1
|
Choi JI, Ha SK, Lim DJ, Kim SD, Kim SH. S100ß, Matrix Metalloproteinase-9, D-dimer, and Heat Shock Protein 70 Are Serologic Biomarkers of Acute Cerebral Infarction in a Mouse Model of Transient MCA Occlusion. J Korean Neurosurg Soc 2018; 61:548-558. [PMID: 29724092 PMCID: PMC6129755 DOI: 10.3340/jkns.2017.0200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/08/2017] [Indexed: 11/27/2022] Open
Abstract
Objective Diagnosing acute cerebral infarction is crucial in determining prognosis of stroke patients. Although many serologic tests for prompt diagnosis are available, the clinical application of serologic tests is currently limited. We investigated whether S100β, matrix metalloproteinase-9 (MMP-9), D-dimer, and heat shock protein 70 (HSP70) can be used as biomarkers for acute cerebral infarction.
Methods Focal cerebral ischemia was induced using the modified intraluminal filament technique. Mice were randomly assigned to 30-minute occlusion (n=10), 60-minute occlusion (n=10), or sham (n=5) groups. Four hours later, neurological deficits were evaluated and blood samples were obtained. Infarction volumes were calculated and plasma S100β, MMP-9, D-dimer, and HSP70 levels were measured using enzyme-linked immunosorbent assay.
Results The average infarction volume was 12.32±2.31 mm3 and 46.9±7.43 mm3 in the 30- and 60-minute groups, respectively. The mean neurological score in the two ischemic groups was 1.6±0.55 and 3.2±0.70, respectively. S100β, MMP-9, and HSP70 expressions significantly increased after 4 hours of ischemia (p=0.001). Furthermore, S100β and MMP-9 expressions correlated with infarction volumes (p<0.001) and neurological deficits (p<0.001). There was no significant difference in D-dimer expression between groups (p=0.843). The area under the receiver operating characteristic curve (AUC) showed high sensitivity and specificity for MMP-9, HSP70 (AUC=1), and S100β (AUC=0.98).
Conclusion S100β, MMP-9, and HSP70 can complement current diagnostic tools to assess cerebral infarction, suggesting their use as potential biomarkers for acute cerebral infarction.
Collapse
Affiliation(s)
- Jong-Il Choi
- Department of Neurosurgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sung-Kon Ha
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| | - Dong-Jun Lim
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| | - Sang-Dae Kim
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| | - Se-Hoon Kim
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Miyake SI, Wakita H, Bernstock JD, Castri P, Ruetzler C, Miyake J, Lee YJ, Hallenbeck JM. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning. J Neurochem 2015; 135:943-57. [PMID: 26375300 DOI: 10.1111/jnc.13368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 01/02/2023]
Abstract
Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic preconditioning paradigm. We therefore propose that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning, via a suppression of protein synthesis and/or energy consumption.
