1
|
Chaisson EH, Heberle FA, Doktorova M. Quantifying Acyl Chain Interdigitation in Simulated Bilayers via Direct Transbilayer Interactions. J Chem Inf Model 2025; 65:3879-3885. [PMID: 40237313 DOI: 10.1021/acs.jcim.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In a lipid bilayer, the interactions between the lipid hydrocarbon chains from opposing leaflets can influence membrane properties. These interactions include the phenomenon of interdigitation, in which an acyl chain of one leaflet extends past the bilayer midplane and into the opposing leaflet. While static interdigitation is well understood in gel-phase bilayers from X-ray diffraction measurements, much less is known about dynamic interdigitation in fluid phases. In this regard, atomistic molecular dynamics simulations can provide mechanistic information on interleaflet interactions that can be used to generate experimentally testable hypotheses. To address limitations of existing computational methodologies that provide results that are either indirect or averaged over time and space, here we introduce three novel ways of quantifying the extent of chain interdigitation. Our protocols include the analysis of instantaneous interactions at the level of individual carbon atoms, thus providing temporal and spatial resolution for a more nuanced picture of dynamic interdigitation. We compare the methods on bilayers composed of lipids with an equal total number of carbon atoms, but different mismatches between the sn-1 and sn-2 chain lengths. We find that these metrics, which are based on freely available software packages and are easy to implement, provide complementary details that help characterize various features of lipid-lipid contacts at the bilayer midplane. The new frameworks thus allow for a deeper look at fundamental molecular mechanisms underlying bilayer structure and dynamics and present a valuable expansion of the membrane biophysics toolkit.
Collapse
Affiliation(s)
- Emily H Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-171 65 Solna, Sweden
| | - Milka Doktorova
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-171 65 Solna, Sweden
| |
Collapse
|
2
|
Chaisson EH, Heberle FA, Doktorova M. QUANTIFYING ACYL CHAIN INTERDIGITATION IN SIMULATED BILAYERS VIA DIRECT TRANSBILAYER INTERACTIONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629658. [PMID: 40236011 PMCID: PMC11996333 DOI: 10.1101/2024.12.20.629658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In a lipid bilayer, the interactions between lipid hydrocarbon chains from opposing leaflets can influence membrane properties. These interactions include the phenomenon of interdigitation, in which an acyl chain of one leaflet extends past the bilayer midplane and into the opposing leaflet. While static interdigitation is well understood in gel phase bilayers from X-ray diffraction measurements, much less is known about dynamic interdigitation in fluid phases. In this regard, atomistic molecular dynamics simulations can provide mechanistic information on interleaflet interactions that can be used to generate experimentally testable hypotheses. To address limitations of existing computational methodologies which provide results that are either indirect or averaged over time and space, here we introduce three novel ways of quantifying the extent of chain interdigitation. Our protocols include the analysis of instantaneous interactions at the level of individual carbon atoms, thus providing temporal and spatial resolution for a more nuanced picture of dynamic interdigitation. We compare the methods on bilayers composed of lipids with equal total number of carbon atoms but different mismatches between the sn-1 and sn-2 chain lengths. We find that these metrics, which are based on freely available software packages and are easy to implement, provide complementary details that help characterize various features of lipid-lipid contacts at the bilayer midplane. The new frameworks thus allow for a deeper look at fundamental molecular mechanisms underlying bilayer structure and dynamics, and present a valuable expansion of the membrane biophysics toolkit.
Collapse
|
3
|
Mandal T, Brandt N, Tempra C, Javanainen M, Fábián B, Chiantia S. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184388. [PMID: 39401729 DOI: 10.1016/j.bbamem.2024.184388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets - often referred to as interleaflet coupling - play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Titas Mandal
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Nadine Brandt
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Unit of Physics, Tampere University, 33720 Tampere, Finland
| | - Balázs Fábián
- Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-Street 3, 60438 Frankfurt am Main, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
4
|
Nanoscale Bending Dynamics in Mixed-Chain Lipid Membranes. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lipids that have two tails of different lengths are found throughout biomembranes in nature, yet the effects of this asymmetry on the membrane properties are not well understood, especially when it comes to the membrane dynamics. Here we study the nanoscale bending fluctuations in model mixed-chain 14:0–18:0 PC (MSPC) and 18:0–14:0 PC (SMPC) lipid bilayers using neutron spin echo (NSE) spectroscopy. We find that despite the partial interdigitation that is known to persist in the fluid phase of these membranes, the collective fluctuations are enhanced on timescales of tens of nanoseconds, and the chain-asymmetric lipid bilayers are softer than an analogous chain-symmetric lipid bilayer with the same average number of carbons in the acyl tails, di-16:0 PC (DPPC). Quantitative comparison of the NSE results suggests that the enhanced bending fluctuations at the nanosecond timescales are consistent with experimental and computational studies that showed the compressibility moduli of chain-asymmetric lipid membranes are 20% to 40% lower than chain-symmetric lipid membranes. These studies add to growing evidence that the partial interdigitation in mixed-chain lipid membranes is highly dynamic in the fluid phase and impacts membrane dynamic processes from the molecular to mesoscopic length scales without significantly changing the bilayer thickness or area per lipid.
