1
|
Rowland EC, D'Antuono M, Jermakowicz AM, Ayad NG. Methionine cycle inhibition disrupts antioxidant metabolism and reduces glioblastoma cell survival. J Biol Chem 2025; 301:108349. [PMID: 40015640 PMCID: PMC11994328 DOI: 10.1016/j.jbc.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant adult brain tumor that inevitably recurs with a fatal prognosis. This is due in part to metabolic reprogramming that allows tumors to evade treatment. Therefore, we must uncover the pathways mediating these adaptations to develop novel and effective treatments. We searched for genes that are essential in GBM cells as measured by a whole-genome pan-cancer CRISPR screen available from DepMap and identified the methionine metabolism genes MAT2A and AHCY. We conducted genetic knockdown, evaluated mitochondrial respiration, and performed targeted metabolomics to study the function of these genes in GBM. We demonstrate that MAT2A or AHCY knockdown induces oxidative stress, hinders cellular respiration, and reduces the survival of GBM cells. Furthermore, selective MAT2a or AHCY inhibition reduces GBM cell viability, impairs oxidative metabolism, and shifts the cellular metabolic profile towards oxidative stress and cell death. Mechanistically, MAT2a and AHCY regulate spare respiratory capacity, the redox buffer cystathionine, lipid and amino acid metabolism, and prevent oxidative damage in GBM cells. Our results point to the methionine metabolic pathway as a novel vulnerability point in GBM.
Collapse
Affiliation(s)
- Emma C Rowland
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Matthew D'Antuono
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Anna M Jermakowicz
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Nagi G Ayad
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA.
| |
Collapse
|
2
|
Xiao L, Dou W, Wang Y, Deng H, Xu H, Pan Y. Treatment with S-adenosylmethionine ameliorates irinotecan-induced intestinal barrier dysfunction and intestinal microbial disorder in mice. Biochem Pharmacol 2023; 216:115752. [PMID: 37634598 DOI: 10.1016/j.bcp.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the protective effects of S-adenosylmethionine (SAM) on irinotecan-induced intestinal barrier dysfunction and microbial ecological dysregulation in both mice and human colon cell line Caco-2, which is widely used for studying intestinal epithelial barrier function. Specifically, this study utilized Caco-2 monolayers incubated with 7-ethyl-10-hydroxycamptothecin (SN-38) as well as an irinotecan-induced diarrhea model in mice. Our study found that SAM pretreatment significantly reduced body weight loss and diarrhea induced by irinotecan in mice. Furthermore, SAM inhibited the increase of intestinal permeability in irinotecan-treated mice and ameliorated the decrease of Zonula occludens-1(ZO-1), Occludin, and Claudin-1 expression. Additionally, irinotecan treatment increased the relative abundance of Proteobacteria compared to the control group, an effect that was reversed by SAM administration. In Caco-2 monolayers, SAM reduced the expression of reactive oxygen species (ROS) and ameliorated the decrease in transepithelial electrical resistance (TER) and increase in fluorescein isothiocyanate-dextran 4000 Da (FD-4) flux caused by SN-38. Moreover, SAM attenuated changes in the localization and distribution of ZO-1and Occludin in Caco-2 monolayers induced by SN-38 and protected barrier function by inhibiting activation of the p38 MAPK/p65 NF-κB/MLCK/MLC signaling pathway. These findings provide preliminary evidence for the potential use of SAM in treating diarrhea caused by irinotecan.