Collapse
Affiliation(s)
- Shin-ichi Miyake
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hideaki Wakita
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Paola Castri
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Christl Ruetzler
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Junko Miyake
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang-Ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Effects of alpha-tocopherol associated with lovastatin on brain tissue and memory function in SHRSPs. Physiol Behav 2015; 149:303-9. [DOI: 10.1016/j.physbeh.2015.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022]
|
4
|
Choi JI, Kim SD, Kim SH, Lim DJ, Ha SK. Semi-quantitative analyses of hippocampal heat shock protein-70 expression based on the duration of ischemia and the volume of cerebral infarction in mice. J Korean Neurosurg Soc 2014; 55:307-12. [PMID: 25237425 PMCID: PMC4166325 DOI: 10.3340/jkns.2014.55.6.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/19/2014] [Accepted: 06/11/2014] [Indexed: 11/27/2022] Open
Abstract
Objective We investigated the expression of hippocampal heat shock protein 70 (HSP-70) infarction volume after different durations of experimental ischemic stroke in mice. Methods Focal cerebral ischemia was induced in mice by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, both hippocampi were extracted for HSP-70 protein analyses. Slices from each hemisphere were stained with 2,3,5-triphenyltetrazolium chloride (2%), and infarction volumes were calculated. HSP-70 levels were evaluated using western blot and enzyme-linked immunosorbent assay (ELISA). HSP-70 subtype (hsp70.1, hspa1a, hspa1b) mRNA levels in the hippocampus were measured using reverse transcription-polymerase chain reaction (RT-PCR). Results Cerebral infarctions were found ipsilateral to the occlusion in 10 mice exposed to transient ischemia (5 each in the 30-min and 60-min occlusion groups), whereas no focal infarctions were noted in any of the sham mice. The average infarct volumes of the 2 ischemic groups were 22.28±7.31 mm3 [30-min group±standard deviation (SD)] and 38.06±9.53 mm3 (60-min group±SD). Western blot analyses and ELISA showed that HSP-70 in hippocampal tissues increased in the infarction groups than in the sham group. However, differences in HSP-70 levels between the 2 infarction groups were statistically insignificant. Moreover, RT-PCR results demonstrated no relationship between the mRNA expression of HSP-70 subtypes and occlusion time or infarction volume. Conclusion Our results indicated no significant difference in HSP-70 expression between the 30- and 60-min occlusion groups despite the statistical difference in infarction volumes. Furthermore, HSP-70 subtype mRNA expression was independent of both occlusion duration and cerebral infarction volume.
Collapse
Affiliation(s)
- Jong-Il Choi
- Department of Neurosurgery, Ansan Hospital, Korea University Medical Center, Korea University College of Medicine, Ansan, Korea
| | - Sang-Dae Kim
- Department of Neurosurgery, Ansan Hospital, Korea University Medical Center, Korea University College of Medicine, Ansan, Korea
| | - Se-Hoon Kim
- Department of Neurosurgery, Ansan Hospital, Korea University Medical Center, Korea University College of Medicine, Ansan, Korea
| | - Dong-Jun Lim
- Department of Neurosurgery, Ansan Hospital, Korea University Medical Center, Korea University College of Medicine, Ansan, Korea
| | - Sung-Kon Ha
- Department of Neurosurgery, Ansan Hospital, Korea University Medical Center, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
5
|
Fu R, Fan YZ, Fan YC, Zhao HY. Expression of arginyl-tRNA synthetase in rats with focal cerebral ischemia. ACTA ACUST UNITED AC 2014; 34:172-175. [PMID: 24710927 DOI: 10.1007/s11596-014-1253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/05/2013] [Indexed: 01/08/2023]
Abstract
Aminoacyl-tRNA syntheses (AARS) can catalyze the adenosine triphosphate (ATP)-dependent acylation of their cognate tRNA(s) with a specific amino acid. They can be seen as an index to reflect the energy metabolic rate of ischemic brain cells in ischemic penumbra. This study examined the relationship between arginyl-tRNA synthetase (ArgRS), one of the AARS, and cerebral ischemia in rats. The model of middle cerebral artery occlusion (MCAO) was established in rats. The expression levels of ArgRS protein and mRNA were detected in rat brain tissues at different time points following MCAO by Western blotting and RT-PCR, respectively. The results showed that the MCAO model was successfully established. Western blotting and RT-PCR analysis revealed that the ArgRS protein and mRNA were expressed in brain cells in both ischemic and normal penumbra tissues. The expression levels of ArgRS protein and mRNA peaked at 6 h after MCAO and decreased gradually. At 24 h, the expression levels of ArgRs protein and mRNA in ischemic penumbral tissues were lower than those in normal tissues. The expression levels of ArgRS mRNA and protein in ischemic penumbra varied with ischemic time, suggesting that the energy metabolism of brain cells in penumbra changed dynamically after ischemia to ensure the endogenous self-protection of the body. The brain oxygen supply should be improved as soon as possible, especially within 6-12 h after ischemia, so as to meet the demand for energy metabolism in ischemic penumbra and make sure the cell structure remains stable.
