1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Ishii S, Oyama K, Kobirumaki-Shimozawa F, Nakanishi T, Nakahara N, Suzuki M, Ishiwata S, Fukuda N. Myosin and tropomyosin-troponin complementarily regulate thermal activation of muscles. J Gen Physiol 2023; 155:e202313414. [PMID: 37870863 PMCID: PMC10591409 DOI: 10.1085/jgp.202313414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Contraction of striated muscles is initiated by an increase in cytosolic Ca2+ concentration, which is regulated by tropomyosin and troponin acting on actin filaments at the sarcomere level. Namely, Ca2+-binding to troponin C shifts the "on-off" equilibrium of the thin filament state toward the "on" state, promoting actomyosin interaction; likewise, an increase in temperature to within the body temperature range shifts the equilibrium to the on state, even in the absence of Ca2+. Here, we investigated the temperature dependence of sarcomere shortening along isolated fast skeletal myofibrils using optical heating microscopy. Rapid heating (25 to 41.5°C) within 2 s induced reversible sarcomere shortening in relaxing solution. Further, we investigated the temperature-dependence of the sliding velocity of reconstituted fast skeletal or cardiac thin filaments on fast skeletal or β-cardiac myosin in an in vitro motility assay within the body temperature range. We found that (a) with fast skeletal thin filaments on fast skeletal myosin, the temperature dependence was comparable to that obtained for sarcomere shortening in fast skeletal myofibrils (Q10 ∼8), (b) both types of thin filaments started to slide at lower temperatures on fast skeletal myosin than on β-cardiac myosin, and (c) cardiac thin filaments slid at lower temperatures compared with fast skeletal thin filaments on either type of myosin. Therefore, the mammalian striated muscle may be fine-tuned to contract efficiently via complementary regulation of myosin and tropomyosin-troponin within the body temperature range, depending on the physiological demands of various circumstances.
Collapse
Affiliation(s)
- Shuya Ishii
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoya Nakahara
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Nakanishi T, Oyama K, Tanaka H, Kobirumaki-Shimozawa F, Ishii S, Terui T, Ishiwata S, Fukuda N. Effects of omecamtiv mecarbil on the contractile properties of skinned porcine left atrial and ventricular muscles. Front Physiol 2022; 13:947206. [PMID: 36082222 PMCID: PMC9445838 DOI: 10.3389/fphys.2022.947206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Omecamtiv mecarbil (OM) is a novel inotropic agent for heart failure with systolic dysfunction. OM prolongs the actomyosin attachment duration, which enhances thin filament cooperative activation and accordingly promotes the binding of neighboring myosin to actin. In the present study, we investigated the effects of OM on the steady-state contractile properties in skinned porcine left ventricular (PLV) and atrial (PLA) muscles. OM increased Ca2+ sensitivity in a concentration-dependent manner in PLV, by left shifting the mid-point (pCa50) of the force-pCa curve (ΔpCa50) by ∼0.16 and ∼0.33 pCa units at 0.5 and 1.0 μM, respectively. The Ca2+-sensitizing effect was likewise observed in PLA, but less pronounced with ΔpCa50 values of ∼0.08 and ∼0.22 pCa units at 0.5 and 1.0 μM, respectively. The Ca2+-sensitizing effect of OM (1.0 μM) was attenuated under enhanced thin filament cooperative activation in both PLV and PLA; this attenuation occurred directly via treatment with fast skeletal troponin (ΔpCa50: ∼0.16 and ∼0.10 pCa units in PLV and PLA, respectively) and indirectly by increasing the number of strongly bound cross-bridges in the presence of 3 mM MgADP (ΔpCa50: ∼0.21 and ∼0.08 pCa units in PLV and PLA, respectively). It is likely that this attenuation of the Ca2+-sensitizing effect of OM is due to a decrease in the number of “recruitable” cross-bridges that can potentially produce active force. When cross-bridge detachment was accelerated in the presence of 20 mM inorganic phosphate, the Ca2+-sensitizing effect of OM (1.0 μM) was markedly decreased in both types of preparations (ΔpCa50: ∼0.09 and ∼0.03 pCa units in PLV and PLA, respectively). The present findings suggest that the positive inotropy of OM is more markedly exerted in the ventricle than in the atrium, which results from the strongly bound cross-bridge-dependent allosteric activation of thin filaments.
Collapse
Affiliation(s)
- Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
| | - Hiroyuki Tanaka
- Laboratory of Marine Biotechnology and Microbiology, Hokkaido University, Hakodate, Japan
| | | | - Shuya Ishii
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Norio Fukuda,
| |
Collapse
|
4
|
Kono F, Kawai S, Shimamoto Y, Ishiwata S. Nanoscopic changes in the lattice structure of striated muscle sarcomeres involved in the mechanism of spontaneous oscillatory contraction (SPOC). Sci Rep 2020; 10:16372. [PMID: 33009449 PMCID: PMC7532212 DOI: 10.1038/s41598-020-73247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Muscles perform a wide range of motile functions in animals. Among various types are skeletal and cardiac muscles, which exhibit a steady auto-oscillation of force and length when they are activated at an intermediate level of contraction. This phenomenon, termed spontaneous oscillatory contraction or SPOC, occurs devoid of cell membranes and at fixed concentrations of chemical substances, and is thus the property of the contractile system per se. We have previously developed a theoretical model of SPOC and proposed that the oscillation emerges from a dynamic force balance along both the longitudinal and lateral axes of sarcomeres, the contractile units of the striated muscle. Here, we experimentally tested this hypothesis by developing an imaging-based analysis that facilitates detection of the structural changes of single sarcomeres at unprecedented spatial resolution. We found that the sarcomere width oscillates anti-phase with the sarcomere length in SPOC. We also found that the oscillatory dynamics can be altered by osmotic compression of the myofilament lattice structure of sarcomeres, but they are unchanged by a proteolytic digestion of titin/connectin—the spring-like protein that provides passive elasticity to sarcomeres. Our data thus reveal the three-dimensional mechanical dynamics of oscillating sarcomeres and suggest a structural requirement of steady auto-oscillation.
Collapse
Affiliation(s)
- Fumiaki Kono
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1106, Japan
| | - Seitaro Kawai
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yuta Shimamoto
- Laboratory of Physics and Cell Biology, Department of Chromosome Science, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
5
|
Ishii S, Suzuki M, Ishiwata S, Kawai M. Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophys Physicobiol 2019; 16:28-40. [PMID: 30923661 PMCID: PMC6435021 DOI: 10.2142/biophysico.16.0_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The majority of hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere proteins. We examined tropomyosin (Tpm)’s HCM mutants in humans, V95A and D175N, with in vitro motility assay using optical tweezers to evaluate the effects of the Tpm mutations on the actomyosin interaction at the single molecular level. Thin filaments were reconstituted using these Tpm mutants, and their sliding velocity and force were measured at varying Ca2+ concentrations. Our results indicate that the sliding velocity at pCa ≥8.0 was significantly increased in mutants, which is expected to cause a diastolic problem. The velocity that can be activated by Ca2+ decreased significantly in mutants causing a systolic problem. With sliding force, Ca2+ activatable force decreased in V95A and increased in D175N, which may cause a systolic problem. Our results further demonstrate that the duty ratio determined at the steady state of force generation in saturating [Ca2+] decreased in V95A and increased in D175N. The Ca2+ sensitivity and cooperativity were not significantly affected by the mutations. These results suggest that the two mutants modulate molecular processes of the actomyosin interaction differently, but to result in the same pathology known as HCM.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Muangkram Y, Noma A, Amano A. A new myofilament contraction model with ATP consumption for ventricular cell model. J Physiol Sci 2018; 68:541-554. [PMID: 28770433 PMCID: PMC10717283 DOI: 10.1007/s12576-017-0560-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023]
Abstract
A new contraction model of cardiac muscle was developed by combining previously described biochemical and biophysical models. The biochemical component of the new contraction model represents events in the presence of Ca2+-crossbridge attachment and power stroke following inorganic phosphate release, detachment evoked by the replacement of ADP by ATP, ATP hydrolysis, and recovery stroke. The biophysical component focuses on Ca2+ activation and force (F b) development assuming an equivalent crossbridge. The new model faithfully incorporates the major characteristics of the biochemical and biophysical models, such as F b activation by transient Ca2+ ([Ca2+]-F b), [Ca2+]-ATP hydrolysis relations, sarcomere length-F b, and F b recovery after jumps in length under the isometric mode and upon sarcomere shortening after a rapid release of mechanical load under the isotonic mode together with the load-velocity relationship. ATP consumption was obtained for all responses. When incorporated in a ventricular cell model, the contraction model was found to share approximately 60% of the total ATP usage in the cell model.
