1
|
Gonzalez-Martinez D, Johnston JR, Landim-Vieira M, Ma W, Antipova O, Awan O, Irving TC, Bryant Chase P, Pinto JR. Structural and functional impact of troponin C-mediated Ca 2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. J Mol Cell Cardiol 2018; 123:26-37. [PMID: 30138628 DOI: 10.1016/j.yjmcc.2018.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022]
Abstract
Acto-myosin cross-bridge kinetics are important for beat-to-beat regulation of cardiac contractility; however, physiological and pathophysiological mechanisms for regulation of contractile kinetics are incompletely understood. Here we explored whether thin filament-mediated Ca2+ sensitization influences cross-bridge kinetics in permeabilized, osmotically compressed cardiac muscle preparations. We used a murine model of hypertrophic cardiomyopathy (HCM) harboring a cardiac troponin C (cTnC) Ca2+-sensitizing mutation, Ala8Val in the regulatory N-domain. We also treated wild-type murine muscle with bepridil, a cTnC-targeting Ca2+ sensitizer. Our findings suggest that both methods of increasing myofilament Ca2+ sensitivity increase cross-bridge cycling rate measured by the rate of tension redevelopment (kTR); force per cross-bridge was also enhanced as measured by sinusoidal stiffness and I1,1/I1,0 ratio from X-ray diffraction. Computational modeling suggests that Ca2+ sensitization through this cTnC mutation or bepridil accelerates kTR primarily by promoting faster cross-bridge detachment. To elucidate if myofilament structural rearrangements are associated with changes in kTR, we used small angle X-ray diffraction to simultaneously measure myofilament lattice spacing and isometric force during steady-state Ca2+ activations. Within in vivo lattice dimensions, lattice spacing and steady-state isometric force increased significantly at submaximal activation. We conclude that the cTnC N-domain controls force by modulating both the number and rate of cycling cross-bridges, and that the both methods of Ca2+ sensitization may act through stabilization of cTnC's D-helix. Furthermore, we propose that the transient expansion of the myofilament lattice during Ca2+ activation may be an additional factor that could increase the rate of cross-bridge cycling in cardiac muscle. These findings may have implications for the pathophysiology of HCM.
Collapse
Affiliation(s)
- David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Olga Antipova
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Omar Awan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Meyer NL, Chase PB. Role of cardiac troponin I carboxy terminal mobile domain and linker sequence in regulating cardiac contraction. Arch Biochem Biophys 2016; 601:80-7. [PMID: 26971468 PMCID: PMC4899117 DOI: 10.1016/j.abb.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 01/24/2023]
Abstract
Inhibition of striated muscle contraction at resting Ca(2+) depends on the C-terminal half of troponin I (TnI) in thin filaments. Much focus has been on a short inhibitory peptide (Ip) sequence within TnI, but structural studies and identification of disease-associated mutations broadened emphasis to include a larger mobile domain (Md) sequence at the C-terminus of TnI. For Md to function effectively in muscle relaxation, tight mechanical coupling to troponin's core-and thus tropomyosin-is presumably needed. We generated recombinant, human cardiac troponins containing one of two TnI constructs: either an 8-amino acid linker between Md and the rest of troponin (cTnILink8), or an Md deletion (cTnI1-163). Motility assays revealed that Ca(2+)-sensitivity of reconstituted thin filament sliding was markedly increased with cTnILink8 (∼0.9 pCa unit leftward shift of speed-pCa relation compared to WT), and increased further when Md was missing entirely (∼1.4 pCa unit shift). Cardiac Tn's ability to turn off filament sliding at diastolic Ca(2+) was mostly (61%), but not completely eliminated with cTnI1-163. TnI's Md is required for full inhibition of unloaded filament sliding, although other portions of troponin-presumably including Ip-are also necessary. We also confirm that TnI's Md is not responsible for superactivation of actomyosin cycling by troponin.
Collapse
Affiliation(s)
- Nancy L Meyer
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - P Bryant Chase
- Department of Biological Science and Program in Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
3
|
Racca AW, Beck AE, McMillin MJ, Korte FS, Bamshad MJ, Regnier M. The embryonic myosin R672C mutation that underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle. Hum Mol Genet 2015; 24:3348-58. [PMID: 25740846 DOI: 10.1093/hmg/ddv084] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 02/06/2023] Open
Abstract
Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general.
Collapse
Affiliation(s)
| | - Anita E Beck
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | - Michael J Bamshad
- Department of Pediatrics, Department of Genome Sciences, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Michael Regnier
- Department of Bioengineering, Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA and
| |
Collapse
|
4
|
Butcher MT, Bertram JEA, Syme DA, Hermanson JW, Chase PB. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses. Physiol Rep 2014; 2:2/10/e12174. [PMID: 25293602 PMCID: PMC4254099 DOI: 10.14814/phy2.12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5–16 Hz) and strain amplitudes (0.01–0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002–0.05 Wkg−1) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4–7 Hz), SDF (4–5 Hz) and SOL (0.5–1 Hz). Nyquist analysis, reflecting the influence of cross‐bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. Equine digital flexor muscles fibers have a relatively large capacity for energy absorption. This physiological property of their muscle fibers may be important to the function of these specialized distal limb muscles during locomotion.
Collapse
Affiliation(s)
- Michael T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, Ohio, USA
| | - John E A Bertram
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - John W Hermanson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J Muscle Res Cell Motil 2013; 34:275-84. [DOI: 10.1007/s10974-013-9356-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023]
|
6
|
Lee EJ, De Winter JM, Buck D, Jasper JR, Malik FI, Labeit S, Ottenheijm CA, Granzier H. Fast skeletal muscle troponin activation increases force of mouse fast skeletal muscle and ameliorates weakness due to nebulin-deficiency. PLoS One 2013; 8:e55861. [PMID: 23437068 PMCID: PMC3577798 DOI: 10.1371/journal.pone.0055861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension-pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring k(tr) (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased k(tr) at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Josine M. De Winter
- Institute for Cardiovascular Research, Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Danielle Buck
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R. Jasper
- Research & Early Development, Cytokinetics, Inc., South San Francisco, California, United States of America
| | - Fady I. Malik
- Research & Early Development, Cytokinetics, Inc., South San Francisco, California, United States of America
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Coen A. Ottenheijm
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Institute for Cardiovascular Research, Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Henk Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
7
|
