1
|
Shaw RC, Morgan TEF, McErlain H, Alcaide-Corral CJ, Waldman AD, Soloviev D, Lewis DY, Sutherland A, Tavares AAS. Assessment of a 6-arylaminobenzamide lead derivative as a potential core scaffold for S1P 5 positron emission tomography radiotracer development. Bioorg Med Chem 2025; 119:118057. [PMID: 39798239 DOI: 10.1016/j.bmc.2024.118057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Sphingosine-1-phosphate-5 receptors (S1P5) are predominantly expressed in oligodendrocytes and as a result have been proposed as an important target in Multiple Sclerosis (MS). Selective S1P5 radiotracers could enable in vivo positron emission tomography (PET) imaging of oligodendrocytes activity. Here we report the synthesis, radiolabelling and first preclinical evaluation of the pharmacokinetics and binding properties of a lead 6-arylaminobenzamide derivative, 6-(mesitylamino)-2-methoxy-3-methylbenzamide (also named as TEFM180), as a potential core scaffold for development of novel S1P5 PET radiotracers. Following intravenous bolus injection, TEFM180 was found to quickly enter the brain with good brain:blood ratios and subsequent rapid clearance. Autoradiography studies showed that [3H]TEFM180 had a high affinity for its target (KD = 2.8 nM), with moderate levels of non-displaceable binding. Distribution of [3H]TEFM180 in the brain was found to be consistent with S1P5 expression and showed a binding potential (BP) of >2-3 in white matter rich regions. Overall, TEFM180 offers a good initial platform for development of future radiotracers targeting S1P5.
Collapse
Affiliation(s)
- Robert C Shaw
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK; Edinburgh Imaging, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK
| | - Timaeus E F Morgan
- School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ UK
| | - Holly McErlain
- School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ UK
| | - Carlos J Alcaide-Corral
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK; Edinburgh Imaging, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK
| | - Adam D Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB UK
| | - Dmitry Soloviev
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH UK
| | - David Y Lewis
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH UK; Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK; Edinburgh Imaging, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK.
| |
Collapse
|
2
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
3
|
Andersen MA, Schouenborg J. Polydimethylsiloxane as a more biocompatible alternative to glass in optogenetics. Sci Rep 2023; 13:16090. [PMID: 37752160 PMCID: PMC10522705 DOI: 10.1038/s41598-023-43297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Optogenetics is highly useful to stimulate or inhibit defined neuronal populations and is often used together with electrophysiological recordings. Due to poor penetration of light in tissue, there is a need for biocompatible wave guides. Glass wave guides are relatively stiff and known to cause glia reaction that likely influence the activity in the remaining neurons. We developed highly flexible micro wave guides for optogenetics that can be used in combination with long-lasting electrophysiological recordings. We designed and evaluated polydimethylsiloxane (PDMS) mono-fibers, which use the tissue as cladding, with a diameter of 71 ± 10 µm and 126 ± 5 µm. We showed that micro PDMS fibers transmitted 9-33 mW/mm2 light energy enough to activate channelrhodopsin. This was confirmed in acute extracellular recordings in vivo in which optogenetic stimulation through the PDMS fibers generated action potentials in rat hippocampus with a short onset latency. PDMS fibers had significantly less microglia and astrocytic activation in the zone nearest to the implant as compared to glass. There was no obvious difference in number of adjacent neurons between size matched wave guides. Micro PDMS wave guide demonstrates in vivo functionality and improved biocompatibility as compared to glass. This enables the delivery of light with less tissue damage.
Collapse
Affiliation(s)
- Michael Aagaard Andersen
- Neuronano Research Center, Department of Experimental Medicine, Lund University, Lund, Sweden.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Alam M, Mut F, Cebral JR, Seshaiyer P. Quantification of the Rupture Potential of Patient-Specific Intracranial Aneurysms under Contact Constraints. Bioengineering (Basel) 2021; 8:bioengineering8110149. [PMID: 34821715 PMCID: PMC8614820 DOI: 10.3390/bioengineering8110149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Intracranial aneurysms (IAs) are localized enlargements of cerebral blood vessels that cause substantial rates of mortality and morbidity in humans. The rupture possibility of these aneurysms is a critical medical challenge for physicians during treatment planning. This treatment planning while assessing the rupture potential of aneurysms becomes more complicated when they are constrained by an adjacent structure such as optic nerve tissues or bones, which is not widely studied yet. In this work, we considered and studied a constitutive model to investigate the bio-mechanical response of image-based patient-specific IA data using cardiovascular structural mechanics equations. We performed biomechanical modeling and simulations of four different patient-specific aneurysms’ data (three middle cerebral arteries and one internal carotid artery) to assess the rupture potential of those aneurysms under a plane contact constraint. Our results suggest that aneurysms with plane contact constraints produce less or almost similar maximum wall effective stress compared to aneurysms with no contact constraints. In our research findings, we observed that a plane contact constraint on top of an internal carotid artery might work as a protective wall due to the 16.6% reduction in maximum wall effective stress than that for the case where there is no contact on top of the aneurysm.
Collapse
Affiliation(s)
- Manjurul Alam
- Department of Bio-Engineering, George Mason University, Fairfax, VA 22030, USA; (F.M.); (J.R.C.)
