipid microdomains within the DPPS-DPPC bilayer are interpreted in the context of current concepts regarding lipid bilayer fusion.
Collapse
Affiliation(s)
- Zachary D. Schultz
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Ileana M. Pazos
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | | | - E. Neil Lewis
- Novel Measurements Group, Malvern Instruments, Ltd., Malvern WR14 1XZ, United Kingdom
| | - Ira W. Levin
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
33
|
Sinn CG, Antonietti M, Dimova R. Binding of calcium to phosphatidylcholine–phosphatidylserine membranes. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.10.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Künneke S, Krüger D, Janshoff A. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured by scanning force microscopy. Biophys J 2004; 86:1545-53. [PMID: 14990481 PMCID: PMC1303989 DOI: 10.1016/s0006-3495(04)74222-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A fast, quantitative, and unambiguous screening of material properties of biomembranes using scanning force microscopy in pulsed force mode on lipid membranes is presented. The spatially resolved study of breakthrough force, breakthrough distance, adhesion, stiffness, and topography of lipid membranes as determined simultaneously by digitalized pulsed force mode provides new insight into the structure-function relationship of model membranes, which are systematically analyzed by varying chain length, lipid headgroup, and lamellarity. For this purpose, a novel unbiased analysis method is presented. A strong correlation between adhesion and breakthrough events is found on lipid bilayers and multilayers and discussed in terms of structural stability and chemical and physical interactions. Our findings indicate that multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine is mechanically strengthened with respect to material failure by calcium ions in solution.
Collapse
Affiliation(s)
- Stephanie Künneke
- Johannes Gutenberg Universität Mainz, Institut für Physikalische Chemie, 55128 Mainz, Germany
| | | | | |
Collapse
|
35
|
Roux M, Beswick V, Coïc YM, Huynh-Dinh T, Sanson A, Neumann JM. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study. Biophys J 2000; 79:2624-31. [PMID: 11053135 PMCID: PMC1301143 DOI: 10.1016/s0006-3495(00)76501-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups.
Collapse
Affiliation(s)
- M Roux
- Département de Biologie Cellulaire et Moléculaire, Section de Biophysique des Protéines et des Membranes, CEA and URA CNRS 2096, Centre d'Etudes de Saclay, 91191 Gif sur Yvette Cedex, France.
| | | | | | | | | | | |
Collapse
|
36
|
Garidel P, Blume A, Hübner W. A Fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:245-59. [PMID: 10825446 DOI: 10.1016/s0005-2736(00)00166-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of aqueous phospholipid dispersions of negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG) with the divalent cations Mg(2+), Ca(2+) and Sr(2+) at equimolar ratios in 100 mM NaCl at pH 7 was investigated by Fourier transform infrared spectroscopy. The binding of the three cations induces a crystalline-like gel phase with highly ordered and rigid all-trans acyl chains. These features are observed after storage below room temperature for 24 h. When the gel phase is heated after prolonged incubation at low temperature phase transitions into the liquid crystalline phase are observed at 58 degrees C for the DMPG:Sr(2+), 65 degrees C for the DMPG:Mg(2+), and 80 degrees C for the DMPG:Ca(2+) complex. By subsequent cooling from temperatures above T(m) these complexes retain the features of a liquid crystalline phase with disordered acyl chains until a metastable gel phase is formed at temperatures between 38 and 32 degrees C. This phase is characterized by predominantly all-trans acyl chains, arranged in a loosely packed hexagonal or distorted hexagonal subcell lattice. Reheating the DMPG:Sr(2+) samples after a storage time of 2 h at 4 degrees C results in the transition of the metastable gel to the liquid crystalline phase at 35 degrees C. This phase transition into the liquid crystalline state at 35 degrees C is also observed for the Mg(2+) complex. However, for DMPG:Mg(2+) at higher temperatures, a partial recrystallization of the acyl chains occurs and the high temperature phase transition at 65 degrees C is also detected. In contrast, DMPG:Ca(2+) exhibits only the phase transition at 80 degrees C from the crystalline gel into the fluid state upon reheating. Below 20 degrees C, the rate of conversion from the metastable gel to a thermodynamically stable, crystalline-like gel phase decreases in the order Ca(2+)&z. Gt;Mg(2+)>Sr(2+). This conversion into the crystalline gel phase is accompanied by a complete dehydration of the phosphate groups in DMPG:Mg(2+) and by a reorientation of the polar lipid head groups in DMPG:Ca(2+) and in DMPG:Sr(2+). The primary binding sites of the cations are the PO(2)(-) groups of the phosphodiester moiety. Our infrared spectroscopic results suggest a deep penetration of the divalent cations into the polar head group region of DMPG bilayers, whereby the ester carbonyl groups, located in the interfacial region of the bilayers, are indirectly affected by strong hydrogen bonding of immobilized water molecules. In the liquid crystalline phase, the interaction of all three cations with DMPG is weak, but still observable in the infrared spectra of the DMPG:Ca(2+) complex by a slight ordering effect induced in the acyl chains, when compared to pure DMPG liposomes.