Collapse
Affiliation(s)
- Yuttamol Muangkram
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Akinori Noma
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Akira Amano
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
7
|
ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 2015; 112:E7003-12. [PMID: 26621701 DOI: 10.1073/pnas.1513843112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin-myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca(2+). We investigated whether ADP-stimulated force development (without Ca(2+)) can be used to reveal changes in actin-myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin-myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C's role in actin-myosin regulation. In the presence of Ca(2+), ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca(2+), pathologic [ADP] and low PKA-phosphorylation, high actin-myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.
Collapse
|
8
|
Sequeira V, Najafi A, McConnell M, Fowler ED, Bollen IAE, Wüst RCI, dos Remedios C, Helmes M, White E, Stienen GJM, Tardiff J, Kuster DWD, van der Velden J. Synergistic role of ADP and Ca(2+) in diastolic myocardial stiffness. J Physiol 2015; 593:3899-916. [PMID: 26096258 DOI: 10.1113/jp270354] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023] Open
Abstract
Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin interactions may significantly limit diastolic capacity, however, direct evidence is absent. From experiments at the cellular and whole organ level, in humans and rats, we show that actomyosin-related force development contributes significantly to high diastolic stiffness in environments where high ADP and increased diastolic [Ca(2+) ] are present, such as the failing myocardium. Our basal study provides a mechanical mechanism which may partly underlie diastolic dysfunction. Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca(2+) ] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca(2+) handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca(2+) ] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca(2+) in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca(2+) both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca(2+) ] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca(2+) overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca(2+) ]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca(2+) , and thereby increase myocardial stiffness.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Aref Najafi
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mark McConnell
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ewan D Fowler
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, UK
| | - Ilse A E Bollen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Cris dos Remedios
- Muscle Research Unit, Bosch Institute, University of Sydney, Sydney, Australia
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ed White
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, UK
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Jil Tardiff
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Diederik W D Kuster
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
9
|
Minozzo FC, Altman D, Rassier DE. MgADP activation contributes to force enhancement during fast stretch of isolated skeletal myofibrils. Biochem Biophys Res Commun 2015; 463:1129-34. [PMID: 26095850 DOI: 10.1016/j.bbrc.2015.06.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND When an activated muscle is rapidly stretched, force rises and peaks while muscle lengthens. The peak force is normally called critical-force (Pc). The mechanism behind this increase in force is not well understood, but it has been associated with crossbridges operating in different states. METHODS Myofibrils were attached between a cantilever and a micro-needle, and activated with Ca(2+) or MgADP. During activation, the myofibrils were stretched by 3% SLo at 10 SLo·s(-1). A crossbridge model was developed to better understand the effects of MgADP in myofibrils activation. RESULTS Despite a similar stretch magnitude, MgADP activation produced a higher Pc (1.37 ± 0.07 P/Po) than Ca(2+) activation (Pc = 1.23 ± 0.03 P/Po). These results suggest that myofibrils activated with MgADP become stiffer than myofibrils activated with Ca(2+). CONCLUSIONS MgADP induces a fraction of crossbridges to form a "rigor-like" state that precedes ADP release, and that may not contribute to isometric forces. Such interpretation was strengthened by the results obtained with the developed crossbridge model, which showed that MgADP bias crossbridges into the rigor-like state. This state would be crucial to initiate a cooperative activation of crossbridges and actin, and to resist to unbinding from actin when the myofibrils are stretched. SIGNIFICANCE Our results suggest a new mechanism contributing for force output during stretch, which underlies basic mechanisms of muscle contraction.
Collapse
Affiliation(s)
- Fábio C Minozzo
- Department of Kinesiology and Physical Education, McGill University, Canada
| | - David Altman
- Department of Physics, Willamette University, Salem, OR, USA
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Canada; Department of Physics, McGill University, Canada; Department of Physiology, McGill University, Canada.
| |
Collapse
|
10
|
Residual force depression in single sarcomeres is abolished by MgADP-induced activation. Sci Rep 2015; 5:10555. [PMID: 26037312 PMCID: PMC4453107 DOI: 10.1038/srep10555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/20/2015] [Indexed: 11/08/2022] Open
Abstract
The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii) to evaluate if force depression is inhibited when single sarcomeres are activated with MgADP, which biases crossbridges into a strongly-bound state. Single sarcomeres (n = 16) were isolated from rabbit psoas myofibrils using two micro-needles (one compliant, one rigid), piercing the sarcomere externally adjacent to the Z-lines. The sarcomeres were contracted isometrically and subsequently shortened, in both Ca2+- and MgADP-activating solutions. Shortening in Ca2+-activated samples resulted in a 27.44 ± 9.04% force depression when compared to isometric contractions produced at similar final sarcomere lengths (P < 0.001). There was no force depression in MgADP-activated sarcomeres (force depression = −1.79 ± 9.69%, P = 0.435). These results suggest that force depression is a sarcomeric property, and that is associated with an inhibition of myosin-actin interactions.
Collapse
|
11
|
Kagemoto T, Li A, Dos Remedios C, Ishiwata S. Spontaneous oscillatory contraction (SPOC) in cardiomyocytes. Biophys Rev 2015; 7:15-24. [PMID: 28509984 PMCID: PMC5425754 DOI: 10.1007/s12551-015-0165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a characteristic state of the contractile system of striated (skeletal and cardiac) muscle that exists between the states of relaxation and contraction. For example, Ca-SPOCs occur at physiological Ca2+ levels (pCa ∼6.0), whereas ADP-SPOC occurs in the virtual absence of Ca2+ (pCa ≥ 8; relaxing conditions in the presence of MgATP), but in the presence of inorganic phosphate (Pi) and a high concentration of MgADP. The concentration of Mg-ADP necessary for SPOC is nearly equal to or greater than the MgATP concentration for cardiac muscle and is several times higher for skeletal muscle. Thus, the cellular conditions for SPOC are broader in cardiac muscle than in skeletal muscle. During these SPOCs, each sarcomere in a myofibril undergoes length oscillation that has a saw-tooth waveform consisting of a rapid lengthening and a slow shortening phase. The lengthening phase of one half of a sarcomere is transmitted to the adjacent half of the sarcomere successively, forming a propagating wave (termed a SPOC wave). The SPOC waves are synchronized across the cardiomyocytes resulting in a visible wave of successive contractions and relaxations termed the SPOC wave. Experimentally, the SPOC period (and therefore the velocity of SPOC wave) is observed in demembranated cardiomyocytes and can be prepared from a wide range of animal hearts. These periods correlate well with the resting heartbeats of a wide range of mammals (rat, rabbit, dog, pig and cow). Preliminary experiments showed that the SPOC properties of human cardiomyocytes are similar to the heartbeat of a large dog or a pig. This correlation suggests that SPOCs may play a fundamental role in the heart. Here, we briefly summarize a range of SPOC parameters obtained experimentally, and relate them to a theoretical model to explain those characteristics. Finally, we discuss the possible significance of these SPOC properties in each and every heartbeat.
