1
|
van Nieuwenhuijzen P, McGregor I, Chebib M, Hunt G. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience 2014; 277:700-15. [DOI: 10.1016/j.neuroscience.2014.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
2
|
Switzer RC, Lowry-Franssen C, Benkovic SA. Recommended Neuroanatomical Sampling Practices for Comprehensive Brain Evaluation in Nonclinical Safety Studies. Toxicol Pathol 2011; 39:73-84. [DOI: 10.1177/0192623310397557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adequate tissue sampling is known to reduce the likelihood that the toxicity of novel biomolecules, chemicals, and drugs might go undetected. Each organ, and often specific structurally and functionally distinct regions within it, must be assessed to detect potential site-specific toxicity. Adequate sampling of the brain requires particular consideration because of the many major substructures and more than 600 subpopulations of generally irreplaceable cells with unique functions and vulnerabilities. All known neurotoxicants affect specific subpopulations (usually neurons) rather than damaging a certain percentage of cells throughout the brain; thus, all populations should be independently assessed for lesions. Historically, the affected neural cell subpopulation has not been predictable, but it is now clear that sampling selected populations (e.g., cerebral cortex, hippocampus, cerebellar folia) cannot forecast the health of other populations. This article reviews the neuroanatomical domains affected by several model neurotoxicants to illustrate the need for more comprehensive neurohistological evaluation during nonclinical development of novel compounds. The article also describes an easily executed, cost-effective method that uses a set number of evenly spaced coronal (cross) sections to accomplish this comprehensive brain assessment during nonclinical safety studies performed in rodents, dogs, and nonhuman primates.
Collapse
Affiliation(s)
| | - Catherine Lowry-Franssen
- NeuroScience Associates, Knoxville, Tennessee, USA
- Randolph-Macon College, Ashland, Virginia, USA
| | | |
Collapse
|
3
|
McCallum GP, Wong AW, Wells PG. Cockayne syndrome B protects against methamphetamine-enhanced oxidative DNA damage in murine fetal brain and postnatal neurodevelopmental deficits. Antioxid Redox Signal 2011; 14:747-56. [PMID: 20673160 PMCID: PMC3116650 DOI: 10.1089/ars.2009.2946] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methamphetamine (METH) increases the oxidative DNA lesion 8-oxoguanine (8-oxoG) in fetal mouse brain, and causes postnatal motor coordination deficits after in utero exposure. Like oxoguanine glycosylase 1 (OGG1), the Cockayne syndrome B (CSB) protein is involved in the repair of oxidatively damaged DNA, although its function is unclear. Here we used CSB-deficient Csb(m/m) knockout mice to investigate the developmental role of DNA oxidation and CSB in METH-initiated neurodevelopmental deficits. METH (40 mg/kg intraperitoneally) administration to pregnant Csb females on gestational day 17 increased 8-oxoG levels in Csb(m/m) fetal brains (p < 0.05). CSB modulated 8-oxoG levels independent of OGG1 activity, as 8-oxoG incision activity in fetal nuclear extracts was identical in Csb(m/m) and Csb(+/+)mice. This CSB effect was evident despite 7.1-fold higher OGG1 activity in Csb(+/+) mice compared to outbred CD-1 mice. Female Csb(m/m) offspring exposed in utero to METH exhibited motor coordination deficits postnatally (p < 0.05). In utero METH exposure did not cause dopaminergic nerve terminal degeneration, in contrast to adult exposures. This is the first evidence that CSB protects the fetus from xenobiotic-enhanced DNA oxidation and postnatal functional deficits, suggesting that oxidatively damaged DNA is developmentally pathogenic, and that fetal CSB activity may modulate the risk of reactive oxygen species-mediated adverse developmental outcomes.