Collapse
Affiliation(s)
- Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yun-Zhi Fan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Cong Fan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
6
|
Cheng CY, Lin JG, Su SY, Tang NY, Kao ST, Hsieh CL. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemia in rats. Altern Ther Health Med 2014; 14:92. [PMID: 24606810 PMCID: PMC3975570 DOI: 10.1186/1472-6882-14-92] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 03/03/2014] [Indexed: 01/12/2023]
Abstract
Background This study was designed to evaluate the effects of electroacupuncture-like stimulation at Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) following mild cerebral ischemia-reperfusion (I/R) injury. Furthermore, we investigated whether brain-derived neurotrophic factor (BDNF)-mediated activation of extracellular signal-regulated kinase (ERK)1/2 signaling pathway is involved in the neuroprotection induced by EA at acupoints. Methods Rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by reperfusion for 3 d. EA at acupoints was applied 1 d postreperfusion then once daily for 2 consecutive days. Results Following the application of EA at acupoints, initiated 1 d postreperfusion, we observed significant reductions in the cerebral infarct area, neurological deficit scores, active caspase-3 protein expression, and apoptosis in the ischemic cortex after 3 d of reperfusion. We also observed markedly upregulated BDNF, phospho-Raf-1 (pRaf-1), phospho-MEK1/2 (pMEK1/2), phospho-ERK1/2 (pERK1/2), phospho-90 kDa ribosomal S6 kinase (pp90RSK), and phospho-Bad (pBad) expression, and restored neuronal nuclear antigen (NeuN) expression. Pretreatment with the MEK1/2 inhibitor U0126 abrogated the effects of EA at acupoints on cerebral infarct size, neurological deficits, active caspase-3 protein, and apoptosis in the ischemic cortex after 3 d of reperfusion. Pretreatment with U0126 also abrogated the effects of EA at acupoints on pMEK1/2, pERK1/2, pp90RSK, pBad, and NeuN expression, but did not influence BDNF and pRaf-1 expression. Conclusion Overall, our study results indicated that EA at acupoints, initiated 1 d postreperfusion, upregulates BDNF expression to provide BDNF-mediated neuroprotection against caspase-3-dependent neuronal apoptosis through activation of the Raf-1/MEK1/2/ERK1/2/p90RSK/Bad signaling cascade after 3 d of reperfusion in mild MCAo.
Collapse
|
7
|
Alpha-tocopherol in the brain tissue preservation of stroke-prone spontaneously hypertensive rats. J Physiol Biochem 2013; 70:49-60. [DOI: 10.1007/s13105-013-0279-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022]
|
8
|
Vinten-Johansen J, Shi W. The science and clinical translation of remote postconditioning. J Cardiovasc Med (Hagerstown) 2013; 14:206-13. [PMID: 23412366 DOI: 10.2459/jcm.0b013e32835cecc6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The treatment of reperfusion injury requires measures beyond timely reperfusion. Conventional postconditioning (PostC) of ischemic tissues offers a strategy to reduce reperfusion injury, but its adoption is challenged by requiring access and imposing additional ischemia to the ischemic organ. Generating protective signals by PostC in a tissue remote from the target organ such as the limb, i.e. remote PostC (rPostC), may present an alternative approach to exerting endogenous tissue protection. Because rPostC is only recently reported, the fundamental biology of rPostC is not well understood, and studies to date are largely observational. rPostC has been observed to reduce ischemia-reperfusion injury experimentally in heart, kidney, brain and skeletal muscle in multiple species, including rat, rabbit and pig. Both necrosis and apoptosis are reduced. As in remote ischemic preconditioning, rPostC requires a transfer or communication of protective factors or signals through humoral and/or neural pathways. Triggers of target organ protection include G-protein-coupled receptor ligands, metabolites of ischemia, or small thermolabile molecules. Some evidence suggests that reperfusion injury salvage kinases may be involved in rPostC, in agreement with both preconditioning and conventional PostC. Clinical studies investigating improvements in clinical outcomes or biomarkers with rPostC are encouraging.