Collapse
Affiliation(s)
- Tatsuya Kagemoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Amy Li
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667, Singapore.
| |
Collapse
|
12
|
WAKABAYASHI T. Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:321-50. [PMID: 26194856 PMCID: PMC4631897 DOI: 10.2183/pjab.91.321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 06/10/2023]
Abstract
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions.
Collapse
Affiliation(s)
- Takeyuki WAKABAYASHI
- Department of Physics, Graduate School of Science, the University of Tokyo, Tokyo, Japan
- Department of Biosciences, Graduate School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
13
|
The effects of Ca2+ and MgADP on force development during and after muscle length changes. PLoS One 2013; 8:e68866. [PMID: 23874795 PMCID: PMC3712921 DOI: 10.1371/journal.pone.0068866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
The goal of this study was to compare the effects of Ca2+ and MgADP activation on force development in skeletal muscles during and after imposed length changes. Single fibres dissected from the rabbit psoas were (i) activated in pCa2+4.5 and pCa2+6.0, or (ii) activated in pCa2+4.5 before and after administration of 10 mM MgADP. Fibres were activated in sarcomere lengths (SL) of 2.65 µm and 2.95 µm, and subsequently stretched or shortened (5%SL at 1.0 SL.s−1) to reach a final SL of 2.80 µm. The kinetics of force during stretch were not altered by pCa2+ or MgADP, but the fast change in the slope of force development (P1) observed during shortening and the corresponding SL extension required to reach the change (L1) were higher in pCa2+6.0 (P1 = 0.22±0.02 Po; L1 = 5.26±0.24 nm.HS.1) than in pCa2+4.5 (P1 = 0.15±0.01 Po; L1 = 4.48±0.25 nm.HS.1). L1 was also increased by MgADP activation during shortening. Force enhancement after stretch was lower in pCa2+4.5 (14.9±5.4%) than in pCa2+6.0 (38.8±7.5%), while force depression after shortening was similar in both Ca2+ concentrations. The stiffness accompanied the force behavior after length changes in all situations. MgADP did not affect the force behavior after length changes, and stiffness did not accompany the changes in force development after stretch. Altogether, these results suggest that the mechanisms of force generation during and after stretch are different from those obtained during and after shortening.
Collapse
|
14
|
Serizawa T, Terui T, Kagemoto T, Mizuno A, Shimozawa T, Kobirumaki F, Ishiwata S, Kurihara S, Fukuda N. Real-time measurement of the length of a single sarcomere in rat ventricular myocytes: a novel analysis with quantum dots. Am J Physiol Cell Physiol 2011; 301:C1116-27. [DOI: 10.1152/ajpcell.00161.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the dynamic properties of cardiac sarcomeres are markedly changed in response to a length change of even ∼0.1 μm, it is imperative to quantitatively measure sarcomere length (SL). Here we show a novel system using quantum dots (QDs) that enables a real-time measurement of the length of a single sarcomere in cardiomyocytes. First, QDs were conjugated with anti-α-actinin antibody and applied to the sarcomeric Z disks in isolated skinned cardiomyocytes of the rat. At partial activation, spontaneous sarcomeric oscillations (SPOC) occurred, and QDs provided a quantitative measurement of the length of a single sarcomere over the broad range (i.e., from ∼1.7 to ∼2.3 μm). It was found that the SPOC amplitude was inversely related to SL, but the period showed no correlation with SL. We then treated intact cardiomyocytes with the mixture of the antibody-QDs and FuGENE HD, and visualized the movement of the Z lines/T tubules. At a low frequency of 1 Hz, the cycle of the motion of a single sarcomere consisted of fast shortening followed by slow relengthening. However, an increase in stimulation frequency to 3–5 Hz caused a phase shift of shortening and relengthening due to acceleration of relengthening, and the waveform became similar to that observed during SPOC. Finally, the anti-α-actinin antibody-QDs were transfected from the surface of the beating heart in vivo. The striated patterns with ∼1.96-μm intervals were observed after perfusion under fluorescence microscopy, and an electron microscopic observation confirmed the presence of QDs in and around the T tubules and Z disks, but primarily in the T tubules, within the first layer of cardiomyocytes of the left ventricular wall. Therefore, QDs are a useful tool to quantitatively analyze the movement of single sarcomeres in cardiomyocytes, under various experimental settings.
Collapse
Affiliation(s)
- Takahiro Serizawa
- Department of Cell Physiology, The Jikei University School of Medicine,
- Department of Physics, Waseda University, and
| | - Takako Terui
- Department of Cell Physiology, The Jikei University School of Medicine,
| | - Tatsuya Kagemoto
- Department of Cell Physiology, The Jikei University School of Medicine,
- Department of Physics, Waseda University, and
| | - Akari Mizuno
- Department of Cell Physiology, The Jikei University School of Medicine,
- Department of Physics, Waseda University, and
| | | | - Fuyu Kobirumaki
- Department of Cell Physiology, The Jikei University School of Medicine,
| | | | - Satoshi Kurihara
- Department of Cell Physiology, The Jikei University School of Medicine,
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine,
| |
Collapse
|
15
|
Wolfe JE, Ishiwata S, Braet F, Whan R, Su Y, Lal S, Dos Remedios CG. SPontaneous Oscillatory Contraction (SPOC): auto-oscillations observed in striated muscle at partial activation. Biophys Rev 2011; 3:53-62. [PMID: 28510003 PMCID: PMC5418397 DOI: 10.1007/s12551-011-0046-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/30/2011] [Indexed: 12/14/2022] Open
Abstract
Striated muscle is well known to exist in either of two states-contraction or relaxation-under the regulation of Ca2+ concentration. Described here is a less well-known third, intermediate state induced under conditions of partial activation, known as SPOC (SPontaneous Oscillatory Contraction). This state is characterised by auto-oscillation between rapid-lengthening and slow-shortening phases. Notably, SPOC occurs in skinned muscle fibres and is therefore not the result of fluctuating Ca2+ levels, but is rather an intrinsic and fundamental phenomenon of the actomyosin motor. Summarised in this review are the experimental data on SPOC and its fundamental mechanism. SPOC presents a novel technique for studying independent communication and coordination between sarcomeres. In cardiac muscle, this auto-oscillatory property may work in concert with electro-chemical signalling to coordinate the heartbeat. Further, SPOC may represent a new way of demonstrating functional defects of sarcomeres in human heart failure.
