1
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
2
|
Hirschi S, Fischer N, Kalbermatter D, Laskowski PR, Ucurum Z, Müller DJ, Fotiadis D. Design and assembly of a chemically switchable and fluorescently traceable light-driven proton pump system for bionanotechnological applications. Sci Rep 2019; 9:1046. [PMID: 30705382 PMCID: PMC6355921 DOI: 10.1038/s41598-018-37260-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Energy-supplying modules are essential building blocks for the assembly of functional multicomponent nanoreactors in synthetic biology. Proteorhodopsin, a light-driven proton pump, is an ideal candidate to provide the required energy in form of an electrochemical proton gradient. Here we present an advanced proteoliposome system equipped with a chemically on-off switchable proteorhodopsin variant. The proton pump was engineered to optimize the specificity and efficiency of chemical deactivation and reactivation. To optically track and characterize the proteoliposome system using fluorescence microscopy and nanoparticle tracking analysis, fluorescenlty labelled lipids were implemented. Fluorescence is a highly valuable feature that enables detection and tracking of nanoreactors in complex media. Cryo-transmission electron microscopy, and correlative atomic force and confocal microscopy revealed that our procedure yields polylamellar proteoliposomes, which exhibit enhanced mechanical stability. The combination of these features makes the presented energizing system a promising foundation for the engineering of complex nanoreactors.
Collapse
Affiliation(s)
- S Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - N Fischer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - D Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - P R Laskowski
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Z Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - D J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - D Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Bian T, Autry JM, Casemore D, Li J, Thomas DD, He G, Xing C. Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles. Biochem Biophys Res Commun 2016; 481:206-211. [PMID: 27815070 DOI: 10.1016/j.bbrc.2016.10.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
We have developed a charge-mediated fusion method to reconstitute the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in giant unilamellar vesicles (GUV). Intracellular Ca2+ transport by SERCA controls key processes in human cells such as proliferation, signaling, and contraction. Small-molecule effectors of SERCA are urgently needed as therapeutics for Ca2+ dysregulation in human diseases including cancer, diabetes, and heart failure. Here we report the development of a method for efficiently reconstituting SERCA in GUV, and we describe a streamlined protocol based on optimized parameters (e.g., lipid components, SERCA preparation, and activity assay requirements). ATP-dependent Ca2+ transport by SERCA in single GUV was detected directly using confocal fluorescence microscopy with the Ca2+ indicator Fluo-5F. The GUV reconstitution system was validated for functional screening of Ca2+ transport using thapsigargin (TG), a small-molecule inhibitor of SERCA currently in clinical trials as a prostate cancer prodrug. The GUV system overcomes the problem of inhibitory Ca2+ accumulation for SERCA in native and reconstituted small unilamellar vesicles (SUV). We propose that charge-mediated fusion provides a widely-applicable method for GUV reconstitution of clinically-important membrane transport proteins. We conclude that GUV reconstitution is a technological advancement for evaluating small-molecule effectors of SERCA.
Collapse
Affiliation(s)
- Tengfei Bian
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States; State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States; Biophysical Technology Center, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States
| | - Denise Casemore
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
| | - Ji Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States; Biophysical Technology Center, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
4
|
Astafyeva K, Urbach W, Garroum N, Taulier N, Thiam AR. Stability of C(12)E(j) Bilayers Probed with Adhesive Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6791-6796. [PMID: 26035626 DOI: 10.1021/acs.langmuir.5b00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The stability of model surfactant bilayers from the poly(ethylene glycol) mono-n-dodecyl ether (C12Ej) family was probed. The surfactant bilayers were formed by the adhesion of emulsion droplets. We generated C12Ej bilayers by forming water-in-oil (w/o) emulsions with saline water droplets, covered by the surfactant, in a silicone and octane oil mixture. Using microfluidics, we studied the stability of those bilayers. C12E1 allowed only short-lived bilayers whereas C12E2 bilayers were stable over a wide range of oil mixtures. At high C12E2 concentration, a two-phase region was displayed in the phase diagram: bilayers formed by the adhesion of two water droplets and Janus-like particles consisting of adhering aqueous and amphiphilic droplets. C12E8 and C12E25 did not mediate bilayer formation and caused phase inversion leading to o/w emulsion. With intermediate C12E4 and C12E5 surfactants, both w/o and o/w emulsions were unstable. We provided the titration of the C12E2 bilayer with C12E4 and C12E5 to study and predict their stability behavior.