- Correspondence:
| | - Fernando Mut
- Department of Bio-Engineering, George Mason University, Fairfax, VA 22030, USA; (F.M.); (J.R.C.)
| | - Juan R. Cebral
- Department of Bio-Engineering, George Mason University, Fairfax, VA 22030, USA; (F.M.); (J.R.C.)
| | - Padmanabhan Seshaiyer
- Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
5
|
Rodrigues PV, Tostes K, Bosque BP, de Godoy JVP, Amorim Neto DP, Dias CSB, Fonseca MDC. Illuminating the Brain With X-Rays: Contributions and Future Perspectives of High-Resolution Microtomography to Neuroscience. Front Neurosci 2021; 15:627994. [PMID: 33815039 PMCID: PMC8010130 DOI: 10.3389/fnins.2021.627994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The assessment of three-dimensional (3D) brain cytoarchitecture at a cellular resolution remains a great challenge in the field of neuroscience and constant development of imaging techniques has become crucial, particularly when it comes to offering direct and clear obtention of data from macro to nano scales. Magnetic resonance imaging (MRI) and electron or optical microscopy, although valuable, still face some issues such as the lack of contrast and extensive sample preparation protocols. In this context, x-ray microtomography (μCT) has become a promising non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens. It is a new supplemental method to be explored for deciphering the cytoarchitecture and connectivity of the brain. This review aims to bring together published works using x-ray μCT in neurobiology in order to discuss the achievements made so far and the future of this technique for neuroscience.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Dionisio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
6
|
Quartey MO, Nyarko JNK, Maley JM, Barnes JR, Bolanos MAC, Heistad RM, Knudsen KJ, Pennington PR, Buttigieg J, De Carvalho CE, Leary SC, Parsons MP, Mousseau DD. The Aβ(1-38) peptide is a negative regulator of the Aβ(1-42) peptide implicated in Alzheimer disease progression. Sci Rep 2021; 11:431. [PMID: 33432101 PMCID: PMC7801637 DOI: 10.1038/s41598-020-80164-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The pool of β-Amyloid (Aβ) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for Aβ peptides. We examined how a naturally occurring variant, e.g. Aβ(1-38), interacts with the AD-related variant, Aβ(1-42), and the predominant physiological variant, Aβ(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that Aβ(1-38) interacts differently with Aβ(1-40) and Aβ(1-42) and, in general, Aβ(1-38) interferes with the conversion of Aβ(1-42) to a β-sheet-rich aggregate. Functionally, Aβ(1-38) reverses the negative impact of Aβ(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an Aβ(1-42) phenotype in Caenorhabditis elegans. Aβ(1-38) also reverses any loss of MTT conversion induced by Aβ(1-40) and Aβ(1-42) in HT-22 hippocampal neurons and APOE ε4-positive human fibroblasts, although the combination of Aβ(1-38) and Aβ(1-42) inhibits MTT conversion in APOE ε4-negative fibroblasts. A greater ratio of soluble Aβ(1-42)/Aβ(1-38) [and Aβ(1-42)/Aβ(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that Aβ(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant Aβ(1-42).
Collapse
Affiliation(s)
- Maa O Quartey
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, GB41 HSB, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
| | - Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, GB41 HSB, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
| | - Jason M Maley
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyn R Barnes
- Division of BioMedical Sciences (Neurosciences), Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ryan M Heistad
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, GB41 HSB, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
| | - Kaeli J Knudsen
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, GB41 HSB, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
| | - Paul R Pennington
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, GB41 HSB, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
| | - Josef Buttigieg
- Department of Biology, University of Regina, Regina, SK, Canada
| | | | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew P Parsons
- Division of BioMedical Sciences (Neurosciences), Memorial University of Newfoundland, St. John's, NL, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, GB41 HSB, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Dahlin LB, Rix KR, Dahl VA, Dahl AB, Jensen JN, Cloetens P, Pacureanu A, Mohseni S, Thomsen NOB, Bech M. Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography. Sci Rep 2020; 10:7592. [PMID: 32371896 PMCID: PMC7200696 DOI: 10.1038/s41598-020-64430-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/14/2020] [Indexed: 01/06/2023] Open
Abstract
A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
| | - Kristian R Rix
- Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Vedrana A Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Anders B Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Janus N Jensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Peter Cloetens
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Alexandra Pacureanu
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Niels O B Thomsen
- Department of Hand Surgery, Skåne University Hospital, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden.
| |
Collapse
|
8
|
Zhang C, Wu B, Wang X, Chen C, Zhao R, Lu H, Zhu H, Xue B, Liang H, Sethi SK, Haacke EM, Zhu J, Peng Y, Cheng J. Vascular, flow and perfusion abnormalities in Parkinson's disease. Parkinsonism Relat Disord 2020; 73:8-13. [DOI: 10.1016/j.parkreldis.2020.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
|
9
|
Eriksson D, Schneck M, Schneider A, Coulon P, Diester I. A starting kit for training and establishing in vivo electrophysiology, intracranial pharmacology, and optogenetics. J Neurosci Methods 2020; 336:108636. [PMID: 32081674 PMCID: PMC7086230 DOI: 10.1016/j.jneumeth.2020.108636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 11/29/2022]
Abstract
Accessible, cost-effective brain model for training in surgical techniques. Flexible debugging tool for optimizing noise levels, etc. of a new experiment. Training in electrophysiology, intracranial pharmacology, and optogenetics. Realistic experience close to real stereotactic surgeries. The model can be modified to fit individual lab equipment and goals.