Collapse
Affiliation(s)
- Lin Xiao
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Yajie Wang
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Huan Deng
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Hao Xu
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| | - YiSheng Pan
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| |
Collapse
|
3
|
Prince N, Chu SH, Chen Y, Mendez KM, Hanson E, Green-Snyder L, Brooks E, Korrick S, Lasky-Su JA, Kelly RS. Phenotypically driven subgroups of ASD display distinct metabolomic profiles. Brain Behav Immun 2023; 111:21-29. [PMID: 37004757 PMCID: PMC11099628 DOI: 10.1016/j.bbi.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous condition that includes a broad range of characteristics and associated comorbidities; however, the biology underlying the variability in phenotypes is not well understood. As ASD impacts approximately 1 in 100 children globally, there is an urgent need to better understand the biological mechanisms that contribute to features of ASD. In this study, we leveraged rich phenotypic and diagnostic information related to ASD in 2001 individuals aged 4 to 17 years from the Simons Simplex Collection to derive phenotypically driven subgroups and investigate their respective metabolomes. We performed hierarchical clustering on 40 phenotypes spanning four ASD clinical domains, resulting in three subgroups with distinct phenotype patterns. Using global plasma metabolomic profiling generated by ultrahigh-performance liquid chromatography mass spectrometry, we characterized the metabolome of individuals in each subgroup to interrogate underlying biology related to the subgroups. Subgroup 1 included children with the least maladaptive behavioral traits (N = 862); global decreases in lipid metabolites and concomitant increases in amino acid and nucleotide pathways were observed for children in this subgroup. Subgroup 2 included children with the highest degree of challenges across all phenotype domains (N = 631), and their metabolome profiles demonstrated aberrant metabolism of membrane lipids and increases in lipid oxidation products. Subgroup 3 included children with maladaptive behaviors and co-occurring conditions that showed the highest IQ scores (N = 508); these individuals had increases in sphingolipid metabolites and fatty acid byproducts. Overall, these findings indicated distinct metabolic patterns within ASD subgroups, which may reflect the biological mechanisms giving rise to specific patterns of ASD characteristics. Our results may have important clinical applications relevant to personalized medicine approaches towards managing ASD symptoms.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ellen Hanson
- Divisions of Neurology and Developmental Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Susan Korrick
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang R, Liu M, Ren G, Luo G, Wang Z, Ge Z, Pu Q, Ren W, Yang S. Zhilong Huoxue Tongyu Capsules' Effects on ischemic stroke: An assessment using fecal 16S rRNA gene sequencing and untargeted serum metabolomics. Front Pharmacol 2022; 13:1052110. [PMID: 36467061 PMCID: PMC9715974 DOI: 10.3389/fphar.2022.1052110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2023] Open
Abstract
Zhilong Huoxue Tongyu capsule (ZHTC) is an effective traditional Chinese medicine compound for the treatment of ischemic stroke, which is widely used in clinical ischemic stroke patients. However, it is uncertain whether ZHTC affects ischemic stroke through gut microbiota and serum metabolites. In this study, a rat model of middle cerebral artery occlusion (MCAO) was prepared. By evaluating motor nerve function score, cerebral infarct size, brain tissue damage and intestinal barrier damage, it was found that ZHTC improved stroke-related symptoms in MCAO rats. Using 16S rRNA gene sequencing, fecal microbial transplantation (FMT), untargeted metabolomics, and spearman correlation analysis of gut microbiota and serum metabolites, we found that ZHTC can regulate the abundance of p_Firmicutes, p_Bacteroidota,p_Proteobacteria, g_Prevotella, and g_Lactobacillus, and regulated 23 differential metabolites. Spearman correlation analysis found that Arginine was positively correlated with p_Firmicutes, o_Clostridiales, c_Clostridia, and negatively correlated with p_Bacteroidetes, c_Bacteroidia,o_Bacteroidales; L-Lysine was negatively correlated with f_Christensenellaceae; L-methionine was positively correlated with o_Lactobacillales, f_Lactobacillaceae, and g_Lactobacillus. Altogether, this study shows for the first time that ZHTC can ameliorate ischemic stroke by modulating gut microbiota and metabolic disturbances. This lays the foundation for further revealing the causal relationship between ZHTC, gut dysbiosis, plasma metabolite levels and ischemic stroke, and provides a scientific explanation for the ameliorating effect of ZHTC on ischemic stroke.
Collapse
Affiliation(s)
- Raoqiong Wang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Mengnan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Guilin Ren
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Gang Luo
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Zhichuan Wang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Zhengxin Ge
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Qingrong Pu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Turkestani M, Aldosiry N, Hamed N, Bhat RS, El-Ansary A. Learning Difficulties and Oxidative Stress in Autism Spectrum Disorder: A Review of the Role of Nutritional Interventions. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
7
|
Pangrazzi L, Balasco L, Bozzi Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21093293. [PMID: 32384730 PMCID: PMC7247582 DOI: 10.3390/ijms21093293] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) represent a group of neurodevelopmental disorders associated with social and behavioral impairments. Although dysfunctions in several signaling pathways have been associated with ASDs, very few molecules have been identified as potentially effective drug targets in the clinic. Classically, research in the ASD field has focused on the characterization of pathways involved in neural development and synaptic plasticity, which support the pathogenesis of this group of diseases. More recently, immune system dysfunctions have been observed in ASD. In addition, high levels of reactive oxygen species (ROS), which cause oxidative stress, are present in ASD patients. In this review, we will describe the major alterations in the expression of genes coding for enzymes involved in the ROS scavenging system, in both ASD patients and ASD mouse models. In addition, we will discuss, in the context of the most recent literature, the possibility that oxidative stress, inflammation and immune system dysfunction may be connected to, and altogether support, the pathogenesis and/or severity of ASD. Finally, we will discuss the possibility of novel treatments aimed at counteracting the interplay between ROS and inflammation in people with ASD.