Collapse
Affiliation(s)
- Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center of Emory University Hospital Midtown, Emory University School of Medicine, Atlanta, Georgia 30308-2225, USA.
| | | |
Collapse
|
9
|
Shin JH, Ahn SY, Shin JH, Sung SI, Jung JM, Kim JK, Kim ES, Park HD, Kim JH, Chang YS, Park WS. Sequential magnetic resonance spectroscopic changes in a patient with nonketotic hyperglycinemia. KOREAN JOURNAL OF PEDIATRICS 2012; 55:301-5. [PMID: 22977444 PMCID: PMC3433568 DOI: 10.3345/kjp.2012.55.8.301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/04/2011] [Accepted: 03/20/2012] [Indexed: 11/27/2022]
Abstract
Nonketotic hyperglycinemia (NKH) is a rare inborn error of amino acid metabolism. A defect in the glycine cleavage enzyme system results in highly elevated concentrations of glycine in the plasma, urine, cerebrospinal fluid, and brain, resulting in glycine-induced encephalopathy and neuropathy. The prevalence of NKH in Korea is very low, and no reports of surviving patients are available, given the scarcity and poor prognosis of this disease. In the current study, we present a patient with NKH diagnosed on the basis of clinical features, biochemical profiles, and genetic analysis. Magnetic resonance spectroscopy (MRS) allowed the measurement of absolute glycine concentrations in different parts of the brain that showed a significantly increased glycine peak, consolidating the diagnosis of NKH. In additional, serial MRS follow-up showed changes in the glycine/creatinine ratios in different parts of the brain. In conclusion, MRS is an effective, noninvasive diagnostic tool for NKH that can be used to distinguish this disease from other glycine metabolism disorders. It may also be useful for monitoring NKH treatment.
Collapse
Affiliation(s)
- Ji Hun Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 2012; 46:635-45. [PMID: 22426403 DOI: 10.1016/j.nbd.2012.03.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 02/16/2012] [Accepted: 03/01/2012] [Indexed: 12/16/2022] Open
Abstract
Hypoxic preconditioning of stem cells and neural progenitor cells has been tested for promoting cell survival after transplantation. The present investigation examined the hypothesis that hypoxic preconditioning of bone marrow mesenchymal stem cells (BMSCs) could not only enhance their survival but also reinforce regenerative properties of these cells. BMSCs from eGFP engineered rats or pre-labeled with BrdU were pre-treated with normoxia (20% O(2), N-BMSCs) or sub-lethal hypoxia (0.5% O(2). H-BMSCs). The hypoxia exposure up-regulated HIF-1α and trophic/growth factors in BMSCs, including brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF) and its receptor FIK-1, erythropoietin (EPO) and its receptor EPOR, stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). Meanwhile, many pro-inflammatory cytokines/chemokines were down-regulated in H-BMSCs. N-BMSCs or H-BMSCs were intravenously injected into adult rats 24h after 90-min middle cerebral artery occlusion. Comparing to N-BMSCs, transplantation of H-BMSCs showed greater effect of suppressing microglia activity in the brain. Significantly more NeuN-positive and Glut1-positive cells were seen in the ischemic core and peri-infarct regions of the animals received H-BMSC transplantation than that received N-BMSCs. Some NeuN-positive and Glut-1-positive cells showed eGFP or BrdU immunoflourescent reactivity, suggesting differentiation from exogenous BMSCs into neuronal and vascular endothelial cells. In Rotarod test performed 15days after stroke, animals received H-BMSCs showed better locomotion recovery compared with stroke control and N-BMSC groups. We suggest that hypoxic preconditioning of transplanted cells is an effective means of promoting their regenerative capability and therapeutic potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
11
|
Tirapelli DPDC, Carlotti CG, Leite JP, Tirapelli LF, Colli BO. Expression of HSP70 in cerebral ischemia and neuroprotetive action of hypothermia and ketoprofen. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 68:592-6. [PMID: 20730315 DOI: 10.1590/s0004-282x2010000400021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/10/2010] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that bind to other proteins to shepherd them across membranes and direct them to specific locations within a cell. Several injurious stimuli can induce Hsp70 expression, including ischemia. This study aimed to investigate the pattern of expression of protein (immunohistochemistry) and gene (real-time PCR) Hsp70 in experimental focal cerebral ischemia in rats by occlusion of the middle cerebral artery for 1 hour and the role of neuroprotection with hypothermia (H) and ketoprofen (K). The infarct volume was measured using morphometric analysis defined by triphenyl tetrazolium chloride. It was observed increases in the protein (p=0.0001) and gene (p=0.0001) Hsp70 receptor in the ischemic areas that were reduced by H (protein and gene: p<0.05), K (protein: p<0.001), and H+K (protein: p<0.01 and gene: p<0.05). The Hsp70 increases in the ischemic area suggests that the Hsp70-mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, H and K are directly involved with the Hsp70.