Loong CKP, Takeda AK, Badr MA, Rogers JS, Chase PB. Slowed Dynamics of Thin Filament Regulatory Units Reduces Ca 2+-Sensitivity of Cardiac Biomechanical Function. Cell Mol Bioeng 2013; 6:183-198. [PMID: 23833690 DOI: 10.1007/s12195-013-0269-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Actomyosin kinetics in both skinned skeletal muscle fibers at maximum Ca2+-activation and unregulated in vitro motility assays are modulated by solvent microviscosity in a manner consistent with a diffusion limited process. Viscosity might also influence cardiac thin filament Ca2+-regulatory protein dynamics. In vitro motility assays were conducted using thin filaments reconstituted with recombinant human cardiac troponin and tropomyosin; solvent microviscosity was varied by addition of sucrose or glucose. At saturating Ca2+, filament sliding speed (s) was inversely proportional to viscosity. Ca2+-sensitivity (pCa50 ) of s decreased markedly with elevated viscosity (η/η0 ≥ ~1.3). For comparison with unloaded motility assays, steady-state isometric force (F) and kinetics of isometric tension redevelopment (kTR ) were measured in single, permeabilized porcine cardiomyocytes when viscosity surrounding the myofilaments was altered. Maximum Ca2+-activated F changed little for sucrose ≤ 0.3 M (η/η0 ~1.4) or glucose ≤ 0.875 M (η/η0 ~1.66), but decreased at higher concentrations. Sucrose (0.3 M) or glucose (0.875 M) decreased pCa50 for F. kTR at saturating Ca2+ decreased steeply and monotonically with increased viscosity but there was little effect on kTR at sub-maximum Ca2+. Modeling indicates that increased solutes affect dynamics of cardiac muscle Ca2+-regulatory proteins to a much greater extent than actomyosin cross-bridge cycling.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306, USA ; Department of Physics, The Florida State University, Tallahassee, FL, 32306, USA
| | | | | | | | | |
Collapse
|
8
|
Loong CKP, Badr MA, Chase PB. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy. Front Physiol 2012; 3:80. [PMID: 22493584 PMCID: PMC3318232 DOI: 10.3389/fphys.2012.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/18/2012] [Indexed: 01/04/2023] Open
Abstract
Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin, and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University Tallahassee, FL, USA
| | | | | |
Collapse
|
9
|
Lee RS, Tikunova SB, Kline KP, Zot HG, Hasbun JE, Minh NV, Swartz DR, Rall JA, Davis JP. Effect of Ca2+ binding properties of troponin C on rate of skeletal muscle force redevelopment. Am J Physiol Cell Physiol 2010; 299:C1091-9. [PMID: 20702687 DOI: 10.1152/ajpcell.00491.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate effects of altering troponin (Tn)C Ca(2+) binding properties on rate of skeletal muscle contraction, we generated three mutant TnCs with increased or decreased Ca(2+) sensitivities. Ca(2+) binding properties of the regulatory domain of TnC within the Tn complex were characterized by following the fluorescence of an IAANS probe attached onto the endogenous Cys(99) residue of TnC. Compared with IAANS-labeled wild-type Tn complex, V43QTnC, T70DTnC, and I60QTnC exhibited ∼1.9-fold higher, ∼5.0-fold lower, and ∼52-fold lower Ca(2+) sensitivity, respectively, and ∼3.6-fold slower, ∼5.7-fold faster, and ∼21-fold faster Ca(2+) dissociation rate (k(off)), respectively. On the basis of K(d) and k(off), these results suggest that the Ca(2+) association rate to the Tn complex decreased ∼2-fold for I60QTnC and V43QTnC. Constructs were reconstituted into single-skinned rabbit psoas fibers to assess Ca(2+) dependence of force development and rate of force redevelopment (k(tr)) at 15°C, resulting in sensitization of both force and k(tr) to Ca(2+) for V43QTnC, whereas T70DTnC and I60QTnC desensitized force and k(tr) to Ca(2+), I60QTnC causing a greater desensitization. In addition, T70DTnC and I60QTnC depressed both maximal force (F(max)) and maximal k(tr). Although V43QTnC and I60QTnC had drastically different effects on Ca(2+) binding properties of TnC, they both exhibited decreases in cooperativity of force production and elevated k(tr) at force levels <30%F(max) vs. wild-type TnC. However, at matched force levels >30%F(max) k(tr) was similar for all TnC constructs. These results suggest that the TnC mutants primarily affected k(tr) through modulating the level of thin filament activation and not by altering intrinsic cross-bridge cycling properties. To corroborate this, NEM-S1, a non-force-generating cross-bridge analog that activates the thin filament, fully recovered maximal k(tr) for I60QTnC at low Ca(2+) concentration. Thus TnC mutants with altered Ca(2+) binding properties can control the rate of contraction by modulating thin filament activation without directly affecting intrinsic cross-bridge cycling rates.
Collapse
Affiliation(s)
- Ryan S Lee
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kreutziger KL, Piroddi N, Scellini B, Tesi C, Poggesi C, Regnier M. Thin filament Ca2+ binding properties and regulatory unit interactions alter kinetics of tension development and relaxation in rabbit skeletal muscle. J Physiol 2008; 586:3683-700. [PMID: 18535094 DOI: 10.1113/jphysiol.2008.152181] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The influence of Ca(2+) binding properties of individual troponin versus cooperative regulatory unit interactions along thin filaments on the rate tension develops and declines was examined in demembranated rabbit psoas fibres and isolated myofibrils. Native skeletal troponin C (sTnC) was replaced with sTnC mutants having altered Ca(2+) dissociation rates (k(off)) or with mixtures of sTnC and D28A, D64A sTnC, that does not bind Ca(2+) at sites I and II (xxsTnC), to reduce near-neighbour regulatory unit (RU) interactions. At saturating Ca(2+), the rate of tension redevelopment (k(TR)) was not altered for fibres containing sTnC mutants with decreased k(off) or mixtures of sTnC:xxsTnC. We examined the influence of k(off) on maximal activation and relaxation in myofibrils because they allow rapid and large changes in [Ca(2+)]. In myofibrils with M80Q sTnC(F27W) (decreased k(off)), maximal tension, activation rate (k(ACT)), k(TR) and rates of relaxation were not altered. With I60Q sTnC(F27W) (increased k(off)), maximal tension, k(ACT) and k(TR) decreased, with no change in relaxation rates. Surprisingly, the duration of the slow phase of relaxation increased or decreased with decreased or increased k(off), respectively. For all sTnC reconstitution conditions, Ca(2+) dependence of k(TR) in fibres showed Ca(2+) sensitivity of k(TR) (pCa(50)) shifted parallel to tension and low-Ca(2+) k(TR) was elevated. Together the data suggest the Ca(2+)-dependent rate of tension development and the duration (but not rate) of relaxation can be greatly influenced by k(off) of sTnC. This influence of sTnC binding kinetics occurs primarily within individual RUs, with only minor contributions of RU interactions at low Ca(2+).
Collapse
Affiliation(s)
- Kareen L Kreutziger
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
11
|
Norman C, Rall JA, Tikunova SB, Davis JP. Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities. Am J Physiol Heart Circ Physiol 2007; 293:H2580-7. [PMID: 17693547 DOI: 10.1152/ajpheart.00039.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether changing thin filament Ca2+sensitivity alters the rate of contraction, either during normal cross-bridge cycling or when cross-bridge cycling is increased by inorganic phosphate (Pi). We increased or decreased Ca2+sensitivity of force production by incorporating into rat skinned cardiac trabeculae the troponin C (TnC) mutants V44QTnCF27Wand F20QTnCF27W. The rate of isometric contraction was assessed as the rate of force redevelopment ( ktr) after a rapid release and restretch to the original length of the muscle. Both in the absence of added Piand in the presence of 2.5 mM added Pi1) Ca2+sensitivity of ktrwas increased by V44QTnCF27Wand decreased by F20QTnCF27Wcompared with control TnCF27W; 2) ktrat submaximal Ca2+activation was significantly faster for V44QTnCF27Wand slower for F20QTnCF27Wcompared with control TnCF27W; 3) at maximum Ca2+activation, ktrvalues were similar for control TnCF27W, V44QTnCF27W, and F20QTnCF27W; and 4) ktrexhibited a linear dependence on force that was indistinguishable for all TnCs. In the presence of 2.5 mM Pi, ktrwas faster at all pCa values compared with the values for no added Pifor TnCF27W, V44QTnCF27W, and F20QTnCF27W. This study suggests that TnC Ca2+binding properties modulate the rate of cardiac muscle contraction at submaximal levels of Ca2+activation. This result has physiological relevance considering that, on a beat-to-beat basis, the heart contracts at submaximal Ca2+activation.