Collapse
|
8
|
Prenatal S-Adenosine Methionine (SAMe) Induces Changes in Gene Expression in the Brain of Newborn Mice That Are Prevented by Co-Administration of Valproic Acid (VPA). Int J Mol Sci 2020; 21:ijms21082834. [PMID: 32325788 PMCID: PMC7215397 DOI: 10.3390/ijms21082834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we produced changes in gene expression in the brain of mice by early postnatal administration of valproic acid (VPA), with distinct differences between genders. The addition of S-adenosine methionine (SAMe) normalized the expression of most genes in both genders, while SAMe alone induced no changes. We treated pregnant dams with a single injection of VPA on day 12.5 of gestation, or with SAMe during gestational days 12–14, or by a combination of VPA and SAMe. In the frontal half of the brain, we studied the expression of 770 genes of the pathways involved in neurophysiology and neuropathology using the NanoString nCounter method. SAMe, but not VPA, induced statistically significant changes in the expression of many genes, with differences between genders. The expression of 112 genes was changed in both sexes, and another 170 genes were changed only in females and 31 only in males. About 30% of the genes were changed by more than 50%. One of the most important pathways changed by SAMe in both sexes was the VEGF (vascular endothelial growth factor) pathway. Pretreatment with VPA prevented almost all the changes in gene expression induced by SAMe. We conclude that large doses of SAMe, if administered prenatally, may induce significant epigenetic changes in the offspring. Hence, SAMe and possibly other methyl donors may be epigenetic teratogens.
Collapse
|
9
|
Taylor Levine M, Gao J, Satyanarayanan SK, Berman S, Rogers JT, Mischoulon D. S-adenosyl-l-methionine (SAMe), cannabidiol (CBD), and kratom in psychiatric disorders: Clinical and mechanistic considerations. Brain Behav Immun 2020; 85:152-161. [PMID: 31301401 DOI: 10.1016/j.bbi.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Given the limitations of prescription antidepressants, many individuals have turned to natural remedies for the management of their mood disorders. We review three selected natural remedies that may be of potential use as treatments for depressive disorders and other psychiatric or neurological conditions. The best studied and best supported of these three remedies is S-adenosyl-l-methionine (SAMe), a methyl donor with a wide range of physiological functions in the human organism. With the increasing legalization of cannabis-related products, cannabidiol (CBD) has gained popularity for various potential indications and has even obtained approval in the United States and Canada for certain neurological conditions. Kratom, while potentially useful for certain individuals with psychiatric disorders, is perhaps the most controversial of the three remedies, in view of its greater potential for abuse and dependence. For each remedy, we will review indications, doses and delivery systems, potential anti-inflammatory and immunomodulatory action, adverse effects, and will provide recommendations for clinicians who may be considering prescribing these remedies in their practice.
Collapse
Affiliation(s)
- M Taylor Levine
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin Gao
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao, Shandong Province, China
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Sarah Berman
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int J Mol Sci 2019; 20:ijms20215278. [PMID: 31652960 PMCID: PMC6862653 DOI: 10.3390/ijms20215278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In previous studies we produced autism like behavioral changes in mice by Valproic acid (VPA) with significant differences between genders. S-adenosine methionine (SAM) prevented the autism like behavior in both genders. The expression of 770 genes of pathways involved in neurophysiology and neuropathology was studied in the prefrontal cortex of 60 days old male and female mice using the NanoString nCounter. In females, VPA induced statistically significant changes in the expression of 146 genes; 71 genes were upregulated and 75 downregulated. In males, VPA changed the expression of only 19 genes, 16 were upregulated and 3 downregulated. Eight genes were similarly changed in both genders. When considering only the genes that were changed by at least 50%, VPA changed the expression of 15 genes in females and 3 in males. Only Nts was similarly downregulated in both genders. SAM normalized the expression of most changed genes in both genders. We presume that genes that are involved in autism like behavior in our model were similarly changed in both genders and corrected by SAM. The behavioral and other differences between genders may be related to genes that were differently affected by VPA in males and females and/or differently affected by SAM.