Collapse
Affiliation(s)
- James Erle Wolfe
- Muscle Research Unit, Department of Anatomy & Histology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Filip Braet
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, 2006, Australia
| | - Renee Whan
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, 2006, Australia
| | - Yingying Su
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, 2006, Australia
| | - Sean Lal
- Muscle Research Unit, Department of Anatomy & Histology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
| | - Cristobal G Dos Remedios
- Muscle Research Unit, Department of Anatomy & Histology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
16
|
Ishiwata S, Shimamoto Y, Fukuda N. Contractile system of muscle as an auto-oscillator. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:187-98. [DOI: 10.1016/j.pbiomolbio.2010.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 11/16/2022]
|
17
|
Sato K, Ohtaki M, Shimamoto Y, Ishiwata S. A theory on auto-oscillation and contraction in striated muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:199-207. [DOI: 10.1016/j.pbiomolbio.2010.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/15/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
18
|
Bullimore SR, Saunders TJ, Herzog W, MacIntosh BR. Calculation of muscle maximal shortening velocity by extrapolation of the force-velocity relationship: afterloaded versus isotonic release contractions. Can J Physiol Pharmacol 2011; 88:937-48. [PMID: 20962893 DOI: 10.1139/y10-068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maximal shortening velocity of a muscle (V(max)) provides a link between its macroscopic properties and the underlying biochemical reactions and is altered in some diseases. Two methods that are widely used for determining V(max) are afterloaded and isotonic release contractions. To determine whether these two methods give equivalent results, we calculated V(max) in 9 intact single fibres from the lumbrical muscles of the frog Xenopus laevis (9.5-15.5 °C, stimulation frequency 35-70 Hz). The data were modelled using a 3-state cross-bridge model in which the states were inactive, detached, and attached. Afterloaded contractions gave lower predictions of Vmax than did isotonic release contractions in all 9 fibres (3.20 ± 0.84 versus 4.11 ± 1.08 lengths per second, respectively; means ± SD, p = 0.001) and underestimated unloaded shortening velocity measured with the slack test by an average of 29% (p = 0.001, n = 6). Excellent model predictions could be obtained by assuming that activation is inhibited by shortening. We conclude that under the experimental conditions used in this study, afterloaded and isotonic release contractions do not give equivalent results. When a change in the V(max) measured with afterloaded contractions is observed in diseased muscle, it is important to consider that this may reflect differences in either activation kinetics or cross-bridge cycling rates.
Collapse
|
19
|
Terui T, Shimamoto Y, Yamane M, Kobirumaki F, Ohtsuki I, Ishiwata S, Kurihara S, Fukuda N. Regulatory mechanism of length-dependent activation in skinned porcine ventricular muscle: role of thin filament cooperative activation in the Frank-Starling relation. ACTA ACUST UNITED AC 2011; 136:469-82. [PMID: 20876361 PMCID: PMC2947055 DOI: 10.1085/jgp.201010502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac sarcomeres produce greater active force in response to stretch, forming the basis of the Frank-Starling mechanism of the heart. The purpose of this study was to provide the systematic understanding of length-dependent activation by investigating experimentally and mathematically how the thin filament "on-off" switching mechanism is involved in its regulation. Porcine left ventricular muscles were skinned, and force measurements were performed at short (1.9 µm) and long (2.3 µm) sarcomere lengths. We found that 3 mM MgADP increased Ca(2+) sensitivity of force and the rate of rise of active force, consistent with the increase in thin filament cooperative activation. MgADP attenuated length-dependent activation with and without thin filament reconstitution with the fast skeletal troponin complex (sTn). Conversely, 20 mM of inorganic phosphate (Pi) decreased Ca(2+) sensitivity of force and the rate of rise of active force, consistent with the decrease in thin filament cooperative activation. Pi enhanced length-dependent activation with and without sTn reconstitution. Linear regression analysis revealed that the magnitude of length-dependent activation was inversely correlated with the rate of rise of active force. These results were quantitatively simulated by a model that incorporates the Ca(2+)-dependent on-off switching of the thin filament state and interfilament lattice spacing modulation. Our model analysis revealed that the cooperativity of the thin filament on-off switching, but not the Ca(2+)-binding ability, determines the magnitude of the Frank-Starling effect. These findings demonstrate that the Frank-Starling relation is strongly influenced by thin filament cooperative activation.
Collapse
Affiliation(s)
- Takako Terui
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tran K, Smith NP, Loiselle DS, Crampin EJ. A metabolite-sensitive, thermodynamically constrained model of cardiac cross-bridge cycling: implications for force development during ischemia. Biophys J 2010; 98:267-76. [PMID: 20338848 DOI: 10.1016/j.bpj.2009.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 10/19/2022] Open
Abstract
We present a metabolically regulated model of cardiac active force generation with which we investigate the effects of ischemia on maximum force production. Our model, based on a model of cross-bridge kinetics that was developed by others, reproduces many of the observed effects of MgATP, MgADP, Pi, and H(+) on force development while retaining the force/length/Ca(2+) properties of the original model. We introduce three new parameters to account for the competitive binding of H(+) to the Ca(2+) binding site on troponin C and the binding of MgADP within the cross-bridge cycle. These parameters, along with the Pi and H(+) regulatory steps within the cross-bridge cycle, were constrained using data from the literature and validated using a range of metabolic and sinusoidal length perturbation protocols. The placement of the MgADP binding step between two strongly-bound and force-generating states leads to the emergence of an unexpected effect on the force-MgADP curve, where the trend of the relationship (positive or negative) depends on the concentrations of the other metabolites and [H(+)]. The model is used to investigate the sensitivity of maximum force production to changes in metabolite concentrations during the development of ischemia.
Collapse
Affiliation(s)
- Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
21
|
Ishiwata S, Shimamoto Y, Suzuki M. Molecular motors as an auto-oscillator. HFSP JOURNAL 2010; 4:100-4. [PMID: 21119762 DOI: 10.2976/1.3390455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Indexed: 11/19/2022]
Abstract
The organization of biomotile systems possesses structural and functional hierarchy, building up from single molecules via protein assemblies and cells further up to an organ. A typical example is the hierarchy of cardiac muscle, on the top of which is the heart. The heartbeat is supported by the rhythmic contraction of the muscle cells that is controlled by the Ca(2+) oscillation triggered by periodic electrical excitation of pacemaker cells. Thus, it is usually believed that the heartbeat is governed by the control system based on a sequential one-way chain with the electrical∕chemical information transfer from the upper to the lower level of hierarchy. On the other hand, it has been known for many years that the contractile system of muscle, i.e., skinned muscle fibers and myofibrils, itself possesses the auto-oscillatory properties even in the constant chemical environment. A recent paper [Plaçais, et al. (2009), Phys. Rev. Lett. 103, 158102] demonstrated the auto-oscillatory movement∕tension development in an in vitro motility assay composed of a single actin filament and randomly distributed myosin II molecules, suggesting that the auto-oscillatory properties are inherent to the contractile proteins. Here we discuss how the molecular motors may acquire the higher-ordered auto-oscillatory properties while stepping up the staircase of hierarchy.
Collapse
|
22
|
Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch. Proc Natl Acad Sci U S A 2009; 106:11954-9. [PMID: 19515816 DOI: 10.1073/pnas.0813288106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The force generation and motion of muscle are produced by the collective work of thousands of sarcomeres, the basic structural units of striated muscle. Based on their series connection to form a myofibril, it is expected that sarcomeres are mechanically and/or structurally coupled to each other. However, the behavior of individual sarcomeres and the coupling dynamics between sarcomeres remain elusive, because muscle mechanics has so far been investigated mainly by analyzing the averaged behavior of thousands of sarcomeres in muscle fibers. In this study, we directly measured the length-responses of individual sarcomeres to quick stretch at partial activation, using micromanipulation of skeletal myofibrils under a phase-contrast microscope. The experiments were performed at ADP-activation (1 mM MgATP and 2 mM MgADP in the absence of Ca(2+)) and also at Ca(2+)-activation (1 mM MgATP at pCa 6.3) conditions. We show that under these activation conditions, sarcomeres exhibit 2 distinct types of responses, either "resisting" or "yielding," which are clearly distinguished by the lengthening distance of single sarcomeres in response to stretch. These 2 types of sarcomeres tended to coexist within the myofibril, and the sarcomere "yielding" occurred in clusters composed of several adjacent sarcomeres. The labeling of Z-line with anti-alpha-actinin antibody significantly suppressed the clustered sarcomere "yielding." These results strongly suggest that the contractile system of muscle possesses the mechanism of structure-based inter-sarcomere coordination.