Collapse
|
5
|
Frewein MPK, Piller P, Semeraro EF, Batchu KC, Heberle FA, Scott HL, Gerelli Y, Porcar L, Pabst G. Interdigitation-Induced Order and Disorder in Asymmetric Membranes. J Membr Biol 2022; 255:407-421. [PMID: 35471665 PMCID: PMC9581838 DOI: 10.1007/s00232-022-00234-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/26/2022] [Indexed: 12/31/2022]
Abstract
We studied the transleaflet coupling of compositionally asymmetric liposomes in the fluid phase. The vesicles were produced by cyclodextrin-mediated lipid exchange and contained dipalmitoyl phosphatidylcholine (DPPC) in the inner leaflet and different mixed-chain phosphatidylcholines (PCs) as well as milk sphingomyelin (MSM) in the outer leaflet. In order to jointly analyze the obtained small-angle neutron and X-ray scattering data, we adapted existing models of trans-bilayer structures to measure the overlap of the hydrocarbon chain termini by exploiting the contrast of the terminal methyl ends in X-ray scattering. In all studied systems, the bilayer-asymmetry has large effects on the lipid packing density. Fully saturated mixed-chain PCs interdigitate into the DPPC-containing leaflet and evoke disorder in one or both leaflets. The long saturated acyl chains of MSM penetrate even deeper into the opposing leaflet, which in turn has an ordering effect on the whole bilayer. These results are qualitatively understood in terms of a balance of entropic repulsion of fluctuating hydrocarbon chain termini and van der Waals forces, which is modulated by the interdigitation depth. Monounsaturated PCs in the outer leaflet also induce disorder in DPPC despite vestigial or even absent interdigitation. Instead, the transleaflet coupling appears to emerge here from a matching of the inner leaflet lipids to the larger lateral lipid area of the outer leaflet lipids.
Collapse
Affiliation(s)
- Moritz P K Frewein
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010, Graz, Austria
- Institut Laue-Langevin, 38042, Grenoble, France
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, 8010, Graz, Austria
| | - Paulina Piller
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, 8010, Graz, Austria
| | - Enrico F Semeraro
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, 8010, Graz, Austria
| | | | | | - Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | | | - Georg Pabst
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, 8010, Graz, Austria.
| |
Collapse
|
6
|
Reinhard J, Mattes C, Väth K, Radanović T, Surma MA, Klose C, Ernst R. A Quantitative Analysis of Cellular Lipid Compositions During Acute Proteotoxic ER Stress Reveals Specificity in the Production of Asymmetric Lipids. Front Cell Dev Biol 2020; 8:756. [PMID: 32850859 PMCID: PMC7417482 DOI: 10.3389/fcell.2020.00756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) is central to endoplasmic reticulum (ER) homeostasis by controlling its size and protein folding capacity. When activated by unfolded proteins in the ER-lumen or aberrant lipid compositions, the UPR adjusts the expression of hundreds of target genes to counteract ER stress. The proteotoxic drugs dithiothreitol (DTT) and tunicamycin (TM) are commonly used to induce misfolding of proteins in the ER and to study the UPR. However, their potential impact on the cellular lipid composition has never been systematically addressed. Here, we report the quantitative, cellular lipid composition of Saccharomyces cerevisiae during acute, proteotoxic stress in both rich and synthetic media. We show that DTT causes rapid remodeling of the lipidome when used in rich medium at growth-inhibitory concentrations, while TM has only a marginal impact on the lipidome under our conditions of cultivation. We formulate recommendations on how to study UPR activation by proteotoxic stress without interferences from a perturbed lipid metabolism. Furthermore, our data suggest an intricate connection between the cellular growth rate, the abundance of the ER, and the metabolism of fatty acids. We show that Saccharomyces cerevisiae can produce asymmetric lipids with two saturated fatty acyl chains differing substantially in length. These observations indicate that the pairing of saturated fatty acyl chains is tightly controlled and suggest an evolutionary conservation of asymmetric lipids and their biosynthetic machineries.