Collapse
|
11
|
Moretti R, Caruso P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. Int J Mol Sci 2019; 20:231. [PMID: 30626145 PMCID: PMC6337226 DOI: 10.3390/ijms20010231] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy can be caused by deficiency of either vitamin B12 or folate. Hyperhomocysteinemia (HHcy) can be responsible of different systemic and neurological disease. Actually, HHcy has been considered as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and HHcy has been reported in many neurologic disorders including cognitive impairment and stroke, independent of long-recognized factors such as hyperlipidemia, hypertension, diabetes mellitus, and smoking. HHcy is typically defined as levels >15 micromol/L. Treatment of hyperhomocysteinemia with folic acid and B vitamins seems to be effective in the prevention of the development of atherosclerosis, CVD, and strokes. However, data from literature show controversial results regarding the significance of homocysteine as a risk factor for CVD and stroke and whether patients should be routinely screened for homocysteine. HHcy-induced oxidative stress, endothelial dysfunction, inflammation, smooth muscle cell proliferation, and endoplasmic reticulum (ER) stress have been considered to play an important role in the pathogenesis of several diseases including atherosclerosis and stroke. The aim of our research is to review the possible role of HHcy in neurodegenerative disease and stroke and to understand its pathogenesis.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| | - Paola Caruso
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
12
|
Li Q, Cui J, Fang C, Liu M, Min G, Li L. S-Adenosylmethionine Attenuates Oxidative Stress and Neuroinflammation Induced by Amyloid-β Through Modulation of Glutathione Metabolism. J Alzheimers Dis 2017; 58:549-558. [DOI: 10.3233/jad-170177] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Wu X, Sun J, Zhang X, Li X, Liu Z, Yang Q, Li L. Epigenetic Signature of Chronic Cerebral Hypoperfusion and Beneficial Effects of S-adenosylmethionine in Rats. Mol Neurobiol 2014; 50:839-51. [DOI: 10.1007/s12035-014-8698-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
|
14
|
Franklin JM, Carrasco GA, Moskovitz J. Induction of methionine sulfoxide reductase activity by pergolide, pergolide sulfoxide, and S-adenosyl-methionine in neuronal cells. Neurosci Lett 2012. [PMID: 23178192 DOI: 10.1016/j.neulet.2012.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reduction of methionine sulfoxide in proteins is facilitated by the methionine sulfoxide reductase (Msr) system. The Msr reduction activity is important for protecting cells from oxidative stress related damages. Indeed, we have recently shown that treatment of cells with N-acetyl-methionine sulfoxide can increase Msr activity and protect neuronal cells from amyloid beta toxicity. Thus, in search of other similar Msr-inducing molecules, we examined the effects of pergolide, pergolide sulfoxide, and S-adenosyl-methionine on Msr activity in neuronal cells. Treatment of neuronal cells with a physiological range of pergolide and pergolide sulfoxide (0.5-1.0 μM) caused an increase of about 40% in total Msr activity compared with non-treated control cells. This increase in activity correlated with similar increases in methionine sulfoxide reductase A protein expression levels. Similarly, treatment of cells with S-adenosyl methionine also increased cellular Msr activity, which was milder compared to increases induced by pergolide and pergolide sulfoxide. We found that all the examined compounds are able to increase cellular Msr activity to levels comparable to N-acetyl-methionine sulfoxide treatment. Pergolide, pergolide sulfoxide, and S-adenosyl methionine can cross the blood-brain barrier. Therefore, we hypothesize that they can be useful in the treatment of symptoms/pathologies that are associated with reduced Msr activity.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
15
|
Cámara-Lemarroy CR, Guzmán-de la Garza FJ, Cordero-Pérez P, Alarcón-Galván G, Torres-Gonzalez L, Muñoz-Espinosa LE, Fernández-Garza NE. Comparative effects of triflusal, S-adenosylmethionine, and dextromethorphan over intestinal ischemia/reperfusion injury. ScientificWorldJournal 2011; 11:1886-92. [PMID: 22125445 PMCID: PMC3217601 DOI: 10.1100/2011/583603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/12/2011] [Indexed: 12/21/2022] Open
Abstract
Ischemia/reperfusion (I/R) is a condition that stimulates an intense inflammatory response. No ideal treatment exists. Triflusal is an antiplatelet salicylate derivative with anti-inflammatory effects. S-adenosylmethionine is a metabolic precursor for glutathione, an endogenous antioxidant. Dextromethorphan is a low-affinity N-methyl-D-aspartate receptor inhibitor. There is evidence that these agents modulate some of the pathways involved in I/R physiopathology. Intestinal I/R was induced in rats by clamping the superior mesenteric artery for 60 minutes, followed by 60 minutes of reperfusion. Rats either received saline or the drugs studied. At the end of the procedure, serum concentrations of tumor necrosis factor-alpha (TNF-alpha), malonaldehyde (MDA), and total antioxidant capacity (TAC) were determined and intestinal morphology analyzed. I/R resulted in tissue damage, serum TNF-alpha and MDA elevations, and depletion of TAC. All drugs showed tissue protection. Only triflusal reduced TNF-alpha levels. All drugs lowered MDA levels, but only triflusal and S-adenosylmethionine maintained the serum TAC.