Collapse
|
23
|
Shimamoto Y, Kono F, Suzuki M, Ishiwata S. Nonlinear force-length relationship in the ADP-induced contraction of skeletal myofibrils. Biophys J 2007; 93:4330-41. [PMID: 17890380 PMCID: PMC2098727 DOI: 10.1529/biophysj.107.110650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory mechanism of sarcomeric activity has not been fully clarified yet because of its complex and cooperative nature, which involves both Ca(2+) and cross-bridge binding to the thin filament. To reveal the mechanism of regulation mediated by the cross-bridges, separately from the effect of Ca(2+), we investigated the force-sarcomere length (SL) relationship in rabbit skeletal myofibrils (a single myofibril or a thin bundle) at SL > 2.2 microm in the absence of Ca(2+) at various levels of activation by exogenous MgADP (4-20 mM) in the presence of 1 mM MgATP. The individual SLs were measured by phase-contrast microscopy to confirm the homogeneity of the striation pattern of sarcomeres during activation. We found that at partial activation with 4-8 mM MgADP, the developed force nonlinearly depended on the length of overlap between the thick and the thin filaments; that is, contrary to the maximal activation, the maximal active force was generated at shorter overlap. Besides, the active force became larger, whereas this nonlinearity tended to weaken, with either an increase in [MgADP] or the lateral osmotic compression of the myofilament lattice induced by the addition of a macromolecular compound, dextran T-500. The model analysis, which takes into account the [MgADP]- and the lattice-spacing-dependent probability of cross-bridge formation, was successfully applied to account for the force-SL relationship observed at partial activation. These results strongly suggest that the cross-bridge works as a cooperative activator, the function of which is highly sensitive to as little as <or=1 nm changes in the lattice spacing.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Ishiwata S, Shimamoto Y, Suzuki M, Sasaki D. Regulation of muscle contraction by Ca2+ and ADP: focusing on the auto-oscillation (SPOC). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:341-58. [PMID: 17278378 DOI: 10.1007/978-4-431-38453-3_29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A molecular motor in striated muscle, myosin II, is a non-processive motor that is unable to perform physiological functions as a single molecule and acts as an assembly of molecules. It is widely accepted that a myosin II motor is an independent force generator; the force generated at a steady state is usually considered to be a simple sum of those generated by each motor. This is the case at full activation (pCa < 5 in the presence of MgATP); however, we found that the myosin II motors show cooperative functions, i.e., non-linear auto-oscillation, named SPOC (SPontaneous Oscillatory Contraction), when the activation level is intermediate between those of contraction and relaxation (that is, at the intermediate level of pCa, 5-6, for cardiac muscle, or at the coexistence of MgATP, MgADP and inorganic phosphate (Pi) at higher pCa (> 7) for both skeletal and cardiac muscles). Here, we summarize the characteristics of SPOC phenomena, especially focusing on the physiological significance of SPOC in cardiac muscle. We propose a new concept that the auto-oscillatory property, which is inherent to the contractile system of cardiac muscle, underlies the molecular mechanism of heartbeat. Additionally, we briefly describe the dynamic properties of the thin filaments, i.e., the Ca(2+)-dependent flexibility change of the thin filaments, which may be the basis for the SPOC phenomena. We also describe a newly developed experimental system named "bio-nanomuscle," in which tension is asserted on a single reconstituted thin filament by interacting with crossbridges in the A-band composed of the thick filament lattice. This newly devised hybrid system is expected to fill the gap between the single-molecule level and the muscle system.
Collapse
Affiliation(s)
- Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | | | | | | |
Collapse
|
25
|
Ishiwata S, Shimamoto Y, Sasaki D, Suzuki M. Molecular synchronization in actomyosin motors --from single molecule to muscle fiber via nanomuscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 565:25-35; discussion 35-6, 359-69. [PMID: 16106964 DOI: 10.1007/0-387-24990-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Shin'ichi Ishiwata
- Department of Physics, School of Science and Engineering, Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
26
|
Stehle R, Krüger M, Pfitzer G. Does cross-bridge activation determine the time course of myofibrillar relaxation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:469-79; discussion 479. [PMID: 15098692 DOI: 10.1007/978-1-4419-9029-7_43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of force-generating cross-bridges to activate the thin filament in cardiac muscle was tested by studying the effects of initial force and [MgADP] on force relaxation kinetics in subcellular myofibrillar bundles prepared from left ventricles of the guinea pig. Relaxation was initiated by rapidly reducing the [Ca(2+)] from pCa 4.5 to 7.5. Initiating relaxation from lower force levels during pre-steady-state force development did not significantly accelerate the kinetics of the force decay compared to relaxations initiated from steady-state force development. This suggests that the force-generating cross-bridges which become formed during maximally Ca(2+)-activated steady-state contractions do not maintain thin filament activation for significant enough times after Ca(2+)-removal to exert a rate-limiting influence on force relaxation kinetics. Adding 2 mM MgADP to solutions slowed down relaxation kinetics approximately 4-fold. To differentiate whether these slower kinetics result from either (1) MgADP favoring accumulation of cross-bridges during the preceding contraction in a state of activating capability or (2) slow-down of cross-bridge turnover by the presence of the product MgADP during relaxation, the [MgADP] was either increased or removed at the time of Ca(2+)-removal. The addition of 2 mM MgADP to activating solutions (subsequent relaxation in the absence of MgADP) slowed-down the kinetics of the initial, slow, linear force decay following Ca(2+)-removal approximately 1.5-fold, suggesting that the high [MgADP] during contraction favors formation of cross-bridges which contribute in rate-limiting early relaxation kinetics by transiently sustaining thin filament activation. On the other hand, the addition of 2 mM MgADP to the relaxing solution (preceding Ca(2+)-activation in absence of MgADP) slowed-down the kinetics of the initial force decay approximately 3-fold, more similar to the kinetics observed in the continuous presence of 2 mM MgADP both before and after Ca(2+)-removal. This suggest that, despite some influence of cross-bridge activation, the main effect of MgADP on relaxation kinetics results from product inhibition of cross-bridge turnover. In summary, whereas under certain conditions (high [MgADP]) cross-bridge activation of the thin filament can weakly take part in rate-limiting relaxation kinetics induced by complete Ca(2+)-removal, cross-bridge activation does not influence relaxation kinetics under more physiologically normal conditions.