Collapse
Affiliation(s)
- Ksenia Astafyeva
- †Laboratoire de Physique Statistique, Ecole Normale Supérieure, Sorbonne Universités, UPMC Université, and Université Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris, France
| | - Wladimir Urbach
- †Laboratoire de Physique Statistique, Ecole Normale Supérieure, Sorbonne Universités, UPMC Université, and Université Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris, France
- ‡Université René Descartes, Paris, France
| | - Nabil Garroum
- †Laboratoire de Physique Statistique, Ecole Normale Supérieure, Sorbonne Universités, UPMC Université, and Université Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris, France
| | - Nicolas Taulier
- §Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire d'Imagerie Biomédicale, INSERM, F-75006 Paris, France
| | - Abdou R Thiam
- †Laboratoire de Physique Statistique, Ecole Normale Supérieure, Sorbonne Universités, UPMC Université, and Université Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris, France
| |
Collapse
|
5
|
Rossi G, Fuchs PFJ, Barnoud J, Monticelli L. A coarse-grained MARTINI model of polyethylene glycol and of polyoxyethylene alkyl ether surfactants. J Phys Chem B 2012; 116:14353-62. [PMID: 23137188 DOI: 10.1021/jp3095165] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nonionic surfactants are used for the isolation and purification of membrane proteins, as well as for the study of fundamental aspects of protein diffusion in membranes. Here we present a new coarse-grained model of polyethylene glycol (PEG) and of the family of polyoxyethylene alkyl ether (C(i)E(j)) surfactants. The model is compatible with the MARTINI coarse-grained force-field for lipids and proteins. We validate the model by comparing molecular dynamics simulations with experimental data. In particular, we show that the model reproduces the phase behavior of water-surfactant mixtures as a function of water concentration. We also simulate the self-assembly of two ternary mixtures that have been used for the experimental measure of protein diffusion coefficients. The first includes a cosurfactant that affects the curvature of the surfactant bilayers; the second is a mixture of C(i)E(j) surfactants, alkanes and water. In both cases, the results of self-assembly simulations are in agreement with experimental observations and pave the way to the use of the surfactant model in combination with MARTINI peptides and proteins.
Collapse
Affiliation(s)
- G Rossi
- INSERM, UMR-S665, Paris, F-75015, France.
| | | | | | | |
Collapse
|
6
|
Teboul D, Beaufils S, Taveau JC, Iatmanen-Harbi S, Renault A, Venien-Bryan C, Vie V, Lacapere JJ. Mouse TSPO in a lipid environment interacting with a functionalized monolayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2791-800. [PMID: 22771765 DOI: 10.1016/j.bbamem.2012.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/11/2012] [Accepted: 06/26/2012] [Indexed: 12/28/2022]
Abstract
Translocator protein TSPO is a membrane protein highly conserved in evolution which does not belong to any structural known family. TSPO is involved in physiological functions among which transport of molecules such as cholesterol to form steroids and bile salts in mammalian cells. Membrane protein structure determination remains a difficult task and needs concomitant approaches (for instance X-ray- or Electron-crystallography and NMR). Electron microscopy and two-dimensional crystallization under functionalized monolayers have been successfully developed for recombinant tagged proteins. The difficulty comes from the detergent carried by membrane proteins that disrupt the lipid monolayer. We identified the best conditions for injecting the histidine tagged recombinant TSPO in detergent in the subphase and to keep the protein stable. Reconstituted recombinant protein into a lipid bilayer favors its adsorption to functionalized monolayers and limits the disruption of the monolayer by reducing the amount of detergent. Finally, we obtained the first transmission electron microscopy images of recombinant mouse TSPO negatively stained bound to the lipid monolayer after injection into the subphase of pre-reconstituted TSPO in lipids. Image analysis reveals that circular objects could correspond to an association of at least four monomers of mouse TSPO. The different amino acid compositions and the location of the polyhistidine tag between bacterial and mouse TSPO could account for the formation of dimer versus tetramer, respectively. The difference in the loop between the first and second putative transmembrane domain may contribute to distinct monomer interaction, this is supported by differences in ligand binding parameters and biological functions of both proteins.