Collapse
Affiliation(s)
- Carlos R Cámara-Lemarroy
- Departamento de Fisiología, Facultad de Medicina, UANL, Avenida Francisco I. Madero y Dr. Eduardo Aguirre Pequeño S/No, Col. Mitras Centro, 64460 Monterrey, NL, Mexico.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lim S, Moon MK, Shin H, Kim TH, Cho BJ, Kim M, Park HS, Choi SH, Ko SH, Chung MH, Lee IK, Jang HC, Kim YB, Park KS. Effect of S-adenosylmethionine on neointimal formation after balloon injury in obese diabetic rats. Cardiovasc Res 2011; 90:383-93. [PMID: 21245056 DOI: 10.1093/cvr/cvr009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS The association between hyperhomocysteinaemia and cardiovascular disease has been attributed to low levels of S-adenosylmethionine (SAM), a metabolic intermediate of homocysteine. However, the role of SAM in the development of restenosis has not been explored. Therefore, we investigated the effects of SAM on neointimal formation after balloon injury in obese diabetic rats and cultured cells. METHODS AND RESULTS Otsuka Long-Evans Tokushima fatty rats were divided into the following three groups: control (normal saline); SAM15; and SAM30 (15 and 30 mg/kg per day, respectively; n = 10 per group). SAM was administered orally from 1 week before carotid injury to 2 weeks thereafter. SAM treatment for 3 weeks caused a significant dose-dependent reduction in the intima-to-media ratio. SAM treatment significantly reduced the proliferation of vascular smooth muscle cells (VSMCs) and induced more apoptosis than was observed in the control group. This effect was accompanied by reduced circulating levels of high-sensitivity C-reactive protein and monocyte chemoattractant protein-1, reduced urine 8-hydroxy-2'-deoxyguanosine (8-OHdG), and increased adiponectin. Intima-to-media ratio correlated significantly with the levels of inflammatory markers, adiponectin, and 8-OHdG. In vitro experiments demonstrated that VSMC proliferation and migration and the adhesion of monocytes decreased in response to SAM. SAM treatment also reduced tumour necrosis factor-α-induced reactive oxygen species and tunicamycin-induced GRP78 expression in VSMCs. CONCLUSION These findings suggest that SAM exerts protective effects against restenosis after balloon injury in a rat model of type 2 diabetes by reducing the proliferation and inducing the apoptosis of VSMCs, modifying the inflammatory processes and reducing oxidative and endoplasmic reticulum stresses.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, Korea 110-744
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Remington R, Chan A, Paskavitz J, Shea TB. Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer's disease: a placebo-controlled pilot study. Am J Alzheimers Dis Other Demen 2009; 24:27-33. [PMID: 19056706 PMCID: PMC10846219 DOI: 10.1177/1533317508325094] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Recent studies demonstrated efficacy of a vitamin/ nutriceutical formulation (folate, vitamin B12, alpha-tocopherol, S-adenosyl methionine, N-acetyl cysteine, and acetyl-L-carnitine) for mild to moderate Alzheimer's disease. Herein, we tested the efficacy of this formulation in a small cohort of 12 institutionalized patients diagnosed with moderate-stage to later-stage Alzheimer's disease. Participants were randomly separated into treatment of placebo groups. Participants receiving the formulation demonstrated a clinically significant delay in decline in the Dementia Rating Scale and clock-drawing test as compared to those receiving placebo. Institutional caregivers reported approximately 30% improvement in the Neuropyschiatric Inventory and maintenance of performance in the Alzheimer's Disease Cooperative Study-Activities of Daily Living for more than 9 months. This formulation holds promise for delaying the decline in cognition, mood, and daily function that accompanies the progression of Alzheimer's disease, and may be particularly useful as a supplement for pharmacological approaches during later stages of this disorder. A larger trial is warranted.
Collapse
Affiliation(s)
- Ruth Remington
- Department of Nursing, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | | | | | | |
Collapse
|
18
|
Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer's disease: a 1-year, open-label pilot study with an 16-month caregiver extension. Am J Alzheimers Dis Other Demen 2008; 23:571-85. [PMID: 19047474 PMCID: PMC10846284 DOI: 10.1177/1533317508325093] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
We examined the efficacy of a vitamin/nutriceutical formulation (folate, vitamin B6, alpha-tocopherol, S-adenosyl methionine, N-acetyl cysteine, and acetyl-L-carnitine) in a 12-month, open-label trial with 14 community-dwelling individuals with early-stage Alzheimer's disease. Participants improved in the Dementia Rating Scale and Clock-drawing tests (Clox 1 and 2). Family caregivers reported improvement in multiple domains of the Neuropsychiatric Inventory (NPI) and maintenance of performance in the Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADL). Sustained performance was reported by caregivers for those participants who continued in an 16-month extension. Performance on the NPI was equivalent to published findings at 3 to 6 months for donepezil and exceeded that of galantamine and their historical placebos. Participants demonstrated superior performance for more than 12 months in NPI and ADL versus those receiving naproxen and rofecoxib or their placebo group. This formulation holds promise for treatment of early-stage Alzheimer's disease prior to and/or as a supplement for pharmacological approaches. A larger, placebo-controlled trial is warranted.