Collapse
Affiliation(s)
- Catalina Norman
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
12
|
Moreno-Gonzalez A, Gillis TE, Rivera AJ, Chase PB, Martyn DA, Regnier M. Thin-filament regulation of force redevelopment kinetics in rabbit skeletal muscle fibres. J Physiol 2007; 579:313-26. [PMID: 17204497 PMCID: PMC2075405 DOI: 10.1113/jphysiol.2006.124164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thin-filament regulation of isometric force redevelopment (k(tr)) was examined in rabbit psoas fibres by substituting native TnC with either cardiac TnC (cTnC), a site I-inactive skeletal TnC mutant (xsTnC), or mixtures of native purified skeletal TnC (sTnC) and a site I- and II-inactive skeletal TnC mutant (xxsTnC). Reconstituted maximal Ca(2+)-activated force (rF(max)) decreased as the fraction of sTnC in sTnC: xxsTnC mixtures was reduced, but maximal k(tr) was unaffected until rF(max) was <0.2 of pre-extracted F(max). In contrast, reconstitution with cTnC or xsTnC reduced maximal k(tr) to 0.48 and 0.44 of control (P < 0.01), respectively, with corresponding rF(max) of 0.68 +/- 0.03 and 0.25 +/- 0.02 F(max). The k(tr)-pCa relation of fibres containing sTnC: xxsTnC mixtures (rF(max) > 0.2 F(max)) was little effected, though k(tr) was slightly elevated at low Ca(2+) activation. The magnitude of the Ca(2+)-dependent increase in k(tr) was greatly reduced following cTnC or xsTnC reconstitution because k(tr) at low levels of Ca(2+) was elevated and maximal k(tr) was reduced. Solution Ca(2+) dissociation rates (k(off)) from whole Tn complexes containing sTnC (26 +/- 0.1 s(-1)), cTnC (38 +/- 0.9 s(-1)) and xsTnC (50 +/- 1.2 s(-1)) correlated with k(tr) at low Ca(2+) levels and were inversely related to rF(max). At low Ca(2+) activation, k(tr) was similarly elevated in cTnC-reconstituted fibres with ATP or when cross-bridge cycling rate was increased with 2-deoxy-ATP. Our results and model simulations indicate little or no requirement for cooperative interactions between thin-filament regulatory units in modulating k(tr) at any [Ca(2+)] and suggest Ca(2+) activation properties of individual troponin complexes may influence the apparent rate constant of cross-bridge detachment.
Collapse
|
13
|
Luo Y, Rall JA. Regulation of contraction kinetics in skinned skeletal muscle fibers by calcium and troponin C. Arch Biochem Biophys 2006; 456:119-26. [PMID: 16764818 DOI: 10.1016/j.abb.2006.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/06/2006] [Accepted: 04/18/2006] [Indexed: 11/24/2022]
Abstract
The influences of [Ca(2+)] and Ca(2+) dissociation rate from troponin C (TnC) on the kinetics of contraction (k(Ca)) activated by photolysis of a caged Ca(2+) compound in skinned fast-twitch psoas and slow-twitch soleus fibers from rabbits were investigated at 15 degrees C. Increasing the amount of Ca(2+) released increased the amount of force in psoas and soleus fibers and increased k(Ca) in a curvilinear manner in psoas fibers approximately 5-fold but did not alter k(Ca) in soleus fibers. Reconstituting psoas fibers with mutants of TnC that in solution exhibited increased Ca(2+) affinity and approximately 2- to 5-fold decreased Ca(2+) dissociation rate (M82Q TnC) or decreased Ca(2+) affinity and approximately 2-fold increased Ca(2+) dissociation rate (NHdel TnC) did not affect maximal k(Ca). Thus the influence of [Ca(2+)] on k(Ca) is fiber type dependent and the maximum k(Ca) in psoas fibers is dominated by kinetics of cross-bridge cycling over kinetics of Ca(2+) exchange with TnC.
Collapse
Affiliation(s)
- Ye Luo
- Department of Physiology and Cell Biology, Ohio State University, 1645 Neil Ave, Columbus, OH 43210-1218, USA
| | | |
Collapse
|
14
|
Vandenboom R, Weihe EK, Hannon JD. Dynamics of crossbridge-mediated activation in the heart. J Muscle Res Cell Motil 2005; 26:247-57. [PMID: 16322913 DOI: 10.1007/s10974-005-9042-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Both intracellular calcium and strongly bound crossbridges contribute to thin filament activation in the heart, but the magnitude and the duration of the effects due to crossbridges are not well characterized. In this study, crossbridge attachment was altered in tetanized ferret papillary muscles and changes in the rate constant for the recovery of force (k (TR)) and unloaded shortening velocity (V (U)) were measured to track thin filament activation. k (TR) decreased as the time the muscles spent at low levels of crossbridge attachment (shortening deactivation) increased (0.02 s=17.9+/-2.3 s(-1), 0.32 s=3.3+/-0.4 s(-1); half-time=0.052 s; P<0.05). Furthermore, the deactivation was reversible and k (TR) recovered when muscles were allowed to regenerate force isometrically during the same tetanus. V (U) also decreased when the preceding load was lower (isometric load, V (U)=1.93+/-0.26 muscle lengths/s (ML/s); zero load, V (U)=0.93+/-0.14 ML/s, P<0.05) and as the length of time the muscle spent unloaded increased (>60% decline after 0.3 s). In addition, V (U) recovered when the muscle was allowed to regenerate force isometrically. These results indicate that crossbridge attachment increases thin filament activation as reflected in measurements of V (U) and k (TR). This 'extra' activation by crossbridges appears to be a dynamic process that decays during unloaded shortening and redevelops during isometric contraction.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
15
|
Abstract
Although well known as the location of the mechanism by which the cardiac sarcomere is activated by Ca2+ to generate force and shortening, the thin filament is now also recognized as a vital component determining the dynamics of contraction and relaxation. Molecular signaling in the thin filament involves steric, allosteric, and cooperative mechanisms that are modified by protein phosphorylation, sarcomere length and load, the chemical environment, and isoform composition. Approaches employing transgenesis and mutagenesis now permit investigation of these processes at the level of the systems biology of the heart. These studies reveal that the thin filaments are not merely slaves to the levels of Ca2+ determined by membrane channels, transporters and exchangers, but are actively involved in beat to beat control of cardiac function by neural and hormonal factors and by the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Tomoyoshi Kobayashi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
16
|
Regnier M, Martin H, Barsotti RJ, Rivera AJ, Martyn DA, Clemmens E. Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle. Biophys J 2005; 87:1815-24. [PMID: 15345560 PMCID: PMC1304586 DOI: 10.1529/biophysj.103.039123] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In striated muscle thin filament activation is initiated by Ca(2+) binding to troponin C and augmented by strong myosin binding to actin (cross-bridge formation). Several lines of evidence have led us to hypothesize that thin filament properties may limit the level and rate of force development in cardiac muscle at all levels of Ca(2+) activation. As a test of this hypothesis we varied the cross-bridge contribution to thin filament activation by substituting 2 deoxy-ATP (dATP; a strong cross-bridge augmenter) for ATP as the contractile substrate and compared steady-state force and stiffness, and the rate of force redevelopment (k(tr)) in demembranated rat cardiac trabeculae as [Ca(2+)] was varied. We also tested whether thin filament dynamics limits force development kinetics during maximal Ca(2+) activation by comparing the rate of force development (k(Ca)) after a step increase in [Ca(2+)] with photorelease of Ca(2+) from NP-EGTA to maximal k(tr), where Ca(2+) binding to thin filaments should be in (near) equilibrium during force redevelopment. dATP enhanced steady-state force and stiffness at all levels of Ca(2+) activation. At similar submaximal levels of steady-state force there was no increase in k(tr) with dATP, but k(tr) was enhanced at higher Ca(2+) concentrations, resulting in an extension (not elevation) of the k(tr)-force relationship. Interestingly, we found that maximal k(tr) was faster than k(Ca), and that dATP increased both by a similar amount. Our data suggest the dynamics of Ca(2+)-mediated thin filament activation limits the rate that force develops in rat cardiac muscle, even at saturating levels of Ca(2+).