Collapse
|
7
|
Kim LY, Johnson MC, Schmidt‐Krey I. Cryo‐EM in the Study of Membrane Transport Proteins. Compr Physiol 2012; 2:283-93. [DOI: 10.1002/cphy.c110028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Lipid bilayer composition affects transmembrane protein orientation and function. J Lipids 2011; 2011:208457. [PMID: 21490797 PMCID: PMC3068514 DOI: 10.1155/2011/208457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022] Open
Abstract
Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or α-amylase). Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET) confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the β subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.
Collapse
|
9
|
Characterization of membrane protein preparations: measurement of detergent content and ligand binding after proteoliposomes reconstitution. Methods Mol Biol 2010. [PMID: 20665258 DOI: 10.1007/978-1-60761-762-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The study of membrane proteins is a difficult task due to their natural embedding in hydrophobic environment made by lipids. Solubilization and purification from native membranes or overexpressed system involves the use of detergent to make them soluble while maintaining their structural and functional properties. The choice of detergent is governed not only by their ability to reach these goals, but also by their compatibility with biochemical and structural studies. A different detergent can be used during purification, and characterization of the detergent amounts present in each purification step is crucial. To address this point, we developed a colorimetric method to measure detergent content in different preparations. We analyzed detergent present in the collected fractions from the purification of the recombinant membrane translocator protein (RecTSPO). We followed detergent removal during the reconstitution of RecTSPO in liposomes and observed by electron microscopy the formation of proteoliposomes. We addressed the RecTSPO functionality by testing its ability to bind high affinity drug ligand [(3)H]PK 11195. We described the different parameters that should be controlled in order to optimize the measurement of this ligand binding using a filtration procedure. These protocols are useful to characterize functionality and detergent content of membrane protein, both key factors for further structural studies.
Collapse
|
10
|
Glaves JP, Fisher L, Ward A, Young HS. Helical crystallization of two example membrane proteins MsbA and the Ca(2+)-ATPase. Methods Enzymol 2010; 483:143-59. [PMID: 20888473 DOI: 10.1016/s0076-6879(10)83007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Helical crystallization is a powerful tool for the moderate resolution structure determination of integral membrane proteins, where the insight gained often includes domain architecture and the disposition of α-helical segments. A necessary first step toward helical crystallization involves membrane protein reconstitution, which itself is a powerful technique for structure-function studies of integral membrane proteins. The correct insertion of a detergent-solubilized, purified membrane protein into lipid vesicles (proteoliposomes) can facilitate the functional characterization of the protein in a well-defined, chemically pure environment without interference from other membrane-associated components. In addition, the lipid-to-protein ratio can be controlled during reconstitution to generate a high concentration of a particular membrane protein in the proteoliposomes, which are then suitable for both functional assays and crystallization trials. Traditional approaches to two-dimensional crystallization for electron microscopy rely on dialysis methods for the simultaneous reconstitution and crystallization of a membrane protein [Kühlbrandt, W. (1992). Two-dimensional crystallization of membrane proteins. Q. Rev. Biophys.25, 1-49.], yet some systems allow these two steps to be experimentally