Collapse
Affiliation(s)
- Gordon P McCallum
- Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
4
|
Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J Neurosci 2008; 28:9047-54. [PMID: 18768699 DOI: 10.1523/jneurosci.2557-08.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In utero methamphetamine (METH) exposure enhances the oxidative DNA lesion 7,8-dihydro-8-oxoguanine (8-oxoG) in CD-1 fetal mouse brain, and causes long-term postnatal motor coordination deficits. Herein we used oxoguanine glycosylase 1 (ogg1) knock-out mice to determine the pathogenic roles of 8-oxoG and OGG1, which repairs 8-oxoG, in METH-initiated neurodevelopmental anomalies. Administration of METH (20 or 40 mg/kg) on gestational day 17 to pregnant +/- OGG1-deficient females caused a drug dose- and gene dose-dependent increase in 8-oxoG levels in OGG1-deficient fetal brains (p < 0.05). Female ogg1 knock-out offspring exposed in utero to high-dose METH exhibited gene dose-dependent enhanced motor coordination deficits for at least 12 weeks postnatally (p < 0.05). Contrary to METH-treated adult mice, METH-exposed CD-1 fetal brains did not exhibit altered apoptosis or DNA synthesis, and OGG1-deficient offspring exposed in utero to METH did not exhibit postnatal dopaminergic nerve terminal degeneration, suggesting different mechanisms. Enhanced 8-oxoG repair activity in fetal relative to adult organs suggests an important developmental protective role of OGG1 against in utero genotoxic stress. These observations provide the most direct evidence to date that 8-oxoG constitutes an embryopathic molecular lesion, and that functional fetal DNA repair protects against METH teratogenicity.
Collapse
|
5
|
Straiko MMW, Coolen LM, Zemlan FP, Gudelsky GA. The effect of amphetamine analogs on cleaved microtubule-associated protein-tau formation in the rat brain. Neuroscience 2006; 144:223-31. [PMID: 17084036 PMCID: PMC1817812 DOI: 10.1016/j.neuroscience.2006.08.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 11/16/2022]
Abstract
The present study quantified the cleaved form of the microtubule-associated protein tau (cleaved MAP-tau, C-tau), a previously demonstrated marker of CNS toxicity, following the administration of monoamine-depleting regimens of the psychostimulant drugs amphetamine (AMPH), methamphetamine (METH), +/-3,4-methylenedioxymethamphetamine (MDMA), or para-methoxyamphetamine (PMA) in an attempt to further characterize psychostimulant-induced toxicity. A dopamine (DA)-depleting regimen of AMPH produced an increase in C-tau immunoreactivity in the striatum, while a DA- and serotonin (5-HT)-depleting regimen of METH produced an increase in the number of C-tau immunoreactive cells in the striatum and CA2/CA3 and dentate gyrus regions of the hippocampus. MDMA and PMA, two psychostimulant drugs that produce selective 5-HT depletion in the striatum, had no effect on C-tau immunoreactivity in the striatum or hippocampus. Furthermore, 5,7-dihydroxytryptamine (5,7-DHT), an established 5-HT selective neurotoxin, did not produce an increase in C-tau immunoreactivity. Dual fluorescent immunocytochemistry with antibodies to glial fibrillary acidic protein (GFAP) and C-tau indicated that C-tau immunoreactivity was present in astrocytes, not neurons, suggesting that increased C-tau may be an alternative indicator of reactive gliosis. The present results are consistent with previous findings that the DA-depleting psychostimulants AMPH and METH produce reactive gliosis whereas the 5-HT-depleting drugs MDMA and PMA, as well as the known 5-HT selective neurotoxin 5,7-DHT, do not produce an appreciable glial response.