Collapse
Affiliation(s)
- P Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Muehlpforte 1, D-06108, Halle/Saale, Germany
| | | | | |
Collapse
|
37
|
Hu M, Ishizuka Y, Igarashi Y, Oki T, Nakanishi H. NMR study of pradimicin derivative BMY-28864 and its interaction with calcium ions in D2O. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 1999; 55A:2547-2558. [PMID: 10581735 DOI: 10.1016/s1386-1425(99)00106-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dynamic structure of the antifungal antibiotic pradimicin BMY-28864 in D2O and its interaction with calcium ions were analyzed using one- and two-dimensional 1H nuclear magnetic resonance (NMR). Spectra indicate extensive self-association of molecules in the solution. Two-component spectra were observed simultaneously in a very dilute solution, suggesting equilibrium of two aggregative states. The addition of CaCl2 caused a number of changes in NMR spectra. Therefore we concluded that pradimicin BMY-28864 could form a complex with the Ca2+ ion, causing a movement of the equilibrium. The position of the bound calcium ion is determined indirectly by observing how the NMR shift affects protons that are close to the binding site. The stoichiometry of Ca2+ ion to the Pradimicin molecule for the Ca(2+)-saturated complex is verified to be 1:2. Signal broadening and changes in chemical shift in the 1H NMR spectroscopy of BMY-28864 are assumed to be related to changes in the molecular aggregate conformation.
Collapse
Affiliation(s)
- M Hu
- National Institute of Bioscience and Human-Technology, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
38
|
Gómez-Fernández JC, Villalaín J. The use of FT-IR for quantitative studies of the apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipids. Chem Phys Lipids 1998; 96:41-52. [PMID: 9871981 DOI: 10.1016/s0009-3084(98)00079-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fourier-transform infrared spectroscopy (FT-IR) has been applied to the quantitative study of the dehydration of the phosphatidylserine phosphate group in the presence of Ca2+ exerted by different molecules, such as diacylglycerol, sphingosine and stearylarnine, by using a partial least-squares statistical procedure. By using this method it was observed that diacylglycerol enhanced the dehydration of this PO2- group produced by Ca2+ whereas the amino-bases sphingosine and stearylamine protected the phosphate group from the dehydration produced by Ca2+ due to the very strong electrostatic interaction established. The apparent pKa of lipid carboxyl groups can also be estimated by using FTIR. The method consisted in quantifying the absorbance intensities due to the protonated and the unprotonated forms of the specific group being studied. The pKa of the carboxyl group of [1-13C]-palmitic acid included in dipalmitoylphosphatidylcholine membranes was found to be 8.7, a value much higher than that estimated from a molecular solution of the fatty acid. It was observed using the same method that the pKa of free fatty acids in model stratum corneum lipid mixtures was in the range 6.2-7.3 increasing with the preponderance of oleic acid over palmitic acid. Finally the pKa of the carboxyl group of phosphatidylserine was shifted from 4.6 in the pure phospholipid to 2.1 and 2.2 in the presence of equimolar sphingosine and stearylamine, respectively, as a consequence of electrostatic interactions.
Collapse
Affiliation(s)
- J C Gómez-Fernández
- Departamento de Bioquimica y Biologia Molecular A, Facultad de Veterinaria, Universidad de Murcia, Spain.
| | | |
Collapse
|
39
|
Lehtonen JY, Adlercreutz H, Kinnunen PK. Binding of daidzein to liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1285:91-100. [PMID: 8948479 DOI: 10.1016/s0005-2736(96)00154-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Turbidity and differential scanning calorimetry measurements revealed the plant derived antineoplastic isoflavone, daidzein, to bind to large unilamellar liposomes. Comparing different unsaturated phospholipids most pronounced aggregation due to daidzein was observed for phosphatidylinositol (PI) while the inclusion of cholesterol strongly attenuated the aggregation. Interestingly, aggregation was not observed for the structurally very closely related isoflavone, genistein. The extent of aggregation was nonlinearly dependent on the content of PI in egg phosphatidylcholine (eggPC) vesicles. The saturated dimyristoyl phospholipids, phosphatidylserine, phosphatidylcholine, phosphatidic acid, as well as phophatidylglycerol were also extensively aggregated by daidzein at 10 degrees C, i.e., below their main phase transition temperature whereas their aggregation at 35 degrees C in the fluid phase was strongly reduced. Vesicle aggregation could be accompanied by membrane fusion, however, neither contents mixing nor lipid mixing of the LUVs (large unilamellar vesicles) was observed in the presence of daidzein. Strong perturbation of the thermal phase behaviour of both dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) multilamellar vesicles by daidzein was revealed by differential scanning calorimetry. More specifically, for DMPC increasing quantities of daidzein progressively decreased both the main transition temperature Tm and its enthalpy whereas for DMPS a decrease in delta H was not observed, thus indicating the modes of interaction of daidzein with these phospholipids to differ. Our results indicate daidzein to reside in the polar headgroup/interfacial region of PI and PS membranes. The interactions of daidzein with phospholipids could represent an additional contributor to the growing list of effects of this isoflavone on cellular functions.