separated and independently considered. Some examples of integral membrane proteins that have been reconstituted and crystallized in a helical lattice include cytochrome bc1 complex from bovine heart [Akiba, T., et al. (1996). Three-dimensional structure of bovine cytochrome bc(1) complex by electron cryomicroscopy and helical image reconstruction. Nat. Struct. Biol.3, 553-561.], Escherichia coli melibiose permease [Rigaud, J. L., et al. (1997). Bio-beads: An efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol.118, 226-235.], a bacterial ATP-binding cassette transporter MsbA [Ward, A., et al. (2009). Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. J. Struct. Biol.165, 169-175.], and the sarcoplasmic reticulum Ca(2+)-ATPase [Young, H. S., et al. (1997). How to make tubular crystals by reconstitution of detergent-solubilized Ca(2+)-ATPase. Biophys. J.72, 2545-2558.]. The reconstitution and helical crystallization of MsbA and Ca(2+)-ATPase will be the focus of this chapter.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
11
|
Nury H, Blesneac I, Ravaud S, Pebay-Peyroula E. Structural approaches of the mitochondrial carrier family. Methods Mol Biol 2010; 654:105-117. [PMID: 20665263 DOI: 10.1007/978-1-60761-762-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transport of solutes across the inner mitochondrial membrane is highly selective and necessitates membrane proteins mainly from the mitochondrial carrier family (MCF). These carriers are required for the transport of a variety of metabolites implicated in all the important processes occurring within the mitochondrial matrix. Due to its high abundance, the ADP/ATP carrier (AAC) is the member of the family that was studied most. It is the first mitochondrial carrier for which a high-resolution X-ray structure is known. The carrier was crystallized in the presence of a strong inhibitor, the carboxyatractyloside (CATR). The structure gives an insight not only into the overall fold of mitochondrial carriers in general but also into atomic details of the AAC in a conformation that is open toward the intermembrane space (IMS). Molecular dynamics simulations indicate the first events occurring to the carrier after the binding of ADP. A careful analysis of the primary sequences of all the carriers in light with the structure highlights properties of the protein that are related to the substrate.
Collapse
Affiliation(s)
- Hugues Nury
- Institut Pasteur, Unit if Structural Dynamics of Macromolecules, CNRS, URA 2185, Paris, France
| | | | | | | |
Collapse
|
12
|
Lacapère JJ, Pebay-Peyroula E, Neumann JM, Etchebest C. Determining membrane protein structures: still a challenge! Trends Biochem Sci 2007; 32:259-70. [PMID: 17481903 DOI: 10.1016/j.tibs.2007.04.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/07/2007] [Accepted: 04/13/2007] [Indexed: 11/20/2022]
Abstract
Determination of structures and dynamics events of transmembrane proteins is important for the understanding of their function. Analysis of such events requires high-resolution 3D structures of the different conformations coupled with molecular dynamics analyses describing the conformational pathways. However, the solution of 3D structures of transmembrane proteins at atomic level remains a particular challenge for structural biochemists--the need for purified and functional transmembrane proteins causes a 'bottleneck'. There are various ways to obtain 3D structures: X-ray diffraction, electron microscopy, NMR and modelling; these methods are not used exclusively of each other, and the chosen combination depends on several criteria. Progress in this field will improve knowledge of ligand-induced activation and inhibition of membrane proteins in addition to aiding the design of membrane-protein-targeted drugs.
Collapse
Affiliation(s)
- Jean-Jacques Lacapère
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Faculté de Médecine X. Bichat, Université Paris 7, BP 416, F-75018, Paris, France.