Collapse
Affiliation(s)
- Robert Stehle
- Institute of Physiology, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany
| | | | | |
Collapse
|
27
|
Stehle R, Krüger M, Pfitzer G. Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes. Biophys J 2002; 83:2152-61. [PMID: 12324432 PMCID: PMC1302303 DOI: 10.1016/s0006-3495(02)73975-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Kinetics of force development and relaxation after rapid application and removal of Ca(2+) were measured by atomic force cantilevers on subcellular bundles of myofibrils prepared from guinea pig left ventricles. Changes in the structure of individual sarcomeres were simultaneously recorded by video microscopy. Upon Ca(2+) application, force developed with an exponential rate constant k(ACT) almost identical to k(TR), the rate constant of force redevelopment measured during steady-state Ca(2+) activation; this indicates that k(ACT) reflects isometric cross-bridge turnover kinetics. The kinetics of force relaxation after sudden Ca(2+) removal were markedly biphasic. An initial slow linear decline (rate constant k(LIN)) lasting for a time t(LIN) was abruptly followed by an ~20 times faster exponential decay (rate constant k(REL)). k(LIN) is similar to k(TR) measured at low activating [Ca(2+)], indicating that k(LIN) reflects isometric cross-bridge turnover kinetics under relaxed-like conditions (see also. Biophys. J. 83:2142-2151). Video microscopy revealed the following: invariably at t(LIN) a single sarcomere suddenly lengthened and returned to a relaxed-type structure. Originating from this sarcomere, structural relaxation propagated from one sarcomere to the next. Propagated sarcomeric relaxation, along with effects of stretch and P(i) on relaxation kinetics, supports an intersarcomeric chemomechanical coupling mechanism for rapid striated muscle relaxation in which cross-bridges conserve chemical energy by strain-induced rebinding of P(i).
Collapse
Affiliation(s)
- R Stehle
- Institute of Physiology, University Cologne, D-50931 Köln, Germany.
| | | | | |
Collapse
|
28
|
Fujita H, Sasaki D, Fukuda K, Ishiwata S. Myosin light chain 2 modulates MgADP-induced contraction in rabbit skeletal and bovine cardiac skinned muscle. J Physiol 2002; 542:221-9. [PMID: 12096063 PMCID: PMC2290394 DOI: 10.1113/jphysiol.2002.017111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skinned skeletal and cardiac muscle fibres can be activated by MgADP in the presence of MgATP without Ca2+; the isometric tension is developed in a sigmoidal manner with the addition of MgADP under relaxing conditions. The critical concentrations of MgADP for this MgADP-induced contraction are about 7.5 and 2.6 mM for skeletal and cardiac muscle fibres, respectively. To investigate whether muscle regulatory proteins, myosin light chain 2 (LC2) and troponin C (TnC), play a part in the MgADP-induced contraction, these proteins were partly extracted by treatment with trans-1,2-cyclohexanediamine-N,N,N',N'-tetraacetic acid (CDTA), a chelater of divalent cations, and the MgADP-tension relationship was examined in rabbit psoas and bovine cardiac skinned fibres. We found that the sigmoidal MgADP-tension relationship became hyperbolic after a partial extraction of LC2 (about 30 %) and TnC (about 70 %). Reconstitution with LC2 restored the sigmoidal MgADP-tension relationship of control fibres almost fully in both skeletal and cardiac fibres, whereas reconstitution with TnC alone had no effect. Furthermore, cardiac fibres reconstituted with skeletal LC2 exhibited an MgADP-tension relationship intermediate between skeletal and cardiac fibres. The partial extraction of LC2 and TnC resulted in a reduction of the inhibitory effect of inorganic phosphate (P(i)) on the MgADP-activated tension. Reconstitution with LC2 restored the original P(i)-tension relationship, whereas reconstitution with TnC had no effect. In other words, extraction of LC2 apparently increased the affinity of myosin for MgADP but decreased the affinity for P(i). These results demonstrate that LC2 modulates MgADP-induced activation of actomyosin interaction.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
29
|
Yamaguchi M, Takemori S. Activating efficiency of Ca2+ and cross-bridges as measured by phosphate analog release. Biophys J 2001; 80:371-8. [PMID: 11159409 PMCID: PMC1301240 DOI: 10.1016/s0006-3495(01)76021-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To assess the activating efficiency of Ca2+ and cross-bridges, the release rates of phosphate analogs from skinned fibers were estimated from the recovery of contractility and that of stiffness. Estimations were performed based on the assumptions that contractility was indicative of the population of analog-free myosin heads and that stiffness reflected the population of formed cross-bridges. Aluminofluoride (AlFx) and orthovanadate (Vi) were used as phosphate analogs with mechanically skinned fibers from rabbit psoas muscle. The use of the analogs enabled the functional assessment of activation level in the total absence of ATP. Fibers loaded with the analogs gradually recovered contractility and stiffness in normal plain rigor solution. The addition of Ca2+ to the plain rigor solution significantly accelerated their recovery, whereas ADP had no appreciable effect. ATP plus Ca2+(contracting condition) accelerated the recovery by several tens of times. These results indicate that the cross-bridges formed during contraction have prominent activating efficiency, which is indispensable to attain full activation. A comparison between the activating efficiency evaluated from stiffness and that from contractility suggested that Ca2+ is more potent in accelerating the binding of actin to analog-bound myosin heads whereas cross-bridges mainly accelerate the subsequent analog-releasing step.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
| | | |
Collapse
|
30
|
Fukuda N, Kajiwara H, Ishiwata S, Kurihara S. Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle. Circ Res 2000; 86:E1-6. [PMID: 10625312 DOI: 10.1161/01.res.86.1.e1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11% and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L) augmented maximal and submaximal Ca(2+)-activated tension and concomitantly diminished the SL-dependent shift of pCa(50) in a concentration-dependent manner. In contrast, pimobendan, a Ca(2+) sensitizer, which promotes Ca(2+) binding to troponin C (TnC), exhibited no effect on the SL-dependent shift of pCa(50), suggesting that TnC does not participate in the modulation of SL-dependent tension generation by MgADP. At a SL of 1. 9 microm, osmotic compression, produced by 5% wt/vol dextran (molecular weight approximately 464 000), reduced the muscle width by approximately 13% and shifted pCa(50) leftward to a similar degree as that observed when increasing SL to 2.3 microm. This favors the idea that a decrease in the interfilament lattice spacing is the primary mechanism for SL-dependent tension generation. MgADP (5 mmol/L) markedly attenuated the dextran-induced shift of pCa(50), and the degree of attenuation was similar to that observed in a study of varying SL. The actomyosin-ADP complex (AM.ADP) induced by exogenous MgADP has been reported to cooperatively promote myosin attachment to the thin filament. We hereby conclude that the increase in the number of force-generating crossbridges on a decrease in the lattice spacing is masked by the cooperative effect of AM.ADP, resulting in depressed SL-dependent tension generation.
Collapse
Affiliation(s)
- N Fukuda
- Department of Physiology (II), The Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Fukuda N, Fujita H, Fujita T, Ishiwata S. Regulatory roles of MgADP and calcium in tension development of skinned cardiac muscle. J Muscle Res Cell Motil 1998; 19:909-21. [PMID: 10047990 DOI: 10.1023/a:1005437517287] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the regulatory roles of MgADP and free Ca2+ in isometric tension development in skinned bovine cardiac muscle. We found that, in the relaxed state without free Ca2+, MgADP elicited a sigmoidal increase in active tension, as is the case in skeletal muscle (ADP-contraction). The critical MgADP concentration, at which the tension increment became half-maximal, increased in proportion to MgATP concentration, with a slope of approximately 1 for cardiac and 4 for skeletal muscle. Raising the free Ca2+ concentration decreased the critical MgADP concentration in proportion to the free Ca2+ concentration. In addition, the apparent Ca2+ sensitivity of tension development increased with MgADP, while decreasing with inorganic phosphate (Pi); MgADP suppressed the Ca(2+)-desensitizing effect of Pi in a concentration-dependent manner. These activating effects of MgADP were quantitatively assessed by means of a model based upon the kinetic scheme of actomyosin ATPase. These experimental results and model simulation suggest that the state of thin filaments is synergistically regulated by both the binding of Ca2+ to troponin and the formation of the actomyosin-ADP complex.