Collapse
Affiliation(s)
- John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Kristina Väth
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Toni Radanović
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | | | | | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
7
|
Makarova M, Peter M, Balogh G, Glatz A, MacRae JI, Lopez Mora N, Booth P, Makeyev E, Vigh L, Oliferenko S. Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome. Curr Biol 2020; 30:367-380.e8. [PMID: 31956022 PMCID: PMC6997885 DOI: 10.1016/j.cub.2019.11.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.
Collapse
Affiliation(s)
- Maria Makarova
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nestor Lopez Mora
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Paula Booth
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Eugene Makeyev
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
8
|
Balleza D, Mescola A, Marín-Medina N, Ragazzini G, Pieruccini M, Facci P, Alessandrini A. Complex Phase Behavior of GUVs Containing Different Sphingomyelins. Biophys J 2019; 116:503-517. [PMID: 30665697 DOI: 10.1016/j.bpj.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023] Open
Abstract
Understanding the lateral organization of biological membranes plays a key role on the road to fully appreciate the physiological functions of this fundamental barrier between the inside and outside regions of a cell. Ternary lipid bilayers composed of a high and a low melting temperature lipid and cholesterol represent a model system that mimics some of the important thermodynamical features of much more complex lipid mixtures such as those found in mammal membranes. The phase diagram of these ternary mixtures can be studied exploiting fluorescence microscopy in giant unilamellar vesicles, and it is typically expected to give rise, for specific combinations of composition and temperature, to regions of two-phase coexistence and a region with three-phase coexistence, namely, the liquid-ordered, liquid-disordered, and solid phases. Whereas the observation of two-phase coexistence is routinely possible using fluorescence microscopy, the three-phase region is more elusive to study. In this article, we show that particular lipid mixtures containing diphytanoyl-phosphatidylcholine and cholesterol plus different types of sphingomyelin (SM) are prone to produce bilayer regions with more than two levels of fluorescence intensity. We found that these intensity levels occur at low temperature and are linked to the copresence of long and asymmetric chains in SMs and diphytanoyl-phosphatidylcholine in the lipid mixtures. We discuss the possible interpretations for this observation in terms of bilayer phase organization in the presence of sphingolipids. Additionally, we also show that in some cases, liposomes in the three-phase coexistence state exhibit extreme sensitivity to lateral tension. We hypothesize that the appearance of the different phases is related to the asymmetric structure of SMs and to interdigitation effects.
Collapse
Affiliation(s)
| | | | | | - Gregorio Ragazzini
- Istituto Nanoscienze CNR, S3, Modena, Italy; Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Andrea Alessandrini
- Istituto Nanoscienze CNR, S3, Modena, Italy; Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
9
|
Et-Thakafy O, Delorme N, Guyomarc’h F, Lopez C. Mechanical properties of milk sphingomyelin bilayer membranes in the gel phase: Effects of naturally complex heterogeneity, saturation and acyl chain length investigated on liposomes using AFM. Chem Phys Lipids 2018; 210:47-59. [DOI: 10.1016/j.chemphyslip.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022]
|
10
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2017; 4:155. [PMID: 28119914 PMCID: PMC5222840 DOI: 10.3389/fcell.2016.00155] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
11
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2016. [PMID: 28119914 DOI: 10.3389/fcell.2016.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
12
|
Saha S, Anilkumar AA, Mayor S. GPI-anchored protein organization and dynamics at the cell surface. J Lipid Res 2015; 57:159-75. [PMID: 26394904 DOI: 10.1194/jlr.r062885] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite.
Collapse
Affiliation(s)
- Suvrajit Saha
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore 560065, India
| | - Anupama Ambika Anilkumar
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore 560065, India Shanmugha Arts, Science, Technology and Research Academy, Thanjavur 613401, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore 560065, India Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore 560065, India
| |
Collapse
|
13
|
Chiantia S, London E. Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophys J 2013; 103:2311-9. [PMID: 23283230 DOI: 10.1016/j.bpj.2012.10.033] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 01/03/2023] Open
Abstract
A long-standing question about membrane structure and function is the degree to which the physical properties of the inner and outer leaflets of a bilayer are coupled to one another. Using our recently developed methods to prepare asymmetric vesicles, coupling was investigated for vesicles containing phosphatidylcholine (PC) in the inner leaflet and sphingomyelin (SM) in the outer leaflet. The coupling of both lateral diffusion and membrane order was monitored as a function of PC and SM acyl chain structure. The presence in the outer leaflet of brain SM, which decreased outer-leaflet lateral diffusion, had little effect upon lateral diffusion in inner leaflets composed of dioleoyl PC (i.e., diffusion was only weakly coupled in the two leaflets) but did greatly reduce lateral diffusion in inner leaflets composed of PC with one saturated and one oleoyl acyl chain (i.e., diffusion was strongly coupled in these cases). In addition, reduced outer-leaflet diffusion upon introduction of outer-leaflet milk SM or a synthetic C24:0 SM, both of which have long interdigitating acyl chains, also greatly reduce diffusion of inner leaflets composed of dioleoyl PC, indicative of strong coupling. Strikingly, several assays showed that the ordering of the outer leaflet induced by the presence of SM was not reflected in increased lipid order in the inner leaflet, i.e., there was no detectable coupling between inner and outer leaflet membrane order. We propose a model for how lateral diffusion can be coupled in opposite leaflets and discuss how this might impact membrane function.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | | |
Collapse
|
14
|
Horner A, Akimov SA, Pohl P. Long and short lipid molecules experience the same interleaflet drag in lipid bilayers. PHYSICAL REVIEW LETTERS 2013; 110:268101. [PMID: 23848924 PMCID: PMC4486369 DOI: 10.1103/physrevlett.110.268101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 05/29/2023]
Abstract
Membrane interleaflet viscosity ηe affects tether formation, phase separation into domains, cell shape changes, and budding. Contrary to the expected contribution to interleaflet coupling from interdigitation, the slide of lipid patches in opposing monolayers conferred the same value ηe≈3×10(9) J s m-4 for the friction experienced by the ends of both short and long chain fluorescent lipid analogues. Consistent with the weak dependence of the translational diffusion coefficient on lipid length, the in-layer viscosity was, albeit length dependent, much smaller than ηe.