| | | | | | | |
Collapse
|
13
|
Bensalem N, Masscheleyn S, Mozo J, Vallée B, Brouillard F, Trudel S, Ricquier D, Edelman A, Guerrera IC, Miroux B. High Sensitivity Identification of Membrane Proteins by MALDI TOF-MASS Spectrometry Using Polystyrene Beads. J Proteome Res 2007; 6:1595-602. [PMID: 17355127 DOI: 10.1021/pr0606272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins play a large variety of functions in life and represent 30% of all genomes sequenced. Due to their hydrophobic nature, they are tightly bound to their biological membrane, and detergents are always required to extract and isolate them before identification by mass spectrometry (MS). The latter, however remains difficult. Peptide mass fingerprinting methods using techniques such as MALDI-TOF MS, for example, have become an important analytical tool in the identification of proteins. However, PMF of membrane proteins is a real challenge for at least three reasons. First, membrane proteins are naturally present at low levels; second, most of the detergents strongly inhibit proteases and have deleterious effects on MALDI spectra; and third, despite the presence of detergent, membrane proteins are unstable and often aggregate. We took the mitochondrial uncoupling protein 1 (UCP1) as a model and showed that differential acetonitrile extraction of tryptic peptides combined with the use of polystirene Bio-Beads triggered high resolution of the MALDI-TOF identification of mitochondrial membrane proteins solubilized either with Triton-X100 or CHAPS detergents.
Collapse
|
14
|
Sørensen TLM, Olesen C, Jensen AML, Møller JV, Nissen P. Crystals of sarcoplasmic reticulum Ca(2+)-ATPase. J Biotechnol 2006; 124:704-16. [PMID: 16597471 DOI: 10.1016/j.jbiotec.2006.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 02/01/2006] [Indexed: 11/24/2022]
Abstract
High-resolution structures of the Ca(2+)-ATPase have over the last 5 years added a structural dimension to our understanding of the function of this integral membrane protein. The Ca(2+)-ATPase is now by far the membrane protein where the most functionally different conformations have been described in precise structural detail. Here, we review our experience from solving Ca(2+)-ATPase structures: a purification scheme involving minimum handling of the protein to preserve natural and essential lipids, a rational approach to screening for crystals based on a limited number of polyethyleneglycols and many different salts, improving crystal quality using additives, collecting the data and finally solving the structures. We argue that certain of the lessons learned in the present study are very likely to be useful for crystallisation of eukaryotic membrane proteins in general.
Collapse
|
15
|
Stamouli A, Kafi S, Klein DCG, Oosterkamp TH, Frenken JWM, Cogdell RJ, Aartsma TJ. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 2003; 84:2483-91. [PMID: 12668456 PMCID: PMC1302814 DOI: 10.1016/s0006-3495(03)75053-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/25/2002] [Indexed: 10/21/2022] Open
Abstract
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.
Collapse
Affiliation(s)
- Amalia Stamouli
- Department of Biophysics, Huygens Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Rigaud JL. Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals. Braz J Med Biol Res 2002; 35:753-66. [PMID: 12131914 DOI: 10.1590/s0100-879x2002000700001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.
Collapse
Affiliation(s)
- J-L Rigaud
- Institut Curie, UMR-CNRS 168 and LRC-CEA 8, Paris, France.
| |
Collapse
|
17
|
Champeil P, Henao F, Lacapere JJ, McIntosh DB. A remarkably stable phosphorylated form of Ca2+-ATPase prepared from Ca2+-loaded and fluorescein isothiocyanate-labeled sarcoplasmic reticulum vesicles. J Biol Chem 2001; 276:5795-803. [PMID: 11067849 DOI: 10.1074/jbc.m006980200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After the nucleotide binding domain in sarcoplasmic reticulum Ca2+-ATPase has been derivatized with fluorescein isothiocyanate at Lys-515, ATPase phosphorylation in the presence of a calcium gradient, with Ca2+ on the lumenal side but without Ca2+ on the cytosolic side, results in the formation of a species that exhibits exceptionally low probe fluorescence (Pick, U. (1981) FEBS Lett. 123, 131-136). We show here that, as long as the free calcium concentration on the cytosolic side is kept in the nanomolar range, this low fluorescence species is remarkably stable, even when the calcium gradient is subsequently dissipated by ionophore. This species is a Ca2+-free phosphorylated species. The kinetics of Ca2+ binding to it indicates that its transport sites are exposed to the cytosolic side of the membrane and retain a high affinity for Ca2+. Thus, in the ATPase catalytic cycle, an intrinsically transient phosphorylated species with transport sites occupied but not yet occluded must also have been stabilized by fluorescein isothiocyanate (FITC), possibly mimicking ADP. The low fluorescence mainly results from a change in FITC absorption. The Ca2+-free low fluorescence FITC-ATPase species remains stable after addition of thapsigargin in the absence or presence of decavanadate, or after solubilization with dodecylmaltoside. The remarkable stability of this phosphoenzyme species and the changes in FITC spectroscopic properties are discussed in terms of a putative FITC-mediated link between the nucleotide binding domain and the phosphorylation domain in Ca2+-ATPase, and the possible formation of a transition state-like conformation with a compact cytosolic head. These findings might open a path toward structural characterization of a stable phosphorylated form of Ca2+-ATPase for the first time, and thus to further insights into the pump's mechanism.