Background In accordance with the three R principles of research, animal usage should be limited as much as possible. Especially for the training of entry-level scientists in surgical techniques underlying opto- and electrophysiology, alternative training tools are required before moving on to live animals. We have developed a cost-effective rat brain model for training a wide range of surgical techniques, including, but not limited to optogenetics, electrophysiology, and intracranial pharmacological treatments. Results Our brain model creates a realistic training experience in animal surgery. The success of the surgeries (e.g. implantation accuracy) is readily assessable in cross sections of the model brain. Moreover, the model allows practicing electrophysiological recordings as well as testing for movement or light related artefacts. Comparison with Existing Method(s) The surgery and recording experience in our model closely resembles that in an actual rat in terms of the necessary techniques, considerations and time span. A few differences to an actual rat brain slightly reduce the difficulty in our model compared to a live animal. Thus, entry level scientists can first learn basic techniques in our model before moving on to the slightly more complex procedures in live animals. Conclusions Our brain model is a useful training tool to equip scientist who are new in the field of electrophysiology and optogenetic manipulations with a basic skill set before applying it in live animals. It can be adapted to fit the desired training content or even to serve in testing and optimizing new lab equipment for more senior scientists.
Collapse
Affiliation(s)
- David Eriksson
- Optophysiology, University of Freiburg, Faculty of Biology, 79104 Freiburg, Germany
| | - Megan Schneck
- Optophysiology, University of Freiburg, Faculty of Biology, 79104 Freiburg, Germany
| | - Artur Schneider
- Optophysiology, University of Freiburg, Faculty of Biology, 79104 Freiburg, Germany
| | - Philippe Coulon
- Optophysiology, University of Freiburg, Faculty of Biology, 79104 Freiburg, Germany
| | - Ilka Diester
- Optophysiology, University of Freiburg, Faculty of Biology, BrainLinks-BrainTools, Bernstein Center Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Zhao Y, Ji D, Li Y, Zhao X, Lv W, Xin X, Han S, Hu C. Three-dimensional visualization of microvasculature from few-projection data using a novel CT reconstruction algorithm for propagation-based X-ray phase-contrast imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:364-387. [PMID: 32010522 PMCID: PMC6968748 DOI: 10.1364/boe.380084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 05/23/2023]
Abstract
Propagation-based X-ray phase-contrast imaging (PBI) is a powerful nondestructive imaging technique that can reveal the internal detailed structures in weakly absorbing samples. Extending PBI to CT (PBCT) enables high-resolution and high-contrast 3D visualization of microvasculature, which can be used for the understanding, diagnosis and therapy of diseases involving vasculopathy, such as cardiovascular disease, stroke and tumor. However, the long scan time for PBCT impedes its wider use in biomedical and preclinical microvascular studies. To address this issue, a novel CT reconstruction algorithm for PBCT is presented that aims at shortening the scan time for microvascular samples by reducing the number of projections while maintaining the high quality of reconstructed images. The proposed algorithm combines the filtered backprojection method into the iterative reconstruction framework, and a weighted guided image filtering approach (WGIF) is utilized to optimize the intermediate reconstructed images. Notably, the homogeneity assumption on the microvasculature sample is adopted as prior knowledge, and therefore, a prior image of microvasculature structures can be acquired by a k-means clustering approach. Then, the prior image is used as the guided image in the WGIF procedure to effectively suppress streaking artifacts and preserve microvasculature structures. To evaluate the effectiveness and capability of the proposed algorithm, simulation experiments on 3D microvasculature numerical phantom and real experiments with CT reconstruction on the microvasculature sample are performed. The results demonstrate that the proposed algorithm can, under noise-free and noisy conditions, significantly reduce the artifacts and effectively preserve the microvasculature structures on the reconstructed images and thus enables it to be used for clear and accurate 3D visualization of microvasculature from few-projection data. Therefore, for 3D visualization of microvasculature, the proposed algorithm can be considered an effective approach for reducing the scan time required by PBCT.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Dongjiang Ji
- The School of Science, Tianjin University
of Technology and Education, Tianjin 300222, China
| | - Yimin Li
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship
Hospital, Capital Medical University, Beijing 100050, China
| | - Wenjuan Lv
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohong Xin
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Shuo Han
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Chunhong Hu
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
Yao HD, Svensson MY, Nilsson H. Deformation of dorsal root ganglion due to pressure transients of venous blood and cerebrospinal fluid in the cervical vertebral canal. J Biomech 2018; 76:16-26. [PMID: 29801662 DOI: 10.1016/j.jbiomech.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022]
Abstract
The dorsal root ganglion (DRG) that is embedded in the foramen of the cervical vertebra can be injured during a whiplash motion. A potential cause is that whilst the neck bends in the whiplash motion, the changes of spinal canal volume induce impulsive pressure transients in the venous blood outside the dura mater (DM) and in the cerebrospinal fluid (CSF) inside the DM. The fluids can dynamically interact with the DRG and DM, which are deformable. In this work, the interaction is investigated numerically using a strong-coupling partitioned method that synchronize the computations of the fluid and structure. It is found that the interaction includes two basic processes, i.e., the pulling and pressing processes. In the pulling process, the DRG is stretched towards the spinal canal, and the venous blood is driven into the canal via the foramen. This process results from negative pressure in the fluids. In contrast, the pressing process is caused by positive pressure that leads to compression of the DRG and the outflow of the venous blood from the canal. The largest pressure gradient is observed at the foramen, where the DRG is located at. The DRG is subject to prominent von Mises stress near its end, which is fixed without motions. The negative internal pressure is more efficient to deform the DRG than the positive internal pressure. This indicates that the most hazardous condition for the DRG is the pulling process.