Collapse
Affiliation(s)
- Amy Chan
- Center for Cell Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, MA, USA
| | | | | | | | | |
Collapse
|
19
|
Chan A, Shea TB. Effects of dietary supplementation with N-acetyl cysteine, acetyl-L-carnitine and S-adenosyl methionine on cognitive performance and aggression in normal mice and mice expressing human ApoE4. Neuromolecular Med 2007; 9:264-9. [PMID: 17914184 DOI: 10.1007/s12017-007-8005-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 11/30/1999] [Accepted: 03/26/2007] [Indexed: 11/28/2022]
Abstract
In addition to cognitive impairment, behavioral changes such as aggressive behavior, depression, and psychosis accompany Alzheimer's Disease. Such symptoms may arise due to imbalances in neurotransmitters rather than overt neurodegeneration. Herein, we demonstrate that combined administration of N-acetyl cysteine (an antioxidant and glutathione precursor that protects against A beta neurotoxicity), acetyl-L-carnitine (which raises ATP levels, protects mitochondria, and buffers A beta neurotoxicity), and S-adenosylmethionine (which facilitates glutathione usage and maintains acetylcholine levels) enhanced or maintain cognitive function, and attenuated or prevented aggression, in mouse models of aging and neurodegeneration. Enhancement of cognitive function was rapidly reversed upon withdrawal of the formulation and restored following additional rounds supplementation. Behavioral abnormalities correlated with a decline in acetylcholine, which was also prevented by this nutriceutical combination, suggesting that neurotransmitter imbalance may contribute to their manifestation. Treatment with this nutriceutical combination was able to compensate for lack of dietary folate and vitamin E, coupled with administration of dietary iron as a pro-oxidant (which collectively increase homocysteine and oxidative damage to brain tissue), indicating that it provided antioxidant neuroprotection. Maintenance of neurotransmitter levels and prevention of oxidative damage underscore the efficacy of a therapeutic approach that utilizes a combination of neuroprotective agents.
Collapse
Affiliation(s)
- Amy Chan
- Center for Cellular Neurobiology & Neurodegeneration Research, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | | |
Collapse
|
20
|
Obeid R, Kasoha M, Knapp JP, Kostopoulos P, Becker G, Fassbender K, Herrmann W. Folate and methylation status in relation to phosphorylated tau protein(181P) and beta-amyloid(1-42) in cerebrospinal fluid. Clin Chem 2007; 53:1129-36. [PMID: 17384003 DOI: 10.1373/clinchem.2006.085241] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increased plasma total homocysteine (tHcy) is a risk factor for neurological diseases, but the underlying pathophysiology has not been adequately explained. METHODS We evaluated concentrations of tHcy, S-adenosyl homocysteine (SAH), S-adenosyl methionine (SAM), folate, and vitamin B(12) in cerebrospinal fluid (CSF) and plasma or serum from 182 patients with different neurological disorders. We measured concentrations of phosphorylated tau protein (P-tau)((181P)) and beta-amyloid(1-42) in the CSF. RESULTS Aging was associated with higher concentrations of tHcy and SAH in the CSF, in addition to lower concentrations of CSF folate and lower SAM:SAH ratio. Concentrations of CSF SAH and CSF folate correlated significantly with those of P-tau (r = 0.46 and r = -0.28, respectively). Moreover, P-tau correlated negatively with SAM:SAH ratio (r = -0.40, P <0.001). The association between SAH and higher P-tau was observed in 3 age groups (<41, 41-60, and >60 years). CSF tHcy was predicted by concentrations of CSF cystathionine (beta = 0.478), folate (beta = -0.403), albumin (beta = 0.349), and age (beta = 0.298). CONCLUSIONS tHcy concentration in the brain is related to age, B vitamins, and CSF albumin. Increase of CSF SAH is related to increased CSF P-tau; decreased degradation of P-tau might be a plausible explanation. Disturbed methyl group metabolism may be the link between hyperhomocysteinemia and neurodegeneration. Lowering tHcy and SAH might protect the brain by preventing P-tau accumulation.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine and Neurology, Faculty of Medicine, University Hospital of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Uzar E, Koyuncuoglu HR, Uz E, Yilmaz HR, Kutluhan S, Kilbas S, Gultekin F. The Activities of Antioxidant Enzymes and the Level of Malondialdehyde in Cerebellum of Rats Subjected to Methotrexate: Protective Effect of Caffeic Acid Phenethyl Ester. Mol Cell Biochem 2006; 291:63-8. [PMID: 16718360 DOI: 10.1007/s11010-006-9196-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/17/2006] [Indexed: 01/22/2023]
Abstract
Methotrexate (MTX), a folic acid antagonist, is widely used as a cytotoxic chemotherapeutic agent. MTX-associated neurotoxicity is an important clinical problem. The aim of this study was to investigate the role of caffeic acid phenethyl ester (CAPE) on cerebellar oxidative stress induced by MTX in rats. A total of 19 adult male rats were divided into three experimental groups as follows: MTX group (MTX treated), MTX+CAPE group (MTX+CAPE treated), and control group. MTX was administered intraperitoneally (i.p.) with a single dose of 20 mg kg(-1) on the second day of experiment. CAPE was administered i.p. with a dose of 10 micromol kg(-1) day(-1) for 7 days. Malondialdehyde (MDA) levels and activities of superoxide dismutase (SOD) and catalase (CAT) were determined in cerebellar tissue of rats. MTX caused to significant increase in MDA levels (an important marker of lipid peroxidation) in the MTX group compared with the controls (p = 0.006). CAPE significantly reduced the MTX induced lipid peroxidation in the MTX+CAPE group compared to the MTX (p = 0.007). The activities of SOD and CAT were significantly increased in the MTX group when compared with the control group (p = 0.0001, p = 0.004, respectively). The increased activities of these enzymes were significantly reduced by CAPE treatment (p = 0.004, p = 0.034, respectively). As a result, CAPE may protect from oxidative damage caused by MTX treatment in rat cerebellum.