Collapse
Affiliation(s)
- M M W Straiko
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
6
|
Belcher AM, O'Dell SJ, Marshall JF. Impaired object recognition memory following methamphetamine, but not p-chloroamphetamine- or d-amphetamine-induced neurotoxicity. Neuropsychopharmacology 2005; 30:2026-34. [PMID: 15900317 DOI: 10.1038/sj.npp.1300771] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated moderate doses of methamphetamine (mAMPH) damage forebrain monoaminergic terminals and nonmonoaminergic cells in somatosensory cortex, and impair performance in a novelty preference task of object recognition (OR). This study aimed to determine whether the memory deficit seen after a neurotoxic mAMPH regimen results from damage to dopamine (DA) and/or serotonin (5-HT) terminals. Animals were given a neurotoxic regimen of mAMPH, p-chloroamphetamine (PCA, preferentially damages 5-HT terminals), d-amphetamine (d-AMPH, preferentially damages DA terminals), or saline. After 1 week, animals were trained and tested for OR memory. Rats treated with mAMPH showed no recognition memory during the short-term memory (STM) test, whereas both PCA- and d-AMPH-treated rats showed OR STM scores comparable to controls. After behavioral testing, the specificity of monoaminergic lesions was determined by postmortem [125I]RTI-55 binding to dopamine (DAT) and serotonin (SERT) transporter proteins. Tissue from a separate group of animals killed 3 days after drug treatment was processed for Fluoro-Jade (F-J) fluorescence histochemistry to detect damaged cortical neurons. mAMPH-treated rats showed reductions in striatal DAT and hippocampal (HC) and perirhinal (pRh) SERT, as well as degeneration of neurons in primary somatosensory cortex. In PCA-treated rats, HC and pRh SERT were substantially depleted, but striatal DAT and cortical neuron survival were unaffected. By contrast, d-AMPH-treated animals showed marked depletions in striatal DAT and cortical neurodegeneration, but HC and pRh SERT were unaffected. This pattern of results indicates that no single feature of mAMPH-induced neurotoxicity is sufficient to produce the OR impairments seen after mAMPH treatment.
Collapse
Affiliation(s)
- Annabelle M Belcher
- 1Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
7
|
Slikker W, Bowyer JF. Biomarkers of adult and developmental neurotoxicity. Toxicol Appl Pharmacol 2005; 206:255-60. [PMID: 15967216 DOI: 10.1016/j.taap.2004.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 09/08/2004] [Indexed: 11/16/2022]
Abstract
Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s), (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.
Collapse
Affiliation(s)
- William Slikker
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, HFT-132, 3900 NCTR Road, Jefferson, AR 72079-9502, USA.
| | | |
Collapse
|
8
|
Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 2004; 367:349-54. [PMID: 15337264 DOI: 10.1016/j.neulet.2004.06.065] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/08/2004] [Accepted: 06/10/2004] [Indexed: 01/08/2023]
Abstract
Neurotoxic amphetamines cause damage to monoamine nerve terminals of the striatum by unknown mechanisms. Microglial activation contributes to the neuronal damage that accompanies injury, disease, and inflammation, but a role for these cells in amphetamine-induced neurotoxicity has received little attention. We show presently that D-methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), D-amphetamine, and p-chloroamphetamine, each of which has been linked to dopamine (DA) or serotonin nerve terminal damage, result in microglial activation in the striatum. The non-neurotoxic amphetamines l-methamphetamine, fenfluramine, and DOI do not have this effect. All drugs that cause microglial activation also increase expression of glial fibrillary acidic protein (GFAP). At a minimum, microglial activation serves as a pharmacologically specific marker for striatal nerve terminal damage resulting only from those amphetamines that exert neurotoxicity. Because microglia are known to produce many of the reactive species (e.g., nitric oxide, superoxide, cytokines) that mediate the neurotoxicity of the amphetamine-class of drugs, their activation could represent an early and essential event in the neurotoxic cascade associated with high-dose amphetamine intoxication.