Collapse
Affiliation(s)
- Hua-Dong Yao
- Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Mats Y Svensson
- Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; SAFER Vehicle and Traffic Safety Centre, Chalmers University of Technology, Sweden
| | - Håkan Nilsson
- Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
12
|
Pittman SK, Gracias NG, Fehrenbacher JC. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons. Exp Neurol 2016; 279:104-115. [PMID: 26883566 DOI: 10.1016/j.expneurol.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States; Indiana University School of Medicine, Department of Anesthesiology, United States.
| |
Collapse
|
13
|
Hu J, Cao Y, Wu T, Li D, Lu H. 3D angioarchitecture changes after spinal cord injury in rats using synchrotron radiation phase-contrast tomography. Spinal Cord 2015; 53:585-90. [PMID: 25823804 DOI: 10.1038/sc.2015.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A basic experiment study. OBJECTIVES An understanding of the three-dimensional (3D) angioarchitecture changes that occur after SCI will improve our knowledge of the pathogenesis of SCI and aid in the development of valuable therapeutic strategies to improve its poor outcomes. Our aim was to visualize the normal and traumatized spinal angioarchitecture in 3D using a high-resolution synchrotron radiation phase-contrast tomography (SR-PCT) and evaluate its diagnostic capability. SETTING SCI Center of Xiangya Hospital of Central South University in China. METHODS SR-PCT was used as novel high-resolution imaging tool to detect 3D morphological alterations in spinal cord microvasculature after injury. RESULTS In a rat model, the morphology of the microvasculature on 2D digital slices was matched with histological findings in both the normal and injured spinal cord. 3D angioarchitecture changes after SCI were successfully obtained via SR-PCT without the use of a contrast agent. Quantitative analysis on 3D images of the injured spinal cord revealed a significant decrease in the number and volume of vascular networks. This was especially relevant to vessels with a diameter <50 μm. CONCLUSION The 3D local blood supply to the spinal cord was severely disrupted after the acute violent injury. Our results indicate that the use of SR-PCT may improve our understanding of the pathogenesis of SCI and provide a new approach to the morphological investigation of neurovascular diseases in preclinical research.
Collapse
Affiliation(s)
- J Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Y Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - T Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - D Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - H Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Scopel JF, de Souza Queiroz L, O’Dowd FP, Júnior MCF, Nucci A, Hönnicke MG. Are human peripheral nerves sensitive to X-ray imaging? PLoS One 2015; 10:e0116831. [PMID: 25757086 PMCID: PMC4355589 DOI: 10.1371/journal.pone.0116831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures.
Collapse
Affiliation(s)
- Jonas Francisco Scopel
- Instituto de Ciências da Saúde, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
- * E-mail:
| | - Luciano de Souza Queiroz
- Departamento de Anatomia Patológica, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-887, Brazil
| | | | | | - Anamarli Nucci
- Departamento de Neurologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-887, Brazil
| | - Marcelo Gonçalves Hönnicke
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, 85867-970, Brazil
| |
Collapse
|
15
|
Takashima K, Hoshino M, Uesugi K, Yagi N, Matsuda S, Nakahira A, Osumi N, Kohzuki M, Onodera H. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:136-142. [PMID: 25537600 PMCID: PMC4294026 DOI: 10.1107/s160057751402270x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies.
Collapse
Affiliation(s)
- Kenta Takashima
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Electrical and Electronic Engineering, University of Tokyo, Tokyo, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo, Japan
| | | | - Atsushi Nakahira
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Onodera
- Department of Electrical and Electronic Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Multi-scale analysis of optic chiasmal compression by finite element modelling. J Biomech 2014; 47:2292-9. [DOI: 10.1016/j.jbiomech.2014.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022]
|
17
|
Herzen J, Willner MS, Fingerle AA, Noël PB, Köhler T, Drecoll E, Rummeny EJ, Pfeiffer F. Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing. PLoS One 2014; 9:e83369. [PMID: 24465378 PMCID: PMC3894935 DOI: 10.1371/journal.pone.0083369] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/02/2013] [Indexed: 12/21/2022] Open
Abstract
X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography in combination with a novel bi-lateral denoising method for imaging of focal liver lesions in an ex vivo feasibility study. Our study shows that grating-based phase-contrast CT (PCCT) significantly increases the soft-tissue contrast in the ex vivo liver specimens. Combining the information of both signals – absorption and phase-contrast – the bi-lateral filtering leads to an improvement of lesion detectability and higher contrast-to-noise ratios. The normal and the pathological tissue can be clearly delineated and even internal structures of the pathological tissue can be visualized, being invisible in the absorption-based CT alone. Histopathology confirmed the presence of the corresponding findings in the analyzed tissue. The results give strong evidence for a sufficiently high contrast for different liver lesions using non-contrast-enhanced PCCT. Thus, ex vivo imaging of liver lesions is possible with a polychromatic X-ray source and at a spatial resolution of ∼100 µm. The post-processing with the novel bi-lateral denoising method improves the image quality by combining the information from the absorption and the phase-contrast images.
Collapse
Affiliation(s)
- Julia Herzen
- Institute of Materials Science, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
- Physics Department & Institute of Medical Engineering, Technische Universität München, Garching, Germany
- * E-mail:
| | - Marian S. Willner
- Physics Department & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | | | - Peter B. Noël
- Department of Radiology, Technische Universität München, Munich, Germany
| | - Thomas Köhler
- Philips Technologie GmbH, Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Enken Drecoll
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Radiology, Technische Universität München, Munich, Germany
| | - Franz Pfeiffer
- Physics Department & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| |
Collapse
|
18
|
Lind G, Linsmeier CE, Schouenborg J. The density difference between tissue and neural probes is a key factor for glial scarring. Sci Rep 2013; 3:2942. [PMID: 24127004 PMCID: PMC3796741 DOI: 10.1038/srep02942] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
A key to successful chronic neural interfacing is to achieve minimal glial scarring surrounding the implants, as the astrocytes and microglia may functionally insulate the interface. A possible explanation for the development of these reactions is mechanical forces arising between the implants and the brain. Here, we show that the difference between the density of neural probes and that of the tissue, and the resulting inertial forces, are key factors for the development of the glial scar. Two probes of similar size, shape, surface structure and elastic modulus but differing greatly in density were implanted into the rat brain. After six weeks, significantly lower astrocytic and microglial reactions were found surrounding the low-density probes, approaching no reaction at all. This provides a major key to design fully biocompatible neural interfaces and a new platform for in vivo assays of tissue reactions to probes with differing materials, surface structures, and shapes.