Collapse
Affiliation(s)
- M Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Adhikari BB, Regnier M, Rivera AJ, Kreutziger KL, Martyn DA. Cardiac length dependence of force and force redevelopment kinetics with altered cross-bridge cycling. Biophys J 2005; 87:1784-94. [PMID: 15345557 PMCID: PMC1304583 DOI: 10.1529/biophysj.103.039131] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the influence of cross-bridge cycling kinetics on the length dependence of steady-state force and the rate of force redevelopment (k(tr)) during Ca(2+)-activation at sarcomere lengths (SL) of 2.0 and 2.3 microm in skinned rat cardiac trabeculae. Cross-bridge kinetics were altered by either replacing ATP with 2-deoxy-ATP (dATP) or by reducing [ATP]. At each SL dATP increased maximal force (F(max)) and Ca(2+)-sensitivity of force (pCa(50)) and reduced the cooperativity (n(H)) of force-pCa relations, whereas reducing [ATP] to 0.5 mM (low ATP) increased pCa(50) and n(H) without changing F(max). The difference in pCa(50) between SL 2.0 and 2.3 microm (Delta pCa(50)) was comparable between ATP and dATP, but reduced with low ATP. Maximal k(tr) was elevated by dATP and reduced by low ATP. Ca(2+)-sensitivity of k(tr) increased with both dATP and low ATP and was unaffected by altered SL under all conditions. Significantly, at equivalent levels of submaximal force k(tr) was faster at short SL or increased lattice spacing. These data demonstrate that the SL dependence of force depends on cross-bridge kinetics and that the increase of force upon SL extension occurs without increasing the rate of transitions between nonforce and force-generating cross-bridge states, suggesting SL or lattice spacing may modulate preforce cross-bridge transitions.
Collapse
Affiliation(s)
- Bishow B Adhikari
- Department of Bioengineering, University of Washington, Seattle Washington 98195, USA.
| | | | | | | | | |
Collapse
|
18
|
Schoffstall B, Kataoka A, Clark A, Chase PB. Effects of rapamycin on cardiac and skeletal muscle contraction and crossbridge cycling. J Pharmacol Exp Ther 2005; 312:12-8. [PMID: 15306636 DOI: 10.1124/jpet.104.073445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immunosuppressant drug rapamycin attenuates the effects of many cardiac hypertrophy stimuli both in vitro and in vivo. Although rapamycin's inhibition of mammalian target of rapamycin and its associated signaling pathways is well established, it is likely that other signaling pathways are more important for some forms of cardiac hypertrophy. Considering the central role of myofilament protein mutations in familial hypertrophic cardiomyopathies, we tested the hypothesis that rapamycin's antihypertrophy action in the heart is due to direct effects of the drug on myofilament protein function. We found little or no effect of rapamycin (10(-8)-10(-4) M) on maximum Ca(2+)-activated isometric force, whereas Ca(2+) sensitivity was increased at some rapamycin concentrations in rabbit skeletal and cardiac and rat cardiac muscle. At concentrations that increased Ca(2+) sensitivity of isometric force, rapamycin reversibly inhibited kinetics of isometric tension redevelopment (k(TR)) in rabbit skeletal, but not cardiac, muscle. The greatest inhibition (approximately 50%) was at intermediate levels of Ca(2+) activation, with less inhibition of k(TR) (approximately 15%) at maximum Ca(2+) activation levels. Rapamycin (10(-7) M) increased actin filament sliding speed (approximately 11%) in motility assays but inhibited sliding at 10(-5) to 10(-4) M. These results indicate that rapamycin has a greater effect on Ca(2+) regulatory proteins of the thin filament than on actomyosin interactions. These effects, however, are not consistent with rapamycin's antihypertrophic activity being mediated through direct effects on myofilament contractility.
Collapse
Affiliation(s)
- Brenda Schoffstall
- Department of Biological Science and Program in Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | | | | | |
Collapse
|
19
|
Liang B, Chen Y, Wang CK, Luo Z, Regnier M, Gordon AM, Chase PB. Ca2+ regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number. Biophys J 2003; 85:1775-86. [PMID: 12944292 PMCID: PMC1303351 DOI: 10.1016/s0006-3495(03)74607-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 05/29/2003] [Indexed: 11/17/2022] Open
Abstract
We investigated how strong cross-bridge number affects sliding speed of regulated Ca(2+)-activated, thin filaments. First, using in vitro motility assays, sliding speed decreased nonlinearly with reduced density of heavy meromyosin (HMM) for regulated (and unregulated) F-actin at maximal Ca(2+). Second, we varied the number of Ca(2+)-activatable troponin complexes at maximal Ca(2+) using mixtures of recombinant rabbit skeletal troponin (WT sTn) and sTn containing sTnC(D27A,D63A), a mutant deficient in Ca(2+) binding at both N-terminal, low affinity Ca(2+)-binding sites (xxsTnC-sTn). Sliding speed decreased nonlinearly as the proportion of WT sTn decreased. Speed of regulated thin filaments varied with pCa when filaments contained WT sTn but filaments containing only xxsTnC-sTn did not move. pCa(50) decreased by 0.12-0.18 when either heavy meromyosin density was reduced to approximately 60% or the fraction of Ca(2+)-activatable regulatory units was reduced to approximately 33%. Third, we exchanged mixtures of sTnC and xxsTnC into single, permeabilized fibers from rabbit psoas. As the proportion of xxsTnC increased, unloaded shortening velocity decreased nonlinearly at maximal Ca(2+). These data are consistent with unloaded filament sliding speed being limited by the number of cycling cross-bridges so that maximal speed is attained with a critical, low level of actomyosin interactions.
Collapse
Affiliation(s)
- Bo Liang
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Köhler J, Chen Y, Brenner B, Gordon AM, Kraft T, Martyn DA, Regnier M, Rivera AJ, Wang CK, Chase PB. Familial hypertrophic cardiomyopathy mutations in troponin I (K183D, G203S, K206Q) enhance filament sliding. Physiol Genomics 2003; 14:117-28. [PMID: 12759477 DOI: 10.1152/physiolgenomics.00101.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major cause of familial hypertrophic cardiomyopathy (FHC) is dominant mutations in cardiac sarcomeric genes. Linkage studies identified FHC-related mutations in the COOH terminus of cardiac troponin I (cTnI), a region with unknown function in Ca(2+) regulation of the heart. Using in vitro assays with recombinant rat troponin subunits, we tested the hypothesis that mutations K183Delta, G203S, and K206Q in cTnI affect Ca(2+) regulation. All three mutants enhanced Ca(2+) sensitivity and maximum speed (s(max)) of filament sliding of in vitro motility assays. Enhanced s(max) (pCa 5) was observed with rabbit skeletal and rat cardiac (alpha-MHC or beta-MHC) heavy meromyosin (HMM). We developed a passive exchange method for replacing endogenous cTn in permeabilized rat cardiac trabeculae. Ca(2+) sensitivity and maximum isometric force did not differ between preparations exchanged with cTn(cTnI,K206Q) or wild-type cTn. In both trabeculae and motility assays, there was no loss of inhibition at pCa 9. These results are consistent with COOH terminus of TnI modulating actomyosin kinetics during unloaded sliding, but not during isometric force generation, and implicate enhanced cross-bridge cycling in the cTnI-related pathway(s) to hypertrophy.