Collapse
Affiliation(s)
- David M Thomas
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 2125 Scott Hall, 540 E Canfield, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bowyer JF, Delongchamp RR, Jakab RL. Glutamate N-methyl-d-aspartate and dopamine receptors have contrasting effects on the limbic versus the somatosensory cortex with respect to amphetamine-induced neurodegeneration. Brain Res 2004; 1030:234-46. [PMID: 15571672 DOI: 10.1016/j.brainres.2004.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 01/02/2023]
Abstract
The roles that glutamate N-methyl-D-aspartate (NMDA) and dopamine D1-like and D2-like receptors play in the cortical neurotoxicity occurring in rats exposed to multiple doses of amphetamine (AMPH) for 2 days was evaluated. Neurodegeneration in rats that did not become hyperthermic during AMPH exposure was quantified by counting isolectin B4-labeled phagocytic microglia and Fluoro-Jade (F-J)-labeled neurons in the somatosensory parietal cortex, piriform cortex and posterolateral cortical amygdaloid nucleus (PLCo). The NMDA receptor antagonist, dizocilpine (0.63 mg/kg day) blocked AMPH-induced neurodegeneration in the somatosensory cortex. However, it did not affect degeneration in the piriform cortex and PLCo indicating that limbic degeneration was not NMDA-mediated. The dopamine antagonists, eticlopride (D2/3, 0.25 mg/kg day) and SCH-23390 (D1, 0.25 mg/kg day), blocked the stereotypic behavior and neurodegeneration in the somatosensory cortex. However, eticlopride had a lesser protective effect in the limbic regions. As well, the dopamine D2/D3 agonist quinpirole (1.5 mg/kg day) protected against cortical neurodegeneration when it was given during AMPH exposure and continued until sacrifice. The dopamine D1 agonist (SKF-38393, 12.5 mg/kg day) had no significant effect on neurodegeneration. These data indicate that there are significant differences in NMDA and dopamine D2 modulation of AMPH-induced neurodegeneration in the somatosensory cortex compared to the limbic cortices, and limbic cortical degeneration is not necessarily dependent on excessive stimulation of NMDA receptors as it is in the somatosensory cortex. Although excessive dopamine receptor stimulation during amphetamine exposure may trigger the neurodegenerative processes, continued D2 stimulation after AMPH exposure is neuroprotective in the cortex.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | |
Collapse
|
10
|
Bowyer JF, Harris AJ, Delongchamp RR, Jakab RL, Miller DB, Little AR, O'Callaghan JP. Selective Changes in Gene Expression in Cortical Regions Sensitive to Amphetamine During the Neurodegenerative Process. Neurotoxicology 2004; 25:555-72. [PMID: 15183010 DOI: 10.1016/j.neuro.2003.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 08/07/2003] [Indexed: 11/16/2022]
Abstract
Gene expression profiles in several brain regions of adult male rats were evaluated following a d-amphetamine (AMPH) exposure paradigm previously established to produce AMPH neurotoxicity. Escalating doses of AMPH (5-30 mg/kg) were given over the course of 16 h per day in an 18 degrees C environment for 2 days. This paradigm produces neurotoxicity but eliminates or minimizes the hyperthermia and seizure activity that might influence gene expression in a manner unrelated to the neurotoxic effects of AMPH. The expression of 1185 genes was monitored in the striatum, parietal cortex, piriform cortex and posteriolateral cortical amygdaloid nucleus (PLCo) using cDNA array technology, and potentially significant changes were verified by RT-PCR. Gene expression was determined at time points after AMPH when neurodegeneration was beginning to appear (16 h) or maximal (64 h). Expression was also determined 14 days after AMPH to find long-term changes in gene expression that might be biomarkers of a neurotoxic event. In the parietal cortex there was a two-fold increase in neuropeptide Y precursor protein mRNA whereas nerve growth factor-induced receptor protein I-A and I-B mRNA decreased 50% at 16 h after the end of AMPH exposure. Although these changes in expression were not observed in the PLCo, insulin-like growth factor binding protein 1 mRNA was increased two-fold in the PLCo at 16 and 64 h after AMPH. Changes in gene expression in the cortical regions were all between 1.2- and 1.5-fold 14 days after AMPH but some of these changes, such as annexin V increases, may be relevant to neurotoxicity. Gene expression was not affected by more than 1.5-fold at the time points in the striatum, although 65% dopamine depletions occurred, but the plasma membrane-associated dopamine transporter and dopamine D2 receptor were decreased about 40% in the substantia nigra at 64 h and 14 days post-AMPH. Thus, the 2-day AMPH treatment produced a few changes in gene expression in the two-fold range at time points 16 h or more after exposure but the majority of expression changes were less than 1.5-fold of control. Nonetheless, some of these lesser fold-changes appeared to be relevant to the neurotoxic process.