Collapse
Affiliation(s)
- P Champeil
- Unité de Recherche Associée 2096, CNRS et CEA, Département de Biologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
18
|
Ollivon M, Lesieur S, Grabielle-Madelmont C, Paternostre M. Vesicle reconstitution from lipid-detergent mixed micelles. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:34-50. [PMID: 11090817 DOI: 10.1016/s0304-4157(00)00006-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The process of formation of lipid vesicles using the technique of detergent removal from mixed-micelles is examined. Recent studies on the solubilization and reconstitution of liposomes participated to our knowledge of the structure and properties of mixed lipid-detergent systems. The mechanisms involved in both the lipid self assembly and the micelle-vesicle transition are first reviewed. The simplistic three step minimum scheme is described and criticized in relation with isothermal as well as a function of the [det]/[lip] ratio, phase diagram explorations. The techniques of detergent elimination are reviewed and criticized for advantages and disadvantages. New methods inducing micelle-vesicle transition using enzymatic reaction and T-jump are also described and compared to more classical ones. Future developments of these techniques and improvements resulting of their combinations are also considered. Proper reconstitution of membrane constituents such as proteins and drugs into liposomes are examined in the light of our actual understanding of the micelle-vesicle transition.
Collapse
Affiliation(s)
- M Ollivon
- Equipe Physico-Chimie des Systèmes Polyphasés, CNRS UMR 8612, Université Paris-Sud, 5 rue Jean-Baptiste Clement, 92296, Ch atenay-Malabry, France.
| | | | | | | |
Collapse
|
19
|
Rigaud J, Chami M, Lambert O, Levy D, Ranck J. Use of detergents in two-dimensional crystallization of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:112-28. [PMID: 11090821 DOI: 10.1016/s0005-2736(00)00307-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure determination at high resolution is actually a difficult challenge for membrane proteins and the number of membrane proteins that have been crystallized is still small and far behind that of soluble proteins. Because of their amphiphilic character, membrane proteins need to be isolated, purified and crystallized in detergent solutions. This makes it difficult to grow the well-ordered three-dimensional crystals that are required for high resolution structure analysis by X-ray crystallography. In this difficult context, growing crystals confined to two dimensions (2D crystals) and their structural analysis by electron crystallography has opened a new way to solve the structure of membrane proteins. However, 2D crystallization is one of the major bottlenecks in the structural studies of membrane proteins. Advances in our understanding of the interaction between proteins, lipids and detergents as well as development and improvement of new strategies will facilitate the success rate of 2D crystallization. This review deals with the various available strategies for obtaining 2D crystals from detergent-solubilized intrinsic membrane proteins. It gives an overview of the methods that have been applied and gives details and suggestions of the physical processes leading to the formation of the ordered arrays which may be of help for getting more proteins crystallized in a form suitable for high resolution structural analysis by electron crystallography.