Collapse
Affiliation(s)
- Gustav Lind
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University
| | | | | |
Collapse
|
19
|
Breeze J, Newbery T, Pope D, Midwinter MJ. The challenges in developing a finite element injury model of the neck to predict the penetration of explosively propelled projectiles. J ROY ARMY MED CORPS 2013; 160:220-5. [DOI: 10.1136/jramc-2013-000109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Zhang X, Yang XR, Chen Y, Li HQ, Li RM, Yuan QX, Zhu PP, Huang WX, Peng WJ. Visualising liver fibrosis by phase-contrast X-ray imaging in common bile duct ligated mice. Eur Radiol 2013; 23:417-423. [PMID: 22903640 DOI: 10.1007/s00330-012-2630-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To determine whether phase-contrast X-ray imaging can be used to visualise directly the accumulated extracellular matrix proteins associated with liver fibrosis in common bile duct ligated mice. METHODS Twenty-six-week-old C57BL female mice were randomised into three groups. In groups 1 (n = 5) and 2 (n = 10), common bile duct ligation was conducted to produce secondary biliary cirrhosis. Mouse livers were then excised 15 (group 1) and 40 days (group 2) after the ligation of the common bile duct for imaging. In the control group, the livers of 5 mice were excised 40 days after the sham operation. Images were then acquired using the analyser crystal set at different positions of the rocking curve. RESULTS The results show that the fibrotic septa and hepatic lobules enclosed by fibrotic septa can be visualised clearly at the whole organ level via phase-contrast X-ray imaging without any contrast agent. CONCLUSION These results suggest that phase-contrast X-ray imaging can easily reveal the accumulated extracellular matrix proteins associated with liver fibrosis without using any contrast agent and has great potential in the study of liver fibrosis.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Radiology, Affiliated Cancer Hospital of Fudan University, 270 Dongan Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fu J, Velroyen A, Tan R, Zhang J, Chen L, Tapfer A, Bech M, Pfeiffer F. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography. OPTICS EXPRESS 2012; 20:21512-21519. [PMID: 23037271 DOI: 10.1364/oe.20.021512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.
Collapse
Affiliation(s)
- Jian Fu
- Beijing University of Aeronautics and Astronautics, 100191 Beiijng, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Micro-Computed Tomography for Hemorrhage Disruption of Mouse Brain Vasculature. Transl Stroke Res 2012; 3:174-9. [DOI: 10.1007/s12975-012-0164-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 01/17/2023]
|
23
|
Fu J, Li P, Wang QL, Wang SY, Bech M, Tapfer A, Hahn D, Pfeiffer F. A reconstruction method for equidistant fan beam differential phase contrast computed tomography. Phys Med Biol 2011; 56:4529-38. [PMID: 21719947 DOI: 10.1088/0031-9155/56/14/019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Gufler H, Franke FE, Wagner S, Rau WS. Fine structure of breast tissue on micro computed tomography a feasibility study. Acad Radiol 2011; 18:230-4. [PMID: 21232686 DOI: 10.1016/j.acra.2010.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 09/16/2010] [Accepted: 10/18/2010] [Indexed: 11/19/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the feasibility of micro computed tomography (CT) to assess the fine structure of breast tissue. METHODS AND MATERIALS Breast core needle biopsy specimens (0.8 to 1.2 mm diameter) from fifteen women with clustered microcalcifications were examined using micro CT with isotropic voxels of 8.4 μm. Reconstructed two- and three-dimensional images were compared with the corresponding histological slices. Gray-scale measurements were performed in adipose tissue, fibroglandular tissue, fibrous tissue, microcalcifications, and tumor. The Tukey-Kramer method was applied to test the statistically significant differences between gray-scale attenuation values of breast tissue components. RESULTS Soft-tissue architecture appearance at micro CT closely approximated that obtained by light microscopy at low power field. The Tukey-Kramer method revealed statistically significant differences for attenuation values for all combinations of breast tissue components with the exception of fibroglandular tissue versus fibrous tissue. CONCLUSIONS Micro CT is feasible for the differentiation of breast tissue components from core needle specimens.
Collapse
Affiliation(s)
- Hubert Gufler
- Department of Diagnostic Radiology, University of Giessen, Germany.
| | | | | | | |
Collapse
|
25
|
Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Invest Radiol 2010; 45:445-52. [PMID: 20498610 DOI: 10.1097/rli.0b013e3181e21866] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES X-ray computed tomography (CT) using phase contrast can provide images with greatly enhanced soft-tissue contrast in comparison to conventional attenuation-based CT. We report on the first scan of a human specimen recorded with a phase-contrast CT system based on an x-ray grating interferometer and a conventional x-ray tube source. Feasibility and potential applications of preclinical and clinical phase-contrast CT are discussed. MATERIALS AND METHODS A hand of an infant was scanned ex vivo at 40 kVp tube voltage. The simultaneously recorded attenuation and phase-contrast CT images were quantitatively compared with each other, by introducing a specific Hounsfield unit for phase-contrast imaging. RESULTS We observe significantly enhanced soft-tissue contrast in the phase images, when compared with the attenuation data. Particularly, tendons and ligaments appear with strongly increased contrast-to-noise ratio. CONCLUSIONS Our results demonstrate the huge potential of phase-contrast CT for clinical investigations of human specimens and, potentially, of humans. Because the applied technique works efficiently with conventional x-ray tubes and detectors, it is suitable for the realization of preclinical and clinical phase-contrast CT systems.