Collapse
Affiliation(s)
- Andreas Horner
- Institut für Biophysik, Johannes Kepler Universität, Gruberstrasse 40, 4020 Linz, Austria
| | - Sergey A. Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospekt 31/4, Moscow 119071, Russian Federation
- National University of Science and Technology “MISiS”, Leninskiy prospekt 4, Moscow 119049, Russian Federation
| | - Peter Pohl
- Institut für Biophysik, Johannes Kepler Universität, Gruberstrasse 40, 4020 Linz, Austria
| |
Collapse
|
15
|
Mori K, Mahmood MI, Neya S, Matsuzaki K, Hoshino T. Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J Phys Chem B 2012; 116:5111-21. [PMID: 22494278 DOI: 10.1021/jp207881k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
GM1 gangliosides form a microdomain with sphingomyeline (SM) and cholesterol (Chol) and are deeply involved in the aggregation of amyloid beta (Aβ) peptides on neural membranes. We performed molecular dynamics simulations on two kinds of lipid bilayers containing GM1 ganglioside: GM1/SM/Chol and GM1/POPC. Both 10 and 100 ns simulations and another set of 10 ns simulations with different initial lipid arrangement essentially showed the same computational results. GM1 molecules in the GM1/SM/Chol membrane were condensed, whereas those in GM1/POPC membrane scattered. That is, the formation of GM1 cluster was observed only on the GM1/SM/Chol mixed membrane. There appeared numerous hydrogen bonds among glycan portions of the GM1 clusters due to the condensation. A comparison in distribution of lipid molecules between the two kinds of membranes suggested that cholesterol had important roles to prevent the membrane from interdigitation and to stabilize other lipids for interacting with each other. This property of cholesterol promotes the formation of GM1 clusters.
Collapse
Affiliation(s)
- Kenichi Mori
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | |
Collapse
|
16
|
Goertz MP, Marks LE, Montaño GA. Biomimetic monolayer and bilayer membranes made from amphiphilic block copolymer micelles. ACS NANO 2012; 6:1532-1540. [PMID: 22251101 DOI: 10.1021/nn204491q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The deposition of amphiphilic poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) copolymer micelles is demonstrated on solid substrates. Depending upon surface chemistry, micelle adsorption creates either monolayer or bilayer films. Lateral diffusion measurements reveal that strong coupling between hydrophilic surfaces and PEO blocks creates immobile bilayers, while monolayers retain the fluidity previously observed in vesicular assemblies.
Collapse
Affiliation(s)
- Matthew P Goertz
- Center for Integrated Nanotechnologies, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, United States.