Collapse
Affiliation(s)
- N Fukuda
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan.
| | | | | | | |
Collapse
|
32
|
Fujita H, Ishiwata S. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers. Biophys J 1998; 75:1439-45. [PMID: 9726945 PMCID: PMC1299818 DOI: 10.1016/s0006-3495(98)74062-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Skinned skeletal and cardiac muscle fibers exhibits spontaneous oscillatory contraction (SPOC) in the presence of MgATP, MgADP, and inorganic phosphate (Pi)1 but the molecular mechanism underlying this phenomenon is not yet clear. We have investigated the role of regulatory proteins in SPOC using cardiac muscle fibers of which the actin filaments had been reconstituted without tropomyosin and troponin, according to a previously reported method (Fujita et al., 1996. Biophys. J. 71:2307-2318). That is, thin filaments in glycerinated cardiac muscle fibers were selectively removed by treatment with gelsolin. Then, by adding exogenous actin to these thin filament-free cardiac muscle fibers under polymerizing conditions, actin filaments were reconstituted. The actin filament-reconstituted cardiac muscle fibers generated active tension in a Ca(2+)-insensitive manner because of the lack of regulatory proteins. Herein we have developed a new solvent condition under which SPOC occurs, even in actin filament-reconstituted fibers: the coexistence of 2,3-butanedione 2-monoxime (BDM), a reversible inhibitor of actomyosin interactions, with MgATP, MgADP and Pi. The role of BDM in the mechanism of SPOC in the actin filament-reconstituted fibers was analogous to that of the inhibitory function of the tropomyosin-troponin complex (-Ca2+) in the control fibers. The present results suggest that SPOC is a phenomenon that is intrinsic to the actomyosin motor itself.
Collapse
Affiliation(s)
- H Fujita
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan
| | | |
Collapse
|
33
|
Stehle R, Lionne C, Travers F, Barman T. Probing the coupling of Ca2+ and rigor activation of rabbit psoas myofibrillar ATPase with ethylene glycol. J Muscle Res Cell Motil 1998; 19:381-92. [PMID: 9635281 DOI: 10.1023/a:1005397620720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have exploited solvent perturbation to probe the coupling of Ca2+ and rigor activation of the ATPase of myofibrils from rabbit psoas. Three techniques were used: overall myofibrillar ATPases by the rapid-flow quench method; kinetics of the interaction of ATP with myofibrils by fluorescence stopped-flow; and myofibrillar shortening by optical microscopy. Because of its extensive use with muscle systems, ranging from myosin subfragment-1 to muscle fibres, we chose 40% ethylene glycol as the relaxing agent. At 4 degrees C, the glycol had little effect on the myofibrillar ATPase at low [Ca2+], but at high [Ca2+] the activity was reduced 50-fold, close to the level found under relaxing conditions, and there was no shortening. However, the ATPase of chemically cross-linked myofibrils (permanently activated even without Ca2+) was reduced only 3-4-fold. The lesser reduction of the ATPase of permanently activated myofibrils was also observed in single turnover experiments in which activation occurs by a few heads in the rigor state activating the remaining heads. The addition of ADP, which also promotes strong head-thin filament interactions, also activated the ATPase but only in the presence of Ca2+. Further experiments revealed that in 40% ethylene glycol, Ca2+ does initiate shortening but only with the aid of strong interactions and at temperatures above 15 degrees C. This confirms that in the organized and intact myofibril, Ca2+ and rigor activation are coupled, as proposed previously for regulated actomyosin subfragment-1.
Collapse
Affiliation(s)
- R Stehle
- INSERM U 128, CNRS, Montpellier, France
| | | | | | | |
Collapse
|
34
|
Yasuda K, Shindo Y, Ishiwata S. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys J 1996; 70:1823-9. [PMID: 8785342 PMCID: PMC1225152 DOI: 10.1016/s0006-3495(96)79747-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An isotonic control system for studying dynamic properties of single myofibrils was developed to evaluate the change of sarcomere lengths in glycerinated skeletal myofibrils under conditions of spontaneous oscillatory contraction (SPOC) in the presence of inorganic phosphate and a high ADP-to-ATP ratio. Sarcomere length oscillated spontaneously with a peak-to-peak amplitude of about 0.5 microns under isotonic conditions in which the external loads were maintained constant at values between 1.5 x 10(4) and 3.5 x 10(4) N/m2. The shortening and yielding of sarcomeres occurred in concert, in contrast to the previously reported conditions (isomeric or auxotonic) under which the myofibrillar tension is allowed to oscillate. This synchronous SPOC appears to be at a higher level of synchrony than in the organized state of SPOC previously observed under auxotonic conditions. The period of sarcomere length oscillation did not largely depend on external load. The active tension under SPOC conditions increased as the sarcomere length increased from 2.1 to 3.2 microns, although it was still smaller than the tension under normal Ca2+ contraction (which is on the order of 10(5) N/m2). The synchronous SPOC implies that there is a mechanism for transmitting information between sarcomeres such that the state of activation of sarcomeres is affected by the state of adjacent sarcomeres. We conclude that the change of myofibrillar tension is not responsible for the SPOC of each sarcomere but that it affects the level of synchrony of sarcomere oscillations.
Collapse
Affiliation(s)
- K Yasuda
- Advanced Research Laboratory, Saitama, Japan.
| | | | | |
Collapse
|
35
|
Kara-Ivanov M, Eisenbach M, Caplan SR. Fluctuations in rotation rate of the flagellar motor of Escherichia coli. Biophys J 1995; 69:250-63. [PMID: 7669902 PMCID: PMC1236242 DOI: 10.1016/s0006-3495(95)79896-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of this work was to study the changes in rotation rate of the bacterial motor and to try to discriminate between various sources of these changes with the aim of understanding the mechanism of force generation better. To this end Escherichia coli cells were tethered and videotaped with brief stroboscopic light flashes. The records were scanned by means of a computerized motion analysis system, yielding cell size, radius of rotation, and accumulated angle of rotation as functions of time for each cell selected. In conformity with previous studies, fluctuations in the rotation rate of the flagellar motor were invariably found. Employing an exclusively counterclockwise rotating mutant ("gutted" RP1091 strain) and using power spectral density, autocorrelation and residual mean square angle analysis, we found that a simple superposition of rotational diffusion on a steady rotary motion is insufficient to describe the observed rotation. We observed two additional rotational components, one fluctuating (0.04-0.6 s) and one oscillating (0.8-7 s). However, the effective rotational diffusion coefficient obtained after taking these two components into account generally exceeded that calculated from external friction by two orders of magnitude. This is consistent with a model incorporating association and dissociation of force-generating units.
Collapse
Affiliation(s)
- M Kara-Ivanov
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
36
|
Thirlwell H, Corrie JE, Reid GP, Trentham DR, Ferenczi MA. Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase. Biophys J 1994; 67:2436-47. [PMID: 7696482 PMCID: PMC1225628 DOI: 10.1016/s0006-3495(94)80730-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The complex time course of tension decay was investigated in fast-twitch permeabilized rabbit muscle fibers when they were relaxed from the rigor state using photochemical generation of ATP. A novel caged ATP compound, the P3-3',5'-dimethoxybenzoin ester of ATP (DMB-caged ATP), as well as the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), have been used. DMB-caged ATP photolyzes at least three orders of magnitude more rapidly than NPE-caged ATP. The role of ADP on relaxation kinetics from rigor was examined by using apyrase to remove ADP from the rigor muscle solutions. The presence of Pi-sensitive states was investigated from the effect of Pi on relaxation. Rigor tension was varied enabling the influence of tension on the relaxation to be examined. The time course of relaxation was faster with DMB-caged ATP compared with NPE-caged ATP for concentrations of ATP released by photolysis greater than 0.7 mM. Most of the complexity in the relaxation tension records was caused by ADP. In the absence of ADP, tension decayed monotonically after photochemical release of ATP in a process whose rate was unaffected by Pi. In the presence of ADP, relaxation was more complex and tension passed through a maximum. A model invoking cooperative interactions involving ADP-containing myosin heads provides a reasonable description of the data.