Collapse
|
26
|
Abstract
In nerve tissue engineering, scaffolds act as carriers for cells and biochemical factors and as constructs providing appropriate mechanical conditions. During nerve regeneration, new tissue grows into the scaffolds, which degrade gradually. To optimize this process, researchers must study and analyze various morphological and structural features of the scaffolds, the ingrowth of nerve tissue, and scaffold degradation. Therefore, visualization of the scaffolds as well as the generated nerve tissue is essential, yet challenging Visualization techniques currently used in nerve tissue engineering include electron microscopy, confocal laser scanning microscopy (CLSM), and micro-computed tomography (micro-CT or μCT). Synchrotron-based micro-CT (SRμCT) is an emerging and promising technique, drawing considerable recent attention. Here, we review typical applications of these visualization techniques in nerve tissue engineering. The promise, feasibility, and challenges of SRμCT as a visualization technique applied to nerve tissue engineering are also discussed.
Collapse
|
27
|
Watling CP, Lago N, Benmerah S, FitzGerald JJ, Tarte E, McMahon S, Lacour SP, Cameron RE. Novel use of X-ray micro computed tomography to image rat sciatic nerve and integration into scaffold. J Neurosci Methods 2010; 188:39-44. [PMID: 20138083 DOI: 10.1016/j.jneumeth.2010.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 01/25/2023]
Abstract
This paper describes how specimens of nervous tissue can be prepared for successful imaging in X-ray Micro Computed Tomography (microCT), and how this method can be used to study the integration of nervous tissue into a polymeric scaffold. The sample preparation involves staining the biological tissue with osmium tetroxide to increase its X-ray attenuation, and a technique for maintaining the specimen in a moist environment during the experiment to prevent drying and shrinkage. Using this method it was possible to observe individual nerve fascicles and their relationship to the 3-D tissue structure. A scaffold supporting a regenerated sciatic nerve was similarly stained to distinguish the nervous tissue from the scaffold, and to observe how the nerve grew through a 2.5 mm long, 100 microm x 100 microm cross-section channel polyimide array. Furthermore, blood vessels could be identified in these images, and it was possible to monitor how a large proximal blood vessel split through the channel scaffold and proceeded down individual channels. This paper explains how microCT is a useful tool both for studying the location and extent of growth into a polymeric scaffold, and for determining whether the regenerated tissue has blood supply.
Collapse
Affiliation(s)
- C P Watling
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Radiosurgery involves the precise delivery of sharply collimated high-energy beams of radiation to a distinct target volume along selected trajectories. Historically, accurate targeting required the application of a stereotactic frame, thus limiting the use of this procedure to single treatments of selected intracranial lesions. However, the scope of radiosurgery has undergone a remarkable broadening since the introduction of image-guided robotic radiosurgery. Recent developments in real-time image guidance provide an effective frameless alternative to conventional radiosurgery and allow both the treatment of lesions outside the skull and the possibility of performing hypofractionation. As a consequence, targets in the spine, chest and abdomen can now also be radiosurgically ablated with submillimetric precision. Meanwhile, the combination of image guidance, robotic beam delivery, and non-isocentric inverse planning can greatly enhance the conformality and homogeneity of radiosurgery. The aim of this article is to describe the technological basis of image-guided radiosurgery and provide a perspective on future developments. The current clinical usage of robotic radiosurgery will be reviewed with an emphasis on those applications that may represent a major shift in the therapeutic paradigm.
Collapse
|
29
|
Herzen J, Donath T, Pfeiffer F, Bunk O, Padeste C, Beckmann F, Schreyer A, David C. Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source. OPTICS EXPRESS 2009; 17:10010-8. [PMID: 19506651 DOI: 10.1364/oe.17.010010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the last few years, differential phase-contrast x-ray computed tomography (PC-CT) using a hard x-ray grating interferometer and polychromatic x-ray tube sources has been developed. The method allows for simultaneous determination of the attenuation coefficient and the refractive index decrement distribution inside an object in three dimensions. Here we report experimental results of our investigation on the quantitativeness and accuracy of this method. For this study, a phantom consisting of several tubes filled with chemically well-defined liquids was built and measured in PC-CT. We find, that the measured attenuation coefficients and refractive index decrements closely match calculated, theoretical values. Moreover, the study demonstrates, how substances with similar attenuation coefficient or refractive index decrement, can be uniquely distinguished by the simultaneous, quantitative measurement of both quantities.