Collapse
Affiliation(s)
- Jan Köhler
- Molekular- und Zellphysiologie, Medizinische Hochschule, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vandenboom R, Hannon JD, Sieck GC. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J Physiol 2002; 543:555-66. [PMID: 12205189 PMCID: PMC2290518 DOI: 10.1113/jphysiol.2002.022673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dt(R)). The influence of isotonic force on +dF/dt(R) was assessed by imposing uniform amplitude (2.55 to 2.15 microm sarcomere(-1)) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 +/- 0.11 microm half-sarcomere(-1) s(-1)) to 0.30 of maximum unloaded shortening velocity (V(u)), thereby modulating isotonic force from 0 to 0.34 F(o), respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dt(R) increased by 81 +/- 6 % (P < 0.05) as fibre shortening speed was reduced from 1.00 V(u). The +dF/dt(R) after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence V(u) (mean: 2.84 +/- 0.10 microm half-sarcomere(-1) s(-1), P < 0.05). We conclude that isotonic force modulates +dF/dt(R) independent of change in V(u), an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate.
Collapse
Affiliation(s)
- Rene Vandenboom
- Departments of Anesthesiology and Physiology and Biophysics, Mayo Medical School, Rochester, MN 55905, USA
| | | | | |
Collapse
|
22
|
Swank DM, Knowles AF, Suggs JA, Sarsoza F, Lee A, Maughan DW, Bernstein SI. The myosin converter domain modulates muscle performance. Nat Cell Biol 2002; 4:312-6. [PMID: 11901423 DOI: 10.1038/ncb776] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.
Collapse
Affiliation(s)
- Douglas M Swank
- Department of Biology, Molecular Biology Institute, and the Heart Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Modulation of Thin Filament Activity in Long and Short Term Regulation of Cardiac Function. MOLECULAR CONTROL MECHANISMS IN STRIATED MUSCLE CONTRACTION 2002. [DOI: 10.1007/978-94-015-9926-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Heunks LM, Cody MJ, Geiger PC, Dekhuijzen PN, Sieck GC. Nitric oxide impairs Ca2+ activation and slows cross-bridge cycling kinetics in skeletal muscle. J Appl Physiol (1985) 2001; 91:2233-9. [PMID: 11641366 DOI: 10.1152/jappl.2001.91.5.2233] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of the nitric oxide (NO) donor spermine NONOate (Sp-NO, 1.0 mM) on cross-bridge recruitment and cross-bridge cycling kinetics were studied in permeabilized rabbit psoas muscle fibers. Fibers were activated at various Ca2+ concentrations (pCa, negative logarithm of Ca2+ concentration), and the pCa at which force was maximal (pCa 4.0) and approximately 50% of maximal (pCa50 5.6) were determined. Fiber stiffness was determined using 1-kHz sinusoidal length perturbations, and the fraction of cross bridges in the force-generating state was estimated by the ratio of stiffness during maximal (pCa 4.0) and submaximal (pCa 5.6) Ca2+ activation to stiffness during rigor (at pCa 4.0). Cross-bridge cycling kinetics were evaluated by measuring the rate constant for force redevelopment after quick release (by 15% of optimal fiber length, L(o)) and restretch of the fiber to L(o). Exposing fibers to Sp-NO for 10 min reduced force and the fraction of cross bridges in the force-generating state at maximal and submaximal (pCa50) Ca2+ activation. However, the effects of Sp-NO were more pronounced during submaximal Ca2+ activation. Sp-NO also reduced the rate constant for force redevelopment but only during submaximal Ca2+ activation. We conclude that Sp-NO reduces Ca2+ sensitivity by decreasing the number of cross bridges in the strongly bound state and also impairs cross-bridge cycling kinetics during submaximal activation.
Collapse
Affiliation(s)
- L M Heunks
- Department of Pulmonary Diseases, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Mariano AC, Alexandre GM, Silva LC, Romeiro A, Cameron LC, Chen Y, Chase PB, Sorenson MM. Dimethyl sulphoxide enhances the effects of P(i) in myofibrils and inhibits the activity of rabbit skeletal muscle contractile proteins. Biochem J 2001; 358:627-36. [PMID: 11535124 PMCID: PMC1222097 DOI: 10.1042/0264-6021:3580627] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the catalytic cycle of skeletal muscle, myosin alternates between strongly and weakly bound cross-bridges, with the latter contributing little to sustained tension. Here we describe the action of DMSO, an organic solvent that appears to increase the population of weakly bound cross-bridges that accumulate after the binding of ATP, but before P(i) release. DMSO (5-30%, v/v) reversibly inhibits tension and ATP hydrolysis in vertebrate skeletal muscle myofibrils, and decreases the speed of unregulated F-actin in an in vitro motility assay with heavy meromyosin. In solution, controls for enzyme activity and intrinsic tryptophan fluorescence of myosin subfragment 1 (S1) in the presence of different cations indicate that structural changes attributable to DMSO are small and reversible, and do not involve unfolding. Since DMSO depresses S1 and acto-S1 MgATPase activities in the same proportions, without altering acto-S1 affinity, the principal DMSO target apparently lies within the catalytic cycle rather than with actin-myosin binding. Inhibition by DMSO in myofibrils is the same in the presence or the absence of Ca(2+) and regulatory proteins, in contrast with the effects of ethylene glycol, and the Ca(2+) sensitivity of isometric tension is slightly decreased by DMSO. The apparent affinity for P(i) is enhanced markedly by DMSO (and to a lesser extent by ethylene glycol) in skinned fibres, suggesting that DMSO stabilizes cross-bridges that have ADP.P(i) or ATP bound to them.
Collapse
Affiliation(s)
- A C Mariano
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590 RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Harris SP, Patel JR, Marton LJ, Moss RL. Polyamines decrease Ca(2+) sensitivity of tension and increase rates of activation in skinned cardiac myocytes. Am J Physiol Heart Circ Physiol 2000; 279:H1383-91. [PMID: 10993806 DOI: 10.1152/ajpheart.2000.279.3.h1383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Owing in part to their interactions with membrane proteins, polyamines (e.g., spermine, spermidine, and putrescine) have been identified as potential modulators of membrane excitability and Ca(2+) homeostasis in cardiac myocytes. To investigate whether polyamines also affect cardiac myofilament proteins, we assessed the effects of polyamines on contractility using rat myocytes and trabeculae that had been permeabilized with Triton X-100. Spermine, spermidine, and putrescine reversibly increased the [Ca(2+)] required for half-maximal tension (i.e., right-shifted tension pCa curves), with the following order of efficacy: spermine (+4) > spermidine (+3) > putrescine (+2). However, synthetic analogs that differed from spermine in charge distribution were not as effective as spermine in altering isometric tension. None of the polyamines had a significant effect on maximal tension, except at high concentrations. After flash photolysis of DM-Nitrophen (a caged Ca(2+) chelator), spermine accelerated the rate of tension development at low and intermediate but not high [Ca(2+)]. These results indicate that polyamines, especially spermine, interact with myofilament proteins to reduce apparent Ca(2+) binding affinity and speed cross-bridge cycling kinetics at submaximal [Ca(2+)].