Collapse
Affiliation(s)
- J Y Lehtonen
- Department of Medical Chemistry, University of Helsinki, Finland
| | | | | |
Collapse
|
40
|
Satoh K. Determination of binding constants of Ca2+, Na+, and Cl- ions to liposomal membranes of dipalmitoylphosphatidylcholine at gel phase by particle electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1239:239-48. [PMID: 7488629 DOI: 10.1016/0005-2736(95)00154-u] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The zeta potentials of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes were measured at a gel phase as a function of CaCl2 concentration (0-200 mM) in a solution containing different NaCl concentrations (0-200 mM). The data obtained were analyzed with the diffuse double layer theory including the Graham theory. The intrinsic binding constants of ions to DPPC membranes and the distance of the shear plane have been determined independent of both the concentration of CaCl2 and that of NaCl. The values of the constants were 37 M-1 for Ca2+, 0.28 M-1 for Cl, and 0.25 M-1 for Na+; the distance was 0.24 nm under the assumption of binding stoichiometry of Ca2+/DPPC = 1:1.
Collapse
Affiliation(s)
- K Satoh
- Department of Physics, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Kinnunen PK, Kõiv A, Lehtonen JY, Rytömaa M, Mustonen P. Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids 1994; 73:181-207. [PMID: 8001181 DOI: 10.1016/0009-3084(94)90181-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A large body of evidence strongly indicates biomembranes to be organized into compositionally and functionally specialized domains, supramolecular assemblies, existing on different time and length scales. For these domains and intimate coupling between their chemical composition, physical state, organization, and functions has been postulated. One important constituent of biomembranes are peripheral proteins whose activity can be controlled by non-covalent binding to lipids. Importantly, the physical chemistry of the lipid interface allows for a rapid and reversible control of peripheral interactions. In this review examples are provided on how membrane lipid (i) composition (i.e., specific lipid structures), (ii) organization, and (iii) physical state can each regulate peripheral binding of proteins to the lipid surface. In addition, a novel and efficient mechanism for the control of the lipid surface association of peripheral proteins by [Ca2+], lipid composition, and phase state is proposed. The phase state is, in turn, also dependent on factors such as temperature, lateral packing, presence of ions, metabolites and drugs. Confining reactions to interfaces allows for facile and cooperative large scale integration and control of metabolic pathways due to mechanisms which are not possible in bulk systems.
Collapse
Affiliation(s)
- P K Kinnunen
- Department of Medical Chemistry, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
42
|
Flach CR, Mendelsohn R. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes. Biophys J 1993; 64:1113-21. [PMID: 8494975 PMCID: PMC1262429 DOI: 10.1016/s0006-3495(93)81477-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fourier transform-infrared (IR) spectroscopic and electron microscopic studies are reported for 1,2-dimyristoylphosphatidylserine (DMPS) and for DMPS/1,2-dimyristoylphosphatidylcholine mixtures in the presence and absence of Ca2+ ion. The frequency of the methyl symmetric deformation mode near 1,378 cm-1, previously assumed insensitive to changes in lipid morphology, has been found to respond to cochleate phase formation by undergoing an approximately 8 cm-1 increase. The new IR spectroscopic marker at 1,386 cm-1 has been used to identify and verify structures suggested from the phase diagram of J. R. Silvius and J. Gagné (1984. Biochemistry. 23:3241-3247) for this system. In addition, the ability of Mg2+ ion to induce cochleate formation has been demonstrated. Higher Mg2+ than Ca2+ levels are required for this process. Finally, IR spectroscopy has been used to monitor dehydration of the lipid surface through changes in the asymmetric PO2- stretching mode. Dehydration precedes cochleate phase formation (i.e., occurs at a lower Ca2+/phosphatidylserine level).
Collapse
Affiliation(s)
- C R Flach
- Department of Chemistry, Newark College of Arts and Science, Rutgers University, New Jersey 07102
| | | |
Collapse
|