Collapse
|
30
|
Wu J, Takeda T, Thet Lwin T, Momose A, Sunaguchi N, Fukami T, Yuasa T, Akatsuka T. Imaging renal structures by X-ray phase-contrast microtomography. Kidney Int 2009; 75:945-51. [DOI: 10.1038/ki.2009.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Bech M, Jensen TH, Feidenhans R, Bunk O, David C, Pfeiffer F. Soft-tissue phase-contrast tomography with an x-ray tube source. Phys Med Biol 2009; 54:2747-53. [DOI: 10.1088/0031-9155/54/9/010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Zhang X, Liu XS, Yang XR, Chen SL, Zhu PP, Yuan QX. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging. Phys Med Biol 2008; 53:5735-5743. [PMID: 18824782 DOI: 10.1088/0031-9155/53/20/011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 microm. Here we show that vessels as small as 30 microm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 microm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Nuclear Medicine, The Affiliated ZhongShan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Pfeiffer F, David C, Bunk O, Donath T, Bech M, Le Duc G, Bravin A, Cloetens P. Region-of-interest tomography for grating-based X-ray differential phase-contrast imaging. PHYSICAL REVIEW LETTERS 2008; 101:168101. [PMID: 18999715 DOI: 10.1103/physrevlett.101.168101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/18/2008] [Indexed: 05/27/2023]
Abstract
We report numerical and experimental results demonstrating accurate region-of-interest computed tomography (CT) reconstruction based on differential phase-contrast projection (DPC) images. The approach removes the constraint of covering the entire sample within the field of view of the image detector. Particularly for biomedical applications, the presented DPC-CT region-of-interest approach will allow for the visualization of previously inaccessible details deep inside an entire animal or organ. We envisage that this development will also be of interest for potential future clinical applications, because grating-based DPC-CT can be implemented with standard x-ray tube sources.
Collapse
Affiliation(s)
- F Pfeiffer
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Westneat MW, Socha JJ, Lee WK. Advances in biological structure, function, and physiology using synchrotron X-ray imaging*. Annu Rev Physiol 2008; 70:119-42. [PMID: 18271748 DOI: 10.1146/annurev.physiol.70.113006.100434] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the physiology and biomechanics of small ( approximately 1 cm) organisms are often limited by the inability to see inside the animal during a behavior or process of interest and by a lack of three-dimensional morphology at the submillimeter scale. These constraints can be overcome by an imaging probe that has sensitivity to soft tissue, the ability to penetrate opaque surfaces, and high spatial and temporal resolution. Synchrotron X-ray imaging has been successfully used to visualize millimeter-centimeter-sized organisms with micrometer-range spatial resolutions in fixed and living specimens. Synchrotron imaging of small organisms has been the key to recent novel insights into structure and function, particularly in the area of respiratory physiology and function of insects. X-ray imaging has been effectively used to examine the morphology of tracheal systems, the mechanisms of tracheal and air sac compression in insects, and the function of both chewing and sucking mouthparts in insects. Synchrotron X-ray imaging provides an exciting new window into the internal workings of small animals, with future promise to contribute to a range of physiological and biomechanical questions in comparative biology.
Collapse
Affiliation(s)
- Mark W Westneat
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605, USA.
| | | | | |
Collapse
|
35
|
Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee WK, Cloetens P. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc 2007; 227:51-71. [PMID: 17635659 DOI: 10.1111/j.1365-2818.2007.01785.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Synchrotron-generated X-rays provide scientists with a multitude of investigative techniques well suited for the analysis of the composition and structure of all types of materials and specimens. Here, we describe the properties of synchrotron-generated X-rays and the advantages that they provide for qualitative morphological research of millimetre-sized biological organisms and biomaterials. Case studies of the anatomy of insect heads, of whole microarthropods and of the three-dimensional reconstruction of the cuticular tendons of jumping beetles, all performed at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF), are presented to illustrate the techniques of phase-contrast tomography available for anatomical and structural investigations. Various sample preparation techniques are described and compared and experimental settings that we have found to be particularly successful are given. On comparing the strengths and weaknesses of the technique with traditional histological thin sectioning, we conclude that synchrotron radiation microtomography has a great potential in biological microanatomy.
Collapse
Affiliation(s)
- Oliver Betz
- Zoologisches Institut der Universität, Abteilung Evolutionsbiologie der Invertebraten, Auf der Morgenstelle 28E, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Pfeiffer F, Kottler C, Bunk O, David C. Hard x-ray phase tomography with low-brilliance sources. PHYSICAL REVIEW LETTERS 2007; 98:108105. [PMID: 17358572 DOI: 10.1103/physrevlett.98.108105] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 05/14/2023]
Abstract
We report on a method for tomographic phase contrast imaging of centimeter sized objects. As opposed to existing techniques, our approach can be used with low-brilliance, lab based x-ray sources and thus is of interest for a wide range of applications in medicine, biology, and nondestructive testing. The work is based on the recent development of a hard x-ray grating interferometer, which has been demonstrated to yield differential phase contrast projection images. Here we particularly focus on how this method can be used for tomographic reconstructions using filtered back projection algorithms to yield quantitative volumetric information of both the real and imaginary part of the samples's refractive index.
Collapse
Affiliation(s)
- F Pfeiffer
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | | | | |
Collapse
|
37
|
Functional morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of Tethya wilhelma by synchrotron radiation based X-ray microtomography. ZOOMORPHOLOGY 2006. [DOI: 10.1007/s00435-006-0021-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
|
39
|
Thurner P, Müller R, Raeber G, Sennhauser U, Hubbell JA. 3D morphology of cell cultures: A quantitative approach using micrometer synchrotron light tomography. Microsc Res Tech 2005; 66:289-98. [PMID: 16003782 DOI: 10.1002/jemt.20170] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current issues in both tissue engineering and cell biology deal with cell behavior extensively in 3D. Here, we explore synchrotron radiation micro-computed tomography as a tool for morphological characterization of such 3D cellular constructs, providing micrometer resolution in soft and hard tissues. Novel image processing techniques allowed quantification of local and global cell distributions, cell density, adhesive cell culture surface, and scaffold geometry. For proof of concept, we applied this technique to characterize the morphology of two cell cultures of different phenotypes, namely human dermal fibroblasts and mouse calvarial osteoblast-like cells, both seeded on a polymer multifilament yarn. From 3D visualizations in these case studies, we saw that the fibroblasts spanned between the yarn filaments and in this way encapsulated the yarn, whereas the osteoblast-like cells lined the filament surfaces and did not span between them. Differences found in cell distribution as a function of distance to the median yarn axis and the closest filament surface, respectively, quantified these qualitative impressions gained from 3D visualizations. Moreover, the volume-normalized adhesive surface differed by one order of magnitude between the two phenotypes. Our approach allows quantitative correlation of local scaffold geometry and cell morphology. It can be used to investigate the influence of cell phenotype as well as various biochemical agents on tissue engineering constructs and the behavior of cells in culture.