| | | | | |
Collapse
|
17
|
Zhao W, Gurtovenko AA, Vattulainen I, Karttunen M. Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics. J Phys Chem B 2011; 116:269-76. [DOI: 10.1021/jp210619q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wei Zhao
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Andrey A. Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect
31, V.O., St. Petersburg 199004, Russia
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101
Tampere, Finland; Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076
Aalto, Finland; and MEMPHYS−Center for Biomembrane Physics,
Department of Physics and Chemistry, University of Southern Denmark, Odense, DK-5230 Denmark
| | - Mikko Karttunen
- Department of Chemistry, University of Waterloo, 200 University Avenue West,
Waterloo, Ontario, Canada N6A 5B7
| |
Collapse
|
18
|
Hu PC, Li S, Malmstadt N. Microfluidic fabrication of asymmetric giant lipid vesicles. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1434-40. [PMID: 21449588 PMCID: PMC3102129 DOI: 10.1021/am101191d] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have developed a microfluidic technology for the fabrication of compositionally asymmetric giant unilamellar vesicles (GUVs). The vesicles are assembled in two independent steps. In each step, a lipid monolayer is formed at a water-oil interface. The first monolayer is formed inside of a microfluidic device with a multiphase droplet flow configuration consisting of a continuous oil stream in which water droplets are formed. These droplets are dispensed into a vessel containing a layer of oil over a layer of water. The second lipid monolayer is formed by transferring the droplets through this second oil-water interface by centrifugation. By dissolving different lipid compositions in the different oil phases, the composition of each leaflet of the resulting lipid bilayer can be controlled. We have demonstrated membrane asymmetry by showing differential fluorescence quenching of labeled lipids in each leaflet and by demonstrating that asymmetric GUVs will bind an avidin-coated surface only when biotinylated lipids are targeted to the outer leaflet. In addition, we have demonstrated the successful asymmetric targeting of phosphatidylserine lipids to each leaflet, producing membranes with a biomimetic and physiologically relevant compositional asymmetry.
Collapse
Affiliation(s)
- Peichi C Hu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
19
|
Pantano DA, Klein ML, Discher DE, Moore PB. Morphologies of charged diblock copolymers simulated with a neutral coarse-grained model. J Phys Chem B 2011; 115:4689-95. [PMID: 21462939 DOI: 10.1021/jp201085c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the results of coarse grained molecular dynamics simulation using a charge free model that is able to capture different regions of the morphological phase diagram of charged diblock copolymers. Specifically, we were able to reproduce many phases of the poly(acrylic acid)-(1,4)-polybutadiene (PAA-PBA) diblock copolymer, Ca(2+) and water systems as a function of pH and calcium concentration with short-range LJ type potentials. The morphologies observed range from bilayers to cylinders to spherical micelles. Such polyanionic/cationic amphiphiles in water typically present multiple challenges for molecular simulations, particularly due to the many charge interactions that are long ranged and computationally costly. Further, it is precisely these interactions that are thought to modulate large amphiphile assemblies of interest such as lipid rafts. However, our model is able to reproduce different morphologies due to pH and with or without the addition of Ca(2+) as well as the lateral phase segregation and the domain registration observed in neutral and charged diblock copolymer mixtures. The results suggest that the overall effect of charges is a local structural rearrangement that renormalizes the steric repulsion between the headgroups. This simple model, which is devoid of charges, is able to reproduce the complex phase diagram and can be used to investigate collective phenomena in these charged systems such as domain formation and registration or colocalization of lipid rafts across bilayer leaflets.
Collapse
Affiliation(s)
- Diego A Pantano
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
20
|
Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:405-14. [DOI: 10.1016/j.bbamem.2010.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/19/2022]
|
21
|
Horner A, Antonenko YN, Pohl P. Coupled diffusion of peripherally bound peptides along the outer and inner membrane leaflets. Biophys J 2009; 96:2689-95. [PMID: 19348751 DOI: 10.1016/j.bpj.2008.12.3931] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/19/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
Transmembrane signaling implies that peripheral protein binding to one leaflet be detected by the opposite leaflet. Therefore, protein recruitment into preexisting cholesterol and sphingolipid rich platforms may be required. However, no clear molecular picture has evolved about how these rafts in both leaflets are connected. By using planar lipid bilayers, we show that the peripheral binding of a charged molecule (poly-lysine, PLL) is detected at the other side of the bilayer without involvement of raft lipids. The diffusion coefficient, D(P), of PLL differed by a factor of radical2 when PLL absorbed to one or to both leaflets of planar membranes. Fluorescence correlation spectroscopy showed that the changes of the lipid diffusion coefficient, D(M), were even more pronounced. Although D(M) remained larger than D(P) on PLL binding to the first membrane leaflet, D(M) dropped to D(P) on PLL binding to both leaflets, which indicated that the lipids sandwiched between two PLL molecules had formed a nanodomain. Due to its small area of approximately 20 nm(2) membrane electrostriction or leaflet interaction at bilayer midplane can only make a small contribution to interleaflet coupling. The tendency of the system to maximize the area where the membrane is free to undulate seems to be more important. As a spot with increased bending stiffness, the PLL bound patch in one leaflet attracts a stiffening additive on the other leaflet. That is to say, instead of suppressing undulations in two spots, two opposing PLL molecules migrate along a membrane at matching positions and suppress these undulations in a single spot. The gain in undulation energy is larger than the energy required for the alignment of two small PLL domains in opposite leafs and their coordinated diffusion. We propose that this type of mechanical interaction between two membrane separated ligands generally contributes to transmembrane signaling.