Collapse
Affiliation(s)
- John F Bowyer
- Divisions of Neurotoxicology, Biometry and Risk Assessment and Genetic Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Jakab RL, Bowyer JF. Parvalbumin neuron circuits and microglia in three dopamine-poor cortical regions remain sensitive to amphetamine exposure in the absence of hyperthermia, seizure and stroke. Brain Res 2002; 958:52-69. [PMID: 12468030 DOI: 10.1016/s0006-8993(02)03439-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dopamine-releasing and depleting substance amphetamine (AMPH) can make cortical neurons susceptible to damage, and the prevention of hyperthermia, seizures and stroke is thought to block these effects. Here we report a 2-day AMPH treatment paradigm which affected only interneurons in three cortical regions with average or below-average dopamine input. AMPH (six escalating doses/day ranging from 5 to 30 mg/kg for 2 days) was given at 17-18 degrees C ambient temperature (T) to adult male rats. During the 2-day AMPH treatment, peak body T stayed below 38.9 degrees C in 40% of the AMPH treated rats. In 60% of the rats, deliberate cooling suppressed (<39.5 degrees C) or minimized (<40.0 degrees C) hyperthermia. Escalation of stereotypes to seizure-like behaviors was rare and post-mortem morphological signs of stroke were absent. Neurons labeled with the anionic, neurodegeneration-marker dye Fluoro-Jade (F-J) were seen 1 day after dosing, peaked 3 days later, but were barely detectable 14 days after dosing. Only nonpyramidal neurons in layer IV of the somatosensory barrel cortex and in layer II of the piriform cortex and posterolateral cortical amygdaloid nucleus were labeled with Fluoro-Jade. Isolectin B-labeled activated microglia were only detected in their neighborhood. F-J labeled neurons were extremely rare in cortical regions rich in dopamine (e.g. cingulate cortex), and were absent in cortical regions with no dopamine (e.g. visual cortex). Parvalbumin was seen in some Fluoro-Jade-labeled neurons and parvalbumin immunostaining in local axon plexuses intensified. This AMPH paradigm affected fewer cortical regions, and caused smaller reduction in striatal tyrosine hydroxylase (TH) immunoreactivity than previous 1-day AMPH regimens generating seizures or severe (above 40 degrees C) hyperthermia. Correlation between peak or mean body T and the extent of neurodegeneration or microgliosis was below statistical significance. Astrogliosis (elevated levels of the astroglia-marker, glial fibrillary acidic protein (GFAP)) was detected in many brain regions. In the striatum and midbrain, F-J labeled neurons and activated microglia were absent, but astrogliosis, decreased TH immunolabel, and swollen TH fibers were detected. In sum, after this AMPH treatment, cortical pyramidal neurons were spared, but astrogliosis was brain-wide and some interneurons and microglia in three cortical regions with average or below-average dopamine input remained sensitive to AMPH exposure.
Collapse
Affiliation(s)
- Robert L Jakab
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, HFT-132, 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | | |
Collapse
|
12
|
Gabriele J, Rajaram M, Zhang B, Sharma S, Mishra RK. Modulation of a 40-kDa catecholamine-regulated protein following D-amphetamine treatment in discrete brain regions. Eur J Pharmacol 2002; 453:13-9. [PMID: 12393054 DOI: 10.1016/s0014-2999(02)02366-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 40-kDa catecholamine-regulated protein (CRP40) has been demonstrated to be expressed in the central nervous system, and is known to bind to dopamine and related catecholamines. Recently, it has been shown that dopamine D1 receptor antagonist and dopamine D2 receptor antagonist differentially modulated the CRP40 protein in the striatum. In the present study, we examined the effects of the indirect psychostimulant, D-amphetamine, on (CRP40) expression in discrete brain regions. The technique of Western immunoblotting was utilized for quantitation of CRP40 in different experimental paradigms following D-amphetamine treatment. Acute treatment with D-amphetamine (5.0 mg/kg, i.p.) caused no significant change in CRP40 levels in either of the two brain regions studied: striatum and nucleus accumbens. Chronic D-amphetamine administration (2.5 mg/kg, i.p.) significantly increased CRP40 levels in striatum and nucleus accumbens (37.64 +/- 14.57% and 27.86 +/- 8.40%, respectively, P < or = 0.05). Chronic and possibly sensitized D-amphetamine challenged rats (0.5 mg/kg, i.p.) showed a significant increase in CRP40 levels in the nucleus accumbens only (40.49 +/- 15.91%, P < or = 0.05). Although CRP40 has a consensus motif with the 70-kDa heat shock protein (HSP70), levels of HSP70 remained unchanged under identical experimental conditions. The results of this study demonstrate selective modulation of CRP40 by D-amphetamine treatment, without affecting the 70-kDa heat shock protein.