Collapse
Affiliation(s)
- S P Harris
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
To investigate the kinetic parameters of the crossbridge cycle that regulate force and shortening in cardiac muscle, we compared the mechanical properties of cardiac trabeculae with either ATP or 2-deoxy-ATP (dATP) as the substrate for contraction. Comparisons were made in trabeculae from untreated rats (predominantly V1 myosin) and those treated with propylthiouracil (PTU; V3 myosin). Steady-state hydrolytic activity of cardiac heavy meromyosin (HMM) showed that PTU treatment resulted in >40% reduction of ATPase activity. dATPase activity was >50% elevated above ATPase activity in HMM from both untreated and PTU-treated rats. V(max) of actin-activated hydrolytic activity was also >50% greater with dATP, whereas the K(m) for dATP was similar to that for ATP. This indicates that dATP increased the rate of crossbridge cycling in cardiac muscle. Increases in hydrolytic activity were paralleled by increases of 30% to 80% in isometric force (F(max)), rate of tension redevelopment (k(tr)), and unloaded shortening velocity (V(u)) in trabeculae from both untreated and PTU-treated rats (at maximal Ca(2+) activation), and F-actin sliding speed in an in vitro motility assay (V(f)). These results contrast with the effect of dATP in rabbit psoas and soleus fibers, where F(max) is unchanged even though k(tr), V(u), and V(f) are increased. The substantial enhancement of mechanical performance with dATP in cardiac muscle suggests that it may be a better substrate for contractility than ATP and warrants exploration of ribonucleotide reductase as a target for therapy in heart failure.
Collapse
Affiliation(s)
- M Regnier
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA 98195-7962, USA.
| | | | | | | |
Collapse
|
28
|
Chase PB, Chen Y, Kulin KL, Daniel TL. Viscosity and solute dependence of F-actin translocation by rabbit skeletal heavy meromyosin. Am J Physiol Cell Physiol 2000; 278:C1088-98. [PMID: 10837336 DOI: 10.1152/ajpcell.2000.278.6.c1088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that solvent viscosity affects translocation of rhodamine phalloidin-labeled F-actin by rabbit skeletal heavy meromyosin (HMM). When viscosity was increased using either glycerol, fructose, sucrose, or dextran (1.5, 6.0, or 15-20 kDa mol mass), there was little or no effect on the fraction of moving filaments, whereas sliding speed decreased in inverse proportion to viscosity. The results could be explained neither by an effect of osmotic pressure at high solute concentrations nor by altered solvent drag on the actin filament. Elevated viscosity inhibited HMM ATPase activity in solution, but only at much higher viscosities than were needed to reduce sliding speed. Polyethylene glycols (300, 1,000, or 3,000 mol wt) also inhibited speed via elevated viscosity but secondarily inhibited by enhancing electrostatic interactions. These results demonstrate that a diffusion-controlled process intrinsic to cross-bridge cycling can be limiting to actomyosin function.
Collapse
Affiliation(s)
- P B Chase
- Department of Radiology, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
29
|
Macgowan GA, Koretsky AP. Inotropic and energetic effects of altering the force-calcium relationship: Mechanisms, experimental results, and potential molecular targets. J Card Fail 2000. [DOI: 10.1016/s1071-9164(00)90017-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
31
|
Geiger PC, Cody MJ, Sieck GC. Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol (1985) 1999; 87:1894-900. [PMID: 10562634 DOI: 10.1152/jappl.1999.87.5.1894] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined Ca(2+) sensitivity of diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Dia(m) fibers expressing the MHC(slow) isoform have greater Ca(2+) sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca(2+) sensitivity reflects the isoform composition of the troponin (Tn) complex (TnC, TnT, and TnI). Studies were performed in single Triton-X-permeabilized Dia(m) fibers. The Ca(2+) concentration at which 50% maximal force was generated (pCa(50)) was determined for each fiber. SDS-PAGE and Western analyses were used to determine the MHC and Tn isoform composition of single fibers. The pCa(50) for Dia(m) fibers expressing MHC(slow) was significantly greater than that of fibers expressing fast MHC isoforms, and this greater Ca(2+) sensitivity was associated with expression of slow isoforms of the Tn complex. However, some Dia(m) fibers expressing MHC(slow) contained the fast TnC isoform. These results suggest that the combination of TnT, TnI, and TnC isoforms may determine Ca(2+) sensitivity in Dia(m) fibers.
Collapse
Affiliation(s)
- P C Geiger
- Departments of Anesthesiology and Physiology and Biophysics, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
32
|
Regnier M, Rivera AJ, Chase PB, Smillie LB, Sorenson MM. Regulation of skeletal muscle tension redevelopment by troponin C constructs with different Ca2+ affinities. Biophys J 1999; 76:2664-72. [PMID: 10233080 PMCID: PMC1300235 DOI: 10.1016/s0006-3495(99)77418-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In maximally activated skinned fibers, the rate of tension redevelopment (ktr) following a rapid release and restretch is determined by the maximal rate of cross-bridge cycling. During submaximal Ca2+ activations, however, ktr regulation varies with thin filament dynamics. Thus, decreasing the rate of Ca2+ dissociation from TnC produces a higher ktr value at a given tension level (P), especially in the [Ca2+] range that yields less than 50% of maximal tension (Po). In this study, native rabbit TnC was replaced with chicken recombinant TnC, either wild-type (rTnC) or mutant (NHdel), with decreased Ca2+ affinity and an increased Ca2+ dissociation rate (koff). Despite marked differences in Ca2+ sensitivity (>0.5 DeltapCa50), fibers reconstituted with either of the recombinant proteins exhibited similar ktr versus tension profiles, with ktr low (1-2 s-1) and constant up to approximately 50% Po, then rising sharply to a maximum (16 +/- 0.8 s-1) in fully activated fibers. This behavior is predicted by a four-state model based on coupling between cross-bridge cycling and thin filament regulation, where Ca2+ directly affects only individual thin filament regulatory units. These data and model simulations confirm that the range of ktr values obtained with varying Ca2+ can be regulated by a rate-limiting thin filament process.
Collapse
Affiliation(s)
- M Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
33
|
Wahr PA, Metzger JM. Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers. Biophys J 1999; 76:2166-76. [PMID: 10096910 PMCID: PMC1300188 DOI: 10.1016/s0006-3495(99)77371-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Thin filament regulation of contraction is thought to involve the binding of two activating ligands: Ca2+ and strongly bound cross-bridges. The specific cross-bridge states required to promote thin filament activation have not been identified. This study examines the relationship between cross-bridge cycling and thin filament activation by comparing the results of kinetic experiments using the Ca2+ sensitizers caffeine and bepridil. In single skinned rat soleus fibers, 30 mM caffeine produced a leftward shift in the tension-pCa relation from 6.03 +/- 0.03 to 6.51 +/- 0.03 pCa units and lowered the maximum tension to 0.60 +/- 0.01 of the control tension. In addition, the rate of tension redevelopment (ktr) was decreased from 3.51 +/- 0.12 s-1 to 2.70 +/- 0.19 s-1, and Vmax decreased from 1.24 +/- 0.07 to 0.64 +/- 0.02 M.L./s. Bepridil produced a similar shift in the tension-pCa curves but had no effect on the kinetics. Thus bepridil increases the Ca2+ sensitivity through direct effects on TnC, whereas caffeine has significant effects on the cross-bridge interaction. Interestingly, caffeine also produced a significant increase in stiffness under relaxing conditions (pCa 9.0), indicating that caffeine induces some strongly bound cross-bridges, even in the absence of Ca2+. The results are interpreted in terms of a model integrating cross-bridge cycling with a three-state thin-filament activation model. Significantly, strongly bound, non-tension-producing cross-bridges were essential to modeling of complete activation of the thin filament.