Collapse
Affiliation(s)
- J Rigaud
- Institut Curie, Section de Recherche, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231, Paris, France.
| | | | | | | | | |
Collapse
|
20
|
Lacapère JJ, Robert JC, Thomas-Soumarmon A. Efficient solubilization and purification of the gastric H+, K+-ATPase for functional and structural studies. Biochem J 2000; 345 Pt 2:239-45. [PMID: 10620500 PMCID: PMC1220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
When gastric H(+),K(+)-ATPase-containing microsomes are solubilized by detergents, a rapid loss of ATPase activity is generally observed. In this article, SDS/PAGE of octa(ethylene glycol)dodecyl monoether (C(12)E(8))- and n-dodecyl beta-d-maltoside-solubilized microsomes and their purifications by affinity chromatography on Reactive Red column reveal that inactivation is due to two main effects. (i) Solubilization activates an aspartic protease that cleaves down the alpha-subunit of the H(+),K(+)-ATPase. Addition of pepstatin A at slightly acidic pH and at low temperature prevents the proteolysis. (ii) A too-harsh delipidation inactivates the ATPase. When n-dodecyl-beta-d-maltoside is the detergent, the soluble H(+), K(+)-ATPase is highly active (2.5 micromol/mg per h at pH 6.0 and 5 degrees C) as long as ATP is added. When C(12)E(8) is used, the detergent induces an inactivation due to delipidation, since addition of lipids restores activity. The two subunits of the H(+), K(+)-ATPase are present in equimolar ratio in the n-dodecyl beta-d-maltoside-purified complex. Moreover, two main types of complex (330 and 660 kDa) were resolved in non-denaturing gels and should be the dimeric (alphabeta)(2) and tetrameric (alphabeta)(4) heterodimers respectively. In conclusion, purification of active, stable, soluble complexes of H(+),K(+)-ATPase with few lipids (a lipid/protein ratio of 0.25, w/w) has been achieved. This material should be useful for further structural studies.
Collapse
Affiliation(s)
- J J Lacapère
- Section de Recherche, UMR-168 CNRS, LCR-8 CEA, Institut Curie, 11 rue P. et M. Curie, 75231 Paris, France.
| | | | | |
Collapse
|
21
|
Stokes DL, Auer M, Zhang P, Kühlbrandt W. Comparison of H+-ATPase and Ca2+-ATPase suggests that a large conformational change initiates P-type ion pump reaction cycles. Curr Biol 1999; 9:672-9. [PMID: 10395538 DOI: 10.1016/s0960-9822(99)80307-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Structures have recently been solved at 8 A resolution for both Ca2+-ATPase from rabbit sarcoplasmic reticulum and H+-ATPase from Neurospora crassa. These cation pumps are two distantly related members of the family of P-type ATPases, which are thought to use similar mechanisms to generate ATP-dependent ion gradients across a variety of cellular membranes. We have undertaken a detailed comparison of the two structures in order to describe their similarities and differences as they bear on their mechanism of active transport. RESULTS Our first important finding was that the arrangement of 10 transmembrane helices was remarkably similar in the two molecules. This structural homology strongly supports the notion that these pumps use the same basic mechanism to transport their respective ions. Despite this similarity in the membrane-spanning region, the cytoplasmic regions of the two molecules were very different, both in their disposition relative to the membrane and in the juxtaposition of their various subdomains. CONCLUSIONS On the basis of the crystallization conditions, we propose that these two crystal structures represent different intermediates in the transport cycle, distinguished by whether cations are bound to their transport sites. Furthermore, we propose that the corresponding conformational change (E2 to E1 ) has two components: the first is an inclination of the main cytoplasmic mass by 20 degrees relative to the membrane-spanning domain; the second is a rearrangement of the domains comprising the cytoplasmic part of the molecules. Accordingly, we present a rough model for this important conformational change, which relays the effects of cation binding within the membrane-spanning domain to the nucleotide-binding site, thus initiating the transport cycle.
Collapse
Affiliation(s)
- D L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, 10016, USA.
| | | | | | | |
Collapse
|