Collapse
Affiliation(s)
- Andreas Horner
- Institut für Biophysik, Johannes Kepler Universität Linz, Linz, Austria
| | | | | |
Collapse
|
22
|
Abstract
Whereas it appears to be generally believed that the leaflets of a phospholipid/cholesterol bilayer interact with each other in some way, the exact mechanism remains undetermined. Various suggestions have been invoked, including chain interdigitation and rapid translocation of cholesterol. There is little, if any, direct evidence supporting or excluding these hypotheses. In this letter, I examine a few different possibilities. Chain interdigitation is unlikely to be significant. Cholesterol translocation meets some, though not all, of the relevant criteria, and probably plays an important role. The simplest explanation is that the layers interact at the midplane in the same way that the ordered and disordered liquid phases common in these systems interact at their interfaces. A quick estimate of that interfacial energy shows that this is a very likely candidate. The consequences of such an energy in biological systems are briefly considered.
Collapse
|
23
|
Caracciolo G, Pozzi D, Caminiti R, Mancini G, Luciani P, Amenitsch H. Observation of a rectangular DNA superlattice in the liquid-crystalline phase of cationic lipid/DNA complexes. J Am Chem Soc 2007; 129:10092-3. [PMID: 17663556 DOI: 10.1021/ja073890s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulio Caracciolo
- Department of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate.
Collapse
Affiliation(s)
- Vincent Schram
- Department of Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | | |
Collapse
|
25
|
Abstract
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate.
Collapse
|
26
|
Lee KW, Lee CH, Oh DK, Kang JK, Eui Lee C, Kim J. Low-frequency collective chain dynamics in a model biomembrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 64:042903. [PMID: 11690071 DOI: 10.1103/physreve.64.042903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2001] [Revised: 07/06/2001] [Indexed: 05/23/2023]
Abstract
Proton NMR was employed as a probe for the collective hydrocarbon chain dynamics in decylammonium chloride (C10H21NH3Cl), a model biomembrane undergoing an irreversible structural phase transition sequence. Our rotating frame spin-lattice relaxation measurements revealed a low-frequency critical collective chain dynamics in the kHz regime, which is associated with the interdigitated to noninterdigitated chain configurational phase transition.
Collapse
Affiliation(s)
- K W Lee
- Department of Physics, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Keller SL, Anderson TG, McConnell HM. Miscibility critical pressures in monolayers of ternary lipid mixtures. Biophys J 2000; 79:2033-42. [PMID: 11023907 PMCID: PMC1301093 DOI: 10.1016/s0006-3495(00)76451-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
When phospholipids are mixed with cholesterol in a monolayer at an air-water interface, coexisting 2-dimensional liquid phases can be observed if the surface pressure, pi, is lower than the miscibility critical pressure, pi(c). Ternary mixtures of two phospholipid species with dihydrocholesterol have been reported to have critical pressures that are linearly proportional to the relative composition of the phospholipids. However, we report here that, if the acyl chains of the two phospholipids differ significantly in length or unsaturation, the behavior is markedly different. In this case, the critical pressure of the ternary mixture can be remarkably high, exceeding the critical pressures of the corresponding binary mixtures. High critical pressures are also seen in binary mixtures of phospholipid and dihydrocholesterol when the two acyl chains of the phospholipid differ sufficiently in length. Using regular solution theory, we interpret the elevated critical pressures of these mixtures as an attractive interaction between the phospholipid components.