Collapse
Affiliation(s)
- P A Wahr
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | |
Collapse
|
34
|
Martyn DA, Freitag CJ, Chase PB, Gordon AM. Ca2+ and cross-bridge-induced changes in troponin C in skinned skeletal muscle fibers: effects of force inhibition. Biophys J 1999; 76:1480-93. [PMID: 10049329 PMCID: PMC1300125 DOI: 10.1016/s0006-3495(99)77308-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Changes in skeletal troponin C (sTnC) structure during thin filament activation by Ca2+ and strongly bound cross-bridge states were monitored by measuring the linear dichroism of the 5' isomer of iodoacetamidotetramethylrhodamine (5'IATR), attached to Cys98 (sTnC-5'ATR), in sTnC-5'ATR reconstituted single skinned fibers from rabbit psoas muscle. To isolate the effects of Ca2+ and cross-bridge binding on sTnC structure, maximum Ca2+-activated force was inhibited with 0.5 mM AlF4- or with 30 mM 2,3 butanedione-monoxime (BDM) during measurements of the Ca2+ dependence of force and dichroism. Dichroism was 0.08 +/- 0.01 (+/- SEM, n = 9) in relaxing solution (pCa 9.2) and decreased to 0.004 +/- 0.002 (+/- SEM, n = 9) at pCa 4.0. Force and dichroism had similar Ca2+ sensitivities. Force inhibition with BDM caused no change in the amplitude and Ca2+ sensitivity of dichroism. Similarly, inhibition of force at pCa 4.0 with 0.5 mM AlF4- decreased force to 0.04 +/- 0.01 of maximum (+/- SEM, n = 3), and dichroism was 0.04 +/- 0.03 (+/- SEM, n = 3) of the value at pCa 9.2 and unchanged relative to the corresponding normalized value at pCa 4.0 (0.11 +/- 0.05, +/- SEM; n = 3). Inhibition of force with AlF4- also had no effect when sTnC structure was monitored by labeling with either 5-dimethylamino-1-napthalenylsulfonylaziridine (DANZ) or 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD). Increasing sarcomere length from 2.5 to 3.6 microm caused force (pCa 4.0) to decrease, but had no effect on dichroism. In contrast, rigor cross-bridge attachment caused dichroism at pCa 9.2 to decrease to 0.56 +/- 0.03 (+/- SEM, n = 5) of the value at pCa 9. 2, and force was 0.51 +/- 0.04 (+/- SEM, n = 6) of pCa 4.0 control. At pCa 4.0 in rigor, dichroism decreased further to 0.19 +/- 0.03 (+/- SEM, n = 6), slightly above the pCa 4.0 control level; force was 0.66 +/- 0.04 of pCa 4.0 control. These results indicate that cross-bridge binding in the rigor state alters sTnC structure, whereas cycling cross-bridges have little influence at either submaximum or maximum activating [Ca2+].
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, University of Washington, Seattle, Washington 98195 USA.
| | | | | | | |
Collapse
|
35
|
Solaro RJ, Rarick HM. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 1998; 83:471-80. [PMID: 9734469 DOI: 10.1161/01.res.83.5.471] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a current perception of the regulation of activation of cardiac myofilaments with emphasis on troponin (Tn) and tropomyosin (Tm). Activation involves both a Ca2+-regulated molecular switch and a potentiated state, dependent on feedback effects of force-generating crossbridges. Recent developments in the elucidation of the structure and arrangement of the myofilament proteins offer insights into the molecular interactions that constitute the switching and potentiating mechanisms. Transgenic mice overexpressing myofilament proteins, in vitro studies of mutant myofilament proteins, multidimensional multinuclear nuclear magnetic resonance, and fluorescence resonance energy transfer offer important approaches to understanding the molecular signaling processes. These studies reveal special features of the cardiac myofilament proteins that appear specialized for the unique functions of the heart. An important aspect of these special features is their role in mechanical, chemical, and neurohumoral coupling processes that tune myofilament activation to hemodynamics and beating frequency. Understanding these processes has become essential to understanding cardiac pathologies such as heart failure, ischemia and reperfusion injury, stunning, and familial hypertrophic cardiac myopathies.
Collapse
Affiliation(s)
- R J Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 60612-7342, USA
| | | |
Collapse
|
36
|
Baker AJ, Figueredo VM, Keung EC, Camacho SA. Ca2+ regulates the kinetics of tension development in intact cardiac muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H744-50. [PMID: 9724275 DOI: 10.1152/ajpheart.1998.275.3.h744] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to determine whether Ca2+ plays a role in regulating tension development kinetics in intact cardiac muscle. In cardiac muscle, this fundamental issue of Ca2+ regulation has been controversial. The approach was to induce steady-state tetanic contractions of intact right ventricular trabeculae from rat hearts at varying external Ca2+ concentrations ([Ca2+]) at 22 degreesC. During tetani, cross bridges were mechanically disrupted and the kinetics of tension redevelopment were assessed from the rate constant of exponential tension redevelopment (ktr). There was a relationship between ktr and external [Ca2+] that was similar in form to the relationship between tension and [Ca2+]. Thus a close relationship also existed between ktr and tension (r = 0.88; P < 0. 001); whereas at maximal tetanic tension (saturating cytosolic [Ca2+]), ktr was 16.4 +/- 2.2 s-1 (mean +/- SE, n = 7), at zero tension (low cytosolic [Ca2+]), ktr extrapolated to 20% of maximum (3.3 +/- 0.7 s-1). Qualitatively similar results were obtained using different mechanical protocols to disrupt cross bridges. These data demonstrate that tension redevelopment kinetics in intact cardiac muscle are influenced by the level of Ca2+ activation. These findings contrast with the findings of one previous study of intact cardiac muscle. Activation dependence of tension development kinetics may play an important role in determining the rate and extent of myocardial tension rise during the cardiac cycle in vivo.
Collapse
Affiliation(s)
- A J Baker
- Department of Radiology, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
37
|
Vandenboom R, Claflin DR, Julian FJ. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres. J Physiol 1998; 511 ( Pt 1):171-80. [PMID: 9679172 PMCID: PMC2231114 DOI: 10.1111/j.1469-7793.1998.171bi.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1997] [Accepted: 04/23/1998] [Indexed: 11/30/2022] Open
Abstract
1. The effect of rapid shortening on rate of force regeneration (dF/dtR) was examined in single, intact frog (Rana temporaria) skeletal muscle fibres (3.0 C). Step releases leading to unloaded shortening were applied after 500 ms of stimulation, during the plateau of an isometric tetanus. Initial mean sarcomere length ranged from 2.05 to 2.35 micrometer; force regeneration after shortening was at 2.00 micrometer. 2. Values for dF/dtR following a 25 nm half-sarcomere-1 release were 3.17 +/- 0.17 (mean +/- s.e.m., n = 8) times greater than the initial rate of rise of force before release (dF/dtI). As release size was increased from 25 to 175 nm half-sarcomere-1, the relationship between release size and dF/dtR decreased sharply before attaining a plateau value that was 1.34 +/- 0.09 times greater than dF/dtI. Despite wide variations in dF/dtR, the velocity of unloaded shortening remained constant (2.92 +/- 0.08 micrometer half-sarcomere-1 s-1; n = 8) for the different release amplitudes used in this study. 3. To investigate its role in the attenuation of dF/dtR with increased shortening, the effects of rapid ramp (constant velocity) shortening on intracellular free Ca2+ concentration ([Ca2+]i) were monitored using the Ca2+-sensitive fluorescent dye furaptra. Compared with an isometric contraction, rapid fibre shortening was associated with a transient increase in [Ca2+]i while force regeneration after shortening was associated with a transient reduction in [Ca2+]i. The greatest reductions in [Ca2+]i were associated with the largest amplitude ramps. 4. Cross-bridge-mediated modifications of the Ca2+ affinity of troponin C (TnC) may explain the fluctuations in [Ca2+]i observed during and after ramps. Associated fluctuations in TnC Ca2+ occupancy could play a role in the reduction of dF/dtR with increasing release size.