Collapse
Affiliation(s)
- H Thirlwell
- National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Smith DA, Stephenson DG. Theory and observation of spontaneous oscillatory contractions in skeletal myofibrils. J Muscle Res Cell Motil 1994; 15:369-89. [PMID: 7806632 DOI: 10.1007/bf00122112] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
At low levels of activation, an isometrically-held myofibrillar preparation on the descending limb may exhibit persistent oscillations of period 1-6 s in tension and sarcomere lengths. We propose a sarcomeric theory of spontaneous oscillatory contraction, based on the phenomena of force creep and delayed length activation. The time delay leads to oscillations and controls their period. A computer model using these ideas simulates spontaneous oscillatory contraction for fixed-end fibres only if isometric tension capacity varies slightly along the fibre. The form of this inhomogeneity controls a diversity of spontaneous oscillatory contraction behaviour: the tension waveform can vary from large and sinusoidal to small-amplitude pulses or chaotic behaviour, and these variations are observed in slow-twitch soleus fibres from the same animal (rat). The model predicts that oscillatory and quiescent regions coexist in the fibre, with large-amplitude sawtooth waveforms in sarcomere length in the former as observed. It can also generate travelling-wave structures, similar to those found by the Tokyo group, in oscillating regions when there is a spatial gradient in isometric tension capacity. Phase discontinuities in sarcomere length occur near the oscillatory-quiescent boundary. Predictions for the Ca2+ concentrations and sarcomere lengths in which spontaneous oscillatory contraction occurs and for differences in the spontaneous oscillatory contraction frequencies of fast- and slow-twitch fibres compare well with experiment. Spontaneous oscillatory contraction is also predicted under isotonic conditions.
Collapse
Affiliation(s)
- D A Smith
- Department of Physics, Monash University, Clayton, Australia
| | | |
Collapse
|
38
|
Linke WA, Bartoo ML, Pollack GH. Spontaneous sarcomeric oscillations at intermediate activation levels in single isolated cardiac myofibrils. Circ Res 1993; 73:724-34. [PMID: 8370125 DOI: 10.1161/01.res.73.4.724] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Spontaneous oscillations observed in various heart muscle preparations are widely thought to be triggered by spontaneous release of Ca2+ from the sarcoplasmic reticulum (SR). Here, we report undamped propagated oscillations that occur in the absence of SR. In single cardiac myofibrils treated with Triton X-100 to remove SR and held isometrically, partial activation initiated periodic fluctuations of sarcomere length persisting up to 1 hour. Oscillation characteristics could be readily quantitated by virtue of the small size of the preparation. In an individual sarcomere, the oscillation cycle generally consisted of a slow shortening phase, followed by a phase of rapid lengthening. Oscillations usually propagated along the myofibril--frequently along the entire specimen--in a wavelike fashion (average velocity, 12.3 microns/s at 10 degrees C; Q10, approximately 1.3). The oscillation period was 2.30 and 1.72 seconds at 10 degrees and 20 degrees C, respectively, and was insensitive to stretch. The average oscillation amplitude, which was temperature independent, decreased with stretch from more than 20% of the mean sarcomere length at lengths below 2 microns to zero beyond a sarcomere length of 3 microns. Stiffening of the Z line by labeling with anti-alpha-actinin resulted in a dose-dependent decrease of oscillation amplitude, while the period was not affected. Tension oscillations could not be detected in single myofibrils but were frequently detectable in myofibril doublets, where the oscillation magnitude (approximately 1 microgram) was above the noise floor. Addition of 10 mumol/L ryanodine to the activating solution did not alter oscillation characteristics, as expected, since the oscillations are unrelated to SR calcium release. On the basis of our results, we consider a mechanism for the oscillations in which a length dependence of myofibrillar Ca2+ sensitivity and a dynamic Z-line structure are essential.
Collapse
Affiliation(s)
- W A Linke
- Center for Bioengineering, University of Washington, Seattle 98195
| | | | | |
Collapse
|
39
|
Ishiwata S, Anazawa T, Fujita T, Fukuda N, Shimizu H, Yasuda K. Spontaneous tension oscillation (SPOC) of muscle fibers and myofibrils minimum requirements for SPOC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:545-54; discussion 555-6. [PMID: 8109366 DOI: 10.1007/978-1-4615-2872-2_49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several years ago, we found a new chemical condition for the spontaneous oscillatory contraction of glycerinated skeletal muscle and named it "SPOC". The condition was such that MgATP coexists with its hydrolytic products, MgADP and inorganic phosphate (Pi). Micromolar concentrations of free Ca2+ were not necessarily required for this oscillation. Here, we summarize our recent work on the mechano-chemical properties of SPOC not only in glycerinated single fibers and myofibrils of skeletal muscle (fast type) but also in glycerinated small bundles of cardiac muscle; the isometric tension and its oscillation were examined at various concentrations of MgATP, MgADP and Pi while controlling the concentration of free Ca2+; we constructed a three-dimensional "state diagram" taken against the concentrations of MgADP, Pi and free Ca2+. The 3-D state diagram clearly showed the existence of three regions corresponding to three muscular states; the SPOC region was located in between the regions for contraction (without oscillation) and relaxation. Based on these results, we discuss the mechanism of SPOC, especially the minimum requirements for its occurrence. Finally, we suggest that slow shortening and quick lengthening repeatedly occur every half-sarcomere through the transition between the two states, where weak-force-generating complexes or strong-force-generating complexes are dominant; the transition may be induced by a coupling with the mechanical states of cross-bridges and/or thin filaments.
Collapse
Affiliation(s)
- S Ishiwata
- Department of Physics School of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Anazawa T, Yasuda K, Ishiwata S. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis. Biophys J 1992; 61:1099-108. [PMID: 1600075 PMCID: PMC1260374 DOI: 10.1016/s0006-3495(92)81919-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have devised a simple method for measuring tension development of single myofibrils by micromanipulation with a pair of glass micro-needles. The tension was estimated from the deflection of a flexible needle under an inverted phase-contrast microscope equipped with an image processor, so that the tension development is always accompanied by the shortening of the myofibril (auxotonic condition) in the present setup. The advantage of this method is that the measurement of tension (1/30 s for time resolution and about 0.05 micrograms for accuracy of tension measurement; 0.05 microns as a spatial resolution for displacement of the micro-needle) and the observation of sarcomere structure are possible at the same time, and the technique to hold myofibrils, even single myofibrils, is very simple. This method has been applied to study the tension development of glycerinated skeletal myofibrils under the condition where spontaneous oscillation of sarcomeres is induced, i.e., the coexistence of MgATP, MgADP and inorganic phosphate without free Ca2+. Under this condition, we found that the tension of myofibrils spontaneously oscillates accompanied by the oscillation of sarcomere length with a main period of a few seconds; the period was lengthened and shortened with stretch and release of myofibrils. A possible mechanism of the oscillation is discussed.
Collapse
Affiliation(s)
- T Anazawa
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | |
Collapse
|