Collapse
Affiliation(s)
- Ertugrul Uzar
- School of Medicine Department of Neurology, Suleyman Demirel University, Isparta, Turkey.
| | | | | | | | | | | | | |
Collapse
|
22
|
Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 2006; 580:2994-3005. [PMID: 16697371 DOI: 10.1016/j.febslet.2006.04.088] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/21/2006] [Accepted: 04/28/2006] [Indexed: 02/05/2023]
Abstract
Mild to moderate hyperhomocysteinemia is a risk factor for neurodegenerative diseases. Human studies suggest that homocysteine (Hcy) plays a role in brain damage, cognitive and memory decline. Numerous studies in recent years investigated the role of Hcy as a cause of brain damage. Hcy itself or folate and vitamin B12 deficiency can cause disturbed methylation and/or redox potentials, thus promoting calcium influx, amyloid and tau protein accumulation, apoptosis, and neuronal death. The Hcy effect may also be mediated by activating the N-methyl-D-aspartate receptor subtype. Numerous neurotoxic effects of Hcy can be blocked by folate, glutamate receptor antagonists, or various antioxidants. This review describes the most important mechanisms of Hcy neurotoxicity and pharmacological agents known to reverse Hcy effects.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, University Hospital of Saarland, Kirrberger Strasse, Gebäude 57, 66421 Homburg/Saar, Germany
| | | |
Collapse
|
23
|
Caro AA, Cederbaum AI. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations. Free Radic Biol Med 2004; 36:1303-16. [PMID: 15110395 DOI: 10.1016/j.freeradbiomed.2004.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/29/2004] [Accepted: 02/06/2004] [Indexed: 11/22/2022]
Abstract
S-Adenosylmethionine (SAM) is protective against a variety of toxic agents that promote oxidative stress. One mechanism for this protective effect of SAM is increased synthesis of glutathione. We evaluated whether SAM is protective via possible antioxidant-like activities. Aerobic Hepes-buffered solutions of Fe2+ spontaneously oxidize and consume O2 with concomitant production of reactive oxygen species and oxidation of substrates to radical products, e.g., ethanol to hydroxyethyl radical. SAM inhibited this oxidation of ethanol and inhibited aerobic Fe2+ oxidation and consumption of O2. SAM did not regenerate Fe2+ from Fe3+ and was not consumed after incubation with Fe2+. SAM less effectively inhibited aerobic Fe2+ oxidation in the presence of competing chelating agents such as EDTA, citrate, and ADP. The effects of SAM were mimicked by S-adenosylhomocysteine, but not by methionine or methylthioadenosine. SAM did not inhibit Fe2+ oxidation by H2O2 and was a relatively poor inhibitor of the Fenton reaction. Lipid peroxidation initiated by Fe2+ in liposomes was associated with Fe2+ oxidation; these two processes were inhibited by SAM. However, SAM did not show significant peroxyl radical scavenging activity. SAM also inhibited the nonenzymatic lipid peroxidation initiated by Fe2+ + ascorbate in rat liver microsomes. These results suggest that SAM inhibits alcohol and lipid oxidation mainly by Fe2+ chelation and inhibition of Fe2+ autoxidation. This could represent an important mechanism by which SAM exerts cellular protective actions and reduces oxidative stress in biological systems.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
24
|
Kopke RD, Coleman JKM, Liu J, Campbell KCM, Riffenburgh RH. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope 2002; 112:1515-32. [PMID: 12352659 DOI: 10.1097/00005537-200209000-00001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES/HYPOTHESIS Oxidative stress plays a substantial role in the genesis of noise-induced cochlear injury that causes permanent hearing loss. We present the results of three different approaches to enhance intrinsic cochlear defense mechanisms against oxidative stress. This article explores, through the following set of hypotheses, some of the postulated causes of noise-induced cochlear oxidative stress (NICOS) and how noise-induced cochlear damage may be reduced pharmacologically. 1) NICOS is in part related to defects in mitochondrial bioenergetics and biogenesis. Therefore, NICOS can be reduced by acetyl-L carnitine (ALCAR), an endogenous mitochondrial membrane compound that helps maintain mitochondrial bioenergetics and biogenesis in the face of oxidative stress. 2) A contributing factor in NICOS injury is glutamate excitotoxicity, which can be reduced by antagonizing the action of cochlear -methyl-D-aspartate (NMDA) receptors using carbamathione, which acts as a glutamate antagonist. 