Collapse
Affiliation(s)
- Joseph Gabriele
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, 1200 Main Street West, Hamilton ON, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
13
|
Kubová H, Druga R, Haugvicová R, Suchomelová L, Pitkanen A. Dynamic changes of status epilepticus-induced neuronal degeneration in the mediodorsal nucleus of the thalamus during postnatal development of the rat. Epilepsia 2002; 43 Suppl 5:54-60. [PMID: 12121296 DOI: 10.1046/j.1528-1157.43.s.5.36.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Status epilepticus (SE) was previously found to induce damage in the mediodorsal nucleus of the thalamus (MD) in both adult and immature rats. This study was designed to describe age-related changes of SE-induced neuronal degeneration in this part of the brain. METHODS SE was induced by LiCl/pilocarpine in five age groups of rats (P12-P25). Distribution of degenerating neurons was studied at various time intervals from 4 h up to 1 week using Fluoro Jade B (FJB) staining. For P12 and P25 rats, an interval of 3 months was added. RESULTS Damaged neurons were found in all age groups during a 1-week period after SE. Patterns of neuronal degeneration, however, changed in an age-related manner. In animals at P12 and P15, FJB-labeled neurons were located in the central and lateral segment of the MD. In the P18 group, degenerating neurons occurred in all three segments of the MD, with a prevalence in central and lateral subdivisions. In contrast, in P21 and P25 rats, FJB-labeled neurons were predominantly located in the central and medial segments. Degenerating neurons were still present 3 months after SE in the medial segment in P25 animals, whereas no labeled neurons were detected in the P12 group at this time. CONCLUSIONS Our data demonstrate that the pattern of neuronal degeneration in MD is mainly related to age at SE onset. In addition to damage occurring during the acute phase of SE, a population of degenerating neurons was detected in P25 animals during the chronic period 3 months after SE.
Collapse
Affiliation(s)
- H Kubová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnská 1083, Prague 4, CZ-142 20, Czech Republic.
| | | | | | | | | |
Collapse
|
14
|
Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:1-22. [PMID: 11516769 DOI: 10.1016/s0165-0173(01)00054-6] [Citation(s) in RCA: 403] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Research into methamphetamine-induced neurotoxicity has experienced a resurgence in recent years. This is due to (1) greater understanding of the mechanisms underlying methamphetamine neurotoxicity, (2) its usefulness as a model for Parkinson's disease and (3) an increased abuse of the substance, especially in the American Mid-West and Japan. It is suggested that the commonly used experimental one-day methamphetamine dosing regimen better models the acute overdose pathologies seen in humans, whereas chronic models are needed to accurately model human long-term abuse. Further, we suggest that these two dosing regimens will result in quite different neurochemical, neuropathological and behavioral outcomes. The relative importance of the dopamine transporter and vesicular monoamine transporter knockout is discussed and insights into oxidative mechanisms are described from observations of nNOS knockout and SOD overexpression. This review not only describes the neuropathologies associated with methamphetamine in rodents, non-human primates and human abusers, but also focuses on the more recent literature associated with reactive oxygen and nitrogen species and their contribution to neuronal death via necrosis and/or apoptosis. The effect of methamphetamine on the mitochondrial membrane potential and electron transport chain and subsequent apoptotic cascades are also emphasized. Finally, we describe potential treatments for methamphetamine abusers with reference to the time after withdrawal. We suggest that potential treatments can be divided into three categories; (1) the prevention of neurotoxicity if recidivism occurs, (2) amelioration of apoptotic cascades that may occur even in the withdrawal period and (3) treatment of the atypical depression associated with withdrawal.
Collapse
Affiliation(s)
- C Davidson
- Department of Psychiatry, Box 3870, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|