Collapse
Affiliation(s)
- P Thurner
- Electronics/Metrology Department, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The recent rapid increase in interest in tomographic imaging of small animals and of human (and large animal) organ biopsies is driven largely by drug discovery, cancer detection/monitoring, phenotype identification and/or characterization, and development of disease detection methods and monitoring efficacies of drugs in disease treatment. In biomedical applications, micro-computed tomography (CT) scanners can function as scaled-down (i.e., mini) clinical CT scanners that provide a three-dimensional (3-D) image of most, if not the entire, torso of a mouse at image resolution (50-100 microm) scaled proportional to that of a human CT image. Micro-CT scanners, on the other hand, image specimens the size of intact rodent organs at spatial resolutions from cellular (20 microm) down to subcellular dimensions (e.g., 1 microm) and fill the resolution-hiatus between microscope imaging, which resolves individual cells in thin sections of tissue, and mini-CT imaging of intact volumes.
Collapse
Affiliation(s)
- Erik L Ritman
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
41
|
Hörnschemeyer T, Beutel RG, Pasop F. Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from X-ray tomography. J Morphol 2002; 252:298-314. [PMID: 11948677 DOI: 10.1002/jmor.1107] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Internal and external features of the head of Priacma serrata were studied with X-ray microtomography and with histological methods. The comparison of both techniques shows that X-ray tomography is a promising new technique for the investigation of insect anatomy. The still somewhat coarse resolution of the X-ray data is compensated for by advantages like the nondestructive and artifact-free data acquisition. The head of P. serrata and other adults of Archostemata is characterized by many derived features. Muscular features of Priacma, especially muscles of the labium and pharynx, differ strongly from what is found in other groups of Coleoptera. Several character states are considered as autapomorphies of Archostemata: scale-like surface structures, constricted neck, strongly reduced tentorium, and the plate-like, enlarged prementum. The scales provide a protecting surface pattern and may have evolved with a more exposed lifestyle. The enlarged prementum forms a lid, which closes the mouth and covers the ligula when it is pulled back by contraction of the unusually strong submento-premental muscle. The presence of four cone-shaped protuberances on the dorsal side of the head is considered an autapomorphy of Cupedidae. The galea with a narrow stalk and a round and pubescent distal galeomere is another autapomorphy of this family. It has probably evolved as an adaptation to pollen-feeding. The shape of the mandible of Cupedidae is plesiomorphic compared to what is found in adults of Ommatidae. The vertical arrangement of apical teeth is an autapomorphy of the latter family. The lateral insertion of the antenna in Priacma is a groundplan feature of Cupedidae. The dorsal shift is a synapomorphy of all other cupedid genera. A cladistic analysis of characters of the head and additional data resulted in the following branching pattern: ((Crowsoniella + (Omma + Tetraphalerus)) + (Micromalthus + (Priacma + (Paracupes + (Cupes + Tenomerga + Prolixocupes + Rhipsideigma + Distocupes + (Adinolepis + Ascioplaga)))))).
Collapse
Affiliation(s)
- Thomas Hörnschemeyer
- Institut für Zoologie & Anthropologie, Abteilung Morphologie & Systematik, D-37073 Göttingen, Germany.
| | | | | |
Collapse
|
42
|
Seidler GT, Martinez G, Seeley LH, Kim KH, Behne EA, Zaranek S, Chapman BD, Heald SM, Brewe DL. Granule-by-granule reconstruction of a sandpile from x-ray microtomography data. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:8175-8181. [PMID: 11138116 DOI: 10.1103/physreve.62.8175] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2000] [Indexed: 05/23/2023]
Abstract
Mesoscale disordered materials are ubiquitous in industry and in the environment. Any fundamental understanding of the transport and mechanical properties of such materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, experimental characterization of such materials has been limited to first- and second-order structural correlation functions, i.e., the mean filling fraction and the structural autocorrelation function. We report here the successful combination of synchrotron x-ray microtomography and image processing to determine the full three-dimensional real-space structure of a model disordered material, a granular bed of relatively monodisperse glass spheres. Specifically, we determine the center location and the local connectivity of each granule. This complete knowledge of structure can be used to calculate otherwise inaccessible high-order correlation functions. We analyze nematic order parameters for contact bonds to characterize the geometric anisotropy or fabric induced by the sample boundary conditions. Away from the boundaries we find short-range bond orientational order exhibiting characteristics of the underlying polytetrahedral structure.
Collapse
Affiliation(s)
- GT Seidler
- Physics Department, University of Washington, Seattle, Washington 98195-1560 and PNC-CAT Sector 20, Advanced Photon Source, Argonne, Illinois 60439, USA
| | | | | | | | | | | | | | | | | |
Collapse
|