3) Noise-induced hearing loss (NIHL) may be characterized as a cochlear-reduced glutathione (GSH) deficiency state; therefore, strategies to enhance cochlear GSH levels may reduce noise-induced cochlear injury. The objective of this study was to document the reduction in noise-induced hearing and hair cell loss, following application of ALCAR, carbamathione, and a GSH repletion drug D-methionine (MET), to a model of noise-induced hearing loss. STUDY DESIGN This was a prospective, blinded observer study using the above-listed agents as modulators of the noise-induced cochlear injury response in the species chinchilla langier. METHODS Adult chinchilla langier had baseline-hearing thresholds determined by auditory brainstem response (ABR) recording. The animals then received injections of saline or saline plus active experimental compound starting before and continuing after a 6-hour 105 dB SPL continuous 4-kHz octave band noise exposure. ABRs were obtained immediately after noise exposure and weekly for 3 weeks. After euthanization, cochlear hair cell counts were obtained and analyzed. RESULTS ALCAR administration reduced noise-induced threshold shifts. Three weeks after noise exposure, no threshold shift at 2 to 4 kHz and <10 dB threshold shifts were seen at 6 to 8 kHz in ALCAR-treated animals compared with 30 to 35 dB in control animals. ALCAR treatment reduced both inner and outer hair cell loss. OHC loss averaged <10% for the 4- to 10-kHz region in ALCAR-treated animals and 60% in saline-injected-noise-exposed control animals. Noise-induced threshold shifts were also reduced in carbamathione-treated animals. At 3 weeks, threshold shifts averaged 15 dB or less at all frequencies in treated animals and 30 to 35 dB in control animals. Averaged OHC losses were 30% to 40% in carbamathione-treated animals and 60% in control animals. IHC losses were 5% in the 4- to 10-kHz region in treated animals and 10% to 20% in control animals. MET administration reduced noise-induced threshold shifts. ANOVA revealed a significant difference (P <.001). Mean OHC and IHC losses were also significantly reduced (P <.001). CONCLUSIONS These data lend further support to the growing body of evidence that oxidative stress, generated in part by glutamate excitotoxicity, impaired mitochondrial function and GSH depletion causes cochlear injury induced by noise. Enhancing the cellular oxidative stress defense pathways in the cochlea eliminates noise-induced cochlear injury. The data also suggest strategies for therapeutic intervention to reduce NIHL clinically.
Collapse
Affiliation(s)
- Richard D Kopke
- Department of Defence Spatial Orientation Center, Naval Medical Center San Diego, California 92134, USA.
| | | | | | | | | |
Collapse
|
25
|
De La Cruz JP, Villalobos MA, Cuerda MA, Guerrero A, González-Correa JA, Sánchez De La Cuesta F. Effects of S-adenosyl-L-methionine on lipid peroxidation and glutathione levels in rat brain slices exposed to reoxygenation after oxygen-glucose deprivation. Neurosci Lett 2002; 318:103-7. [PMID: 11796196 DOI: 10.1016/s0304-3940(01)02475-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We analyzed the effects of S-adenosyl-L-methionine (AdoMet) on tissue oxidative stress in rat brain slices exposed to reoxygenation after oxygen-glucose deprivation. The thiobarbituric acid reactive substances (TBARS), total and oxidized glutathione, and lactate-dehydrogenase efflux (LDH) from tissue to the incubation medium, were measured. Brain slices were incubated without glucose and with N2, then glucose was added and O2 was perfused. After the anoxic-reoxygenation period, increase in TBARS, oxidized glutathione and LDH efflux, and decrease in total glutathione levels, were observed. The incubation with AdoMet before the anoxic period reduced TBARS (31-1000 micromol/l), glutathione production was increased (31-1000 micromol/l), LDH efflux decreased 6.41% with 15 micromol/l and 61.5% with 500 micromol/l). In the ex vivo experiments, we administered 50 mg/kg per day p.o., AdoMet for 3 days, then brain slices were collected and the anoxia-reoxygenation experiment was carried out. AdoMet led to the inhibition of brain lipid peroxidation and increased total glutathione production, after 3 h-reoxygenation. The increase of LDH efflux in non-treated rats was reduced by 77%. We conclude that AdoMet exerts citoprotective effects in an experimental model of brain slices reoxygenation after oxygen-glucose deprivation.
Collapse
Affiliation(s)
- J P De La Cruz
- Department of Pharmacology and Therapeutics, School of Medicine, University of Málaga, 29071 Málaga, Spain.
| | | | | | | | | | | |
Collapse
|