Collapse
Affiliation(s)
- R Vandenboom
- Department of Anesthesia Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Regnier M, Homsher E. The effect of ATP analogs on posthydrolytic and force development steps in skinned skeletal muscle fibers. Biophys J 1998; 74:3059-71. [PMID: 9635760 PMCID: PMC1299647 DOI: 10.1016/s0006-3495(98)78013-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP, 2-deoxy ATP (dATP), CTP, and UTP support isometric force and unloaded shortening velocity (Vu) to various extents (Regnier et al., Biophys. J. 74:3044-3058). Vu correlated with the rate of cross-bridge dissociation after the power stroke and the steady-state hydrolysis rate in solution, whereas force was modulated by NTP binding and cleavage. Here we studied the influence of posthydrolytic cross-bridge steps on force and fiber shortening by measuring isometric force and stiffness, the rate of tension decline (kPi) after Pi photogeneration from caged Pi, and the rate of tension redevelopment (ktr) after a sudden release and restretch of fibers. The slope of the force versus [Pi] relationship was the same for ATP, dATP, and CTP, but for UTP it was threefold less. ktr and kPi increased with increasing [Pi] with a similar slope for ATP, dATP, and CTP, but had an increasing magnitude of the relationship ATP < dATP < CTP. UTP reduced ktr but increased kPi. The results suggest that the rate constant for the force-generating isomerization increases with the order ATP < dATP < CTP < UTP. Simulations using a six-state model suggest that increasing the force-generating rate accounts for the faster kPi in dATP, CTP, and UTP. In contrast, ktr appears to be strongly affected by the rates of NTP binding and cleavage and the rate of the force-generating isomerization.
Collapse
Affiliation(s)
- M Regnier
- Department of Physiology, School of Medicine, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
39
|
Regnier M, Martyn DA, Chase PB. Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in rabbit skeletal muscle. Biophys J 1998; 74:2005-15. [PMID: 9545059 PMCID: PMC1299541 DOI: 10.1016/s0006-3495(98)77907-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The correlation of acto-myosin ATPase rate with tension redevelopment kinetics (k(tr)) was determined during Ca(+2)-activated contractions of demembranated rabbit psoas muscle fibers; the ATPase rate was either increased or decreased relative to control by substitution of ATP (5.0 mM) with 2-deoxy-ATP (dATP) (5.0 mM) or by lowering [ATP] to 0.5 mM, respectively. The activation dependence of k(tr) and unloaded shortening velocity (Vu) was measured with each substrate. With 5.0 mM ATP, Vu depended linearly on tension (P), whereas k(tr) exhibited a nonlinear dependence on P, being relatively independent of P at submaximum levels and rising steeply at P > 0.6-0.7 of maximum tension (Po). With dATP, Vu was 25% greater than control at Po and was elevated at all P > 0.15Po, whereas Po was unchanged. Furthermore, the Ca(+2) sensitivity of both k(tr) and P increased, such that the dependence of k(tr) on P was not significantly different from control, despite an elevation of Vu and maximal k(tr). In contrast, lowering [ATP] caused a slight (8%) elevation of Po, no change in the Ca(+2) sensitivity of P, and a decrease in Vu at all P. Moreover, k(tr) was decreased relative to control at P > 0.75Po, but was elevated at P < 0.75Po. These data demonstrate that the cross-bridge cycling rate dominates k(tr) at maximum but not submaximum levels of Ca(2+) activation.
Collapse
Affiliation(s)
- M Regnier
- Department of Bioengineering, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
40
|
Chase PB, Denkinger TM, Kushmerick MJ. Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle. Biophys J 1998; 74:1428-38. [PMID: 9512039 PMCID: PMC1299489 DOI: 10.1016/s0006-3495(98)77855-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle contraction is highly dynamic and thus may be influenced by viscosity of the medium surrounding the myofilaments. Single, skinned fibers from rabbit psoas muscle were used to test this hypothesis. Viscosity within the myofilament lattice was increased by adding to solutions low molecular weight sugars (disaccharides sucrose or maltose or monosaccharides glucose or fructose). At maximal Ca2+ activation, isometric force (Fi) was inhibited at the highest solute concentrations studied, but this inhibition was not directly related to viscosity. Solutes readily permeated the filament lattice, as fiber diameter was unaffected by added solutes (except for an increased diameter with Fi < 30% of control). In contrast, there was a linear dependence upon 1/viscosity for both unloaded shortening velocity and also the kinetics of isometric tension redevelopment; these effects were unrelated to either variation in solution osmolarity or inhibition of force. All effects of added solute were reversible. Inhibition of both isometric as well as isotonic kinetics demonstrates that viscous resistance to filament sliding was not the predominant factor affected by viscosity. This was corroborated by measurements in relaxed fibers, which showed no significant change in the strain-rate dependence of elastic modulus when viscosity was increased more than twofold. Our results implicate cross-bridge diffusion as a significant limiting factor in cross-bridge kinetics and, more generally, demonstrate that viscosity is a useful probe of actomyosin dynamics.
Collapse
Affiliation(s)
- P B Chase
- Department of Radiology, University of Washington, Seattle 98195-7115, USA.
| | | | | |
Collapse
|
41
|
Gordon AM, LaMadrid MA, Chen Y, Luo Z, Chase PB. Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 1997; 72:1295-307. [PMID: 9138575 PMCID: PMC1184512 DOI: 10.1016/s0006-3495(97)78776-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using an in vitro motility assay, we have investigated Ca2+ regulation of individual, regulated thin filaments reconstituted from rabbit fast skeletal actin, troponin, and tropomyosin. Rhodamine-phalloidin labeling was used to visualize the filaments by epifluorescence, and assays were conducted at 30 degrees C and at ionic strengths near the physiological range. Regulated thin filaments exhibited well-regulated behavior when tropomyosin and troponin were added to the motility solutions because there was no directed motion in the absence of Ca2+. Unlike F-actin, the speed increased in a graded manner with increasing [Ca2+], whereas the number of regulated thin filaments moving was more steeply regulated. With increased ionic strength, Ca2+ sensitivity of both the number of filaments moving and their speed was shifted toward higher [Ca2+] and was steepest at the highest ionic strength studied (0.14 M gamma/2). Methylcellulose concentration (0.4% versus 0.7%) had no effect on the Ca2+ dependence of speed or number of filaments moving. These conclusions hold for five different methods used to analyze the data, indicating that the conclusions are robust. The force-pCa relationship (pCa = -log10[Ca2+]) for rabbit psoas skinned fibers taken under similar conditions of temperature and solution composition (0.14 M gamma/2) paralleled the speed-pCa relationship for the regulated filaments in the in vitro motility assay. Comparison of motility results with the force-pCa relationship in fibers suggests that relatively few cross-bridges are needed to make filaments move, but many have to be cycling to make the regulated filament move at maximum speed.
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA.
| | | | | | | | | |
Collapse
|