Collapse
Affiliation(s)
- S L Keller
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
28
|
Hao YH, Zhang GJ, Chen JW. The structure and function of gramicidin A embedded in interdigitated bilayer. Chem Phys Lipids 2000; 104:207-15. [PMID: 10669312 DOI: 10.1016/s0009-3084(99)00126-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of phase transition from normal to interdigitated lipid bilayer on the function and structure of membrane proteins were studied using linear gramicidin (gramicidin A) as a model. Interdigitated bilayer structure of dipalmitoylphosphatidylglycerol (DPPG) liposomes that was induced by atropine could not be changed notably by intercalating of gramicidin. The K+ transportation of gramicidin in both normal and interdigitated bilayer was assayed by measuring the membrane potential. Results showed that gramicidin in interdigitated bilayer exhibited lower transport capability. Intrinsic fluorescence spectrum of gramicidin in interdigitated bilayer blue-shifted 2.8 nm from the spectrum in normal bilayer, which means that interdigitation provides a more hydrophobic environment for gramicidin. Circular dichroism measurement results indicated that the conformation of gramicidin in interdigitated bilayer is not the typical beta6.3 helix as in the normal bilayer. The results suggested that the interdigitated lipid bilayer might largely affect the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Y H Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, People's Republic of China
| | | | | |
Collapse
|
29
|
Ali S, Smaby JM, Momsen MM, Brockman HL, Brown RE. Acyl chain-length asymmetry alters the interfacial elastic interactions of phosphatidylcholines. Biophys J 1998; 74:338-48. [PMID: 9449334 PMCID: PMC1299386 DOI: 10.1016/s0006-3495(98)77791-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylcholines (PCs) with stearoyl (18:0) sn-1 chains and variable-length, saturated sn-2 acyl chains were synthesized and investigated using a Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at various constant temperatures between 10 degrees C and 30 degrees C. Over this temperature range, 18:0-10:0 PC displayed only liquid-expanded behavior. In contrast, di-14:0 PC displayed liquid-expanded behavior at 24 degrees C and 30 degrees C, but two-dimensional phase transitions were evident at 20 degrees C, 15 degrees C, and 10 degrees C. The average molecular area of 18:0-10:0 PC was larger than that of liquid-expanded di-14:0 PC at equivalent surface pressures, and the shapes of their liquid expanded isotherms were somewhat dissimilar. Analysis of the elastic moduli of area compressibility (Cs(-1)) as a function of molecular area revealed shallower slopes in the semilog plots of 18:0-10:0 PC compared to di-14:0 PC. At membrane-like surface pressures (e.g., 30 mN/m), 18:0-10:0 PC was 20-25% more elastic (in an in-plane sense) than di-14:0 PC. Other PCs with varying degrees of chain-length asymmetry (18:0-8:0 PC, 18:0-12:0 PC, 18:0-14:0 PC, 18:0-16:0 PC) were also investigated to determine whether the higher in-plane elasticity of fluid-phase 18:0-10:0 PC is a common feature of PCs with asymmetrical chain lengths. Two-dimensional phase transitions in 18:0-14:0 PC and 18:0-16:0 PC prevented meaningful comparison with other fluid-phase PCs at 30 mN/m. However, the Cs(-1) values for fluid-phase 18:0-8:0 PC and 18:0-12:0 PC were similar to that of 18:0-10:0 PC (85-90 mN/m). These values showed chain-length asymmetrical PCs to have 20-25% greater in-plane elasticity than fluid-phase PCs with mono- or diunsaturated acyl chains.
Collapse
Affiliation(s)
- S Ali
- The Hormel Institute, University of Minnesota, Austin 55912, USA.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Lutz J, Romano-Götsch R, Escrieut C, Fourmy D, Mathä B, Müller G, Kessler H, Moroder L. Mapping of ligand binding sites of the cholecystokinin-B/gastrin receptor with lipo-gastrin peptides and molecular modeling. Biopolymers 1997; 41:799-817. [PMID: 9128441 DOI: 10.1002/(sici)1097-0282(199706)41:7<799::aid-bip8>3.0.co;2-k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Double-tailed lipo-tetragastrin derivatives of increasing fatty acid chain length were used to identify the minimum size of the fatty acid moieties (> or = C10) that restricts the access to the CCK-B/gastrin (CCK: cholecystokinin) receptor via a membrane-bound pathway. Then dimyristoyl-mercaptoglycerol/maleoyl-gastrin adducts of increasing peptide chain length were synthesized to define the minimal peptide size required for receptor binding affinities comparable, to those of underivatized gastrin peptides despite anchorage of the lipid tails in the membrane bilayer. The experimental results indicated that most of the little-gastrin sequence, i.e., 2-17, is needed for optimal interaction of the molecule with the binding cleft of the receptor. From these data experimentally based restraints could be derived for docking of lipo-gastrin onto a CCK-B/gastrin receptor model applying molecular dynamics simulations and energy minimizations. In the receptor-bound state some of the secondary structure elements of gastrin as determined by nmr analysis of gastrin-peptides in low dielectric constant media are retained. The N-terminal gastrin portion interacts in a more or less extended conformation with the receptor surface, and upon a sharp kink at the Ala-Tyr dipeptide portion the C-terminal pentapeptide amide part inserts deeply into the helix bundle. Besides Arg-57 on top of helix 1 of the receptor, for which no potential interaction with the ligand could be detected, the other amino acid residues identified by mutagenesis studies as involved in gastrin recognition were found to interact with the C-terminal portion of gastrin. Even taking into account the strong limitations of such a model system, it represents an interesting tool for rationalizing the experimental results of the extensive structure-function studies performed previously on gastrin and to delineate more precisely the putative ligand binding site on the extracellular face of the receptor.
Collapse
Affiliation(s)
- J Lutz
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schram V, Thompson TE. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers. Biophys J 1997; 72:2217-25. [PMID: 9129824 PMCID: PMC1184416 DOI: 10.1016/s0006-3495(97)78865-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have investigated the effect of the intrinsic membrane protein bacteriorhodopsin of Halobacterium halobium on the lateral organization of the lipid phase structure in the coexistence region of an equimolar mixture of dimyristoylphos-phatidylcholine and distearoylphosphatidylcholine. The fluorescence recovery after photobleaching (FRAP) technique was used to monitor the diffusion of both a lipid analog (N-(7-nitrobenzoxa-2,3-diazol-4-yl)-dimyristoylphosphatidyle thanolamine, NBD-DMPE) and fluorescein-labeled bacteriorhodopsin (Fl-BR). In the presence of bacteriorhodopsin, the mobile fractions of the two fluorescent probes display a shift of the percolation threshold toward lower temperatures (larger gel-phase fractions), independent of the protein concentration, from 43 degrees C (without bacteriorhodopsin) to 39 degrees C and 41 degrees C for NBD-DMPE and Fl-BR, respectively. Moreover, in the presence of bacteriorhodopsin, the gel-phase domains are much less efficient in restricting the diffusion of both probes than they are in the absence of the protein in the two-phase coexistence region. Bacteriorhodopsin itself, however, obstructs diffusion of NBD-DMPE and Fl-BR to about the same extent in the fluid phase of the two-phase region as it does in the homogeneous fluid phase. These observations suggest that 1) the protein induces the formation of much larger and/or more centrosymmetrical gel-phase domains than those formed in its absence, and 2) bacteriorhodopsin partitions almost equally between the coexisting fluid and gel phases. Although the molecular mechanisms involved are not clear, this phenomenon is fully consistent with the effect of the transmembrane peptide pOmpA of Escherichia coli investigated by electron spin resonance in the same lipid system.
Collapse
Affiliation(s)
- V Schram
- Department of Biochemistry, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
33
|
Ali S, Bittman R. Differential scanning calorimetry study of the influence of phospholipid analogs with a carbonyl-terminated sn-2 chain on the interdigitated phases formed by 1-stearoyl-2-capryl-sn-glycero-3-phosphatidylcholine (C18:C10-PC). J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Schram V, Lin HN, Thompson TE. Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers. Biophys J 1996; 71:1811-22. [PMID: 8889158 PMCID: PMC1233650 DOI: 10.1016/s0006-3495(96)79382-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC.
Collapse
Affiliation(s)
- V Schram
- Department of Biochemistry, University of Virginia, Charlottesville, 22908, USA
| | | | | |
Collapse
|
35
|
Lin HN, Li S, Wang G, Brumbaugh EE, Huang C. A calorimetric study of binary mixtures of saturated and monounsaturated mixed-chain phosphatidylethanolamines. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1283:199-206. [PMID: 8809100 DOI: 10.1016/0005-2736(96)00093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we have semisynthesized the following three molecular species of mixed-chain phosphatidylethanolamine: C(22):C(12)PE, C(16):C(18:1 delta 9)PE, and C(10):C(24:1 delta 15)PE. These lipids share a common structural characteristic, that is, they all have the same total number of carbon atoms in their acyl chains. Aqueous dispersions prepared from three sets of binary lipid mixtures, C(16):C(18:1 delta 9)PE/C(22):C(12)PE, C(10):C(24:1 delta 15)PE/C(22):C(12)PE, and C(16):C(18:1 delta 9)PE/C(10):C(24:1 delta 15)PE, were studied by high-resolution differential scanning calorimetry, leading to the construction of three temperature-composition phase diagrams. A computer program developed on the basis of the thermodynamic equations for non-ideality of mixing (or Brigg-Williams approximation) was applied to fit the calorimetric data, yielding the non-ideality parameters of mixing in the gel and the liquid-crystalline bilayers (pG and pL). Based on the shapes of these phase diagrams and the values of pG and pL, it is concluded that any two of the three molecular species of phosphatidylethanolamines under study can mix nearly ideally in the bilayer plane of the liquid-crystalline bilayer. However, these binary lipid mixtures do exhibit the gel-gel phase immiscibility over an extensive compositional region in the gel-state bilayer. By comparison with experimental data obtained with binary mixtures of saturated identical-chain phospholipids, we can conclude that mixed-chain cis-monounsaturated lipid molecules and saturated lipid molecules are highly demixed in the same two-dimensional plane of the gel-state bilayer, although the bilayer thickness difference between the lipid bilayer composed of cis-monounsaturated lipids and that of saturated lipids may be only one or two C-C bond lengths at T < Tm.
Collapse
Affiliation(s)
- H N Lin
- Department of Biochemistry, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|