Collapse
|
12
|
Transcription and protein synthesis inhibitors reduce the induction of behavioural sensitization to a single morphine exposure and regulate Hsp70 expression in the mouse nucleus accumbens. Int J Neuropsychopharmacol 2011; 14:107-21. [PMID: 20519062 DOI: 10.1017/s146114571000057x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
New protein synthesis has been implicated as necessary for long-lasting changes in neuronal function. Behavioural sensitization to a single exposure to addictive drugs is a form of neuroplasticity, but little is known about the importance of new protein synthesis in the underlying mechanism. This study was designed to investigate the effects of the transcription inhibitor actinomycin D (AD) and the protein synthesis inhibitor cycloheximide (CHX) on induction of behavioural sensitization to a single morphine exposure in mice. In combination with behavioural experiments, changes in gene and protein expression in the mouse nucleus accumbens (NAc) were analysed by RT-PCR array and Western blot respectively. Behavioural sensitization was evident in mice pretreated only once with morphine at the doses of 20 and 40 mg/kg, but not 5 and 10 mg/kg. Mice pretreated with morphine (20 mg/kg) and challenged with a lower dose (5 mg/kg) after a period of 4-21 d washout showed sensitized locomotion. At the doses that did not affect locomotion in mice, AD or CHX significantly suppressed hyperactivity induced by acute treatment, but not challenge with morphine, and blocked induction of behavioural sensitization to a single morphine exposure in a dose-related manner. The results from RT-PCR array and Western blot indicated that the changes of Hsp70 expression in the NAc of mice were associated with behavioural sensitization induced by a single morphine exposure. Together, these findings suggest that induction of behavioural sensitization to a single morphine exposure requires new protein synthesis, potentially involving Hsp70 expression in the NAc of mice.
Collapse
|
13
|
Park WS, Sung DK, Kang S, Koo SH, Kim YJ, Lee JH, Chang YS, Lee M. Therapeutic window for cycloheximide treatment after hypoxic-ischemic brain injury in neonatal rats. J Korean Med Sci 2006; 21:490-4. [PMID: 16778395 PMCID: PMC2729957 DOI: 10.3346/jkms.2006.21.3.490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously shown that cycloheximide significantly inhibited apoptosis, and reduced ensuing cerebral infarction in a newborn rat model of cerebral hypoxiaischemia. This study was performed to determine the therapeutic window for cycloheximide therapy. Seven day-old newborn rat pups were subjected to 100 min of 8% oxygen following a unilateral carotid artery ligation, and cycloheximide was given at 0, 6, 12 and 24 hr after hypoxia-ischemia (HI). Apoptosis or necrosis was identified by performing flow cytometry with a combination of fluorescinated annexin V and propidium iodide, and the extent of cerebral infarction was evaluated with triphenyl tetrazolium chloride (TTC) at 48 hr and 72 hr after HI, respectively. With cycloheximide treatment at 0 hr after HI, both apoptotic and necrotic cells by flow cytometry were significantly reduced, only necrotic cells were significantly reduced at 6 and 12 hr, and no protective effect was seen if administration was delayed until 24 hr after HI compared to the HI control group. Infarct volume, measured by TTC, was significantly reduced by 92% and 61% when cycloheximide was given at 0 or 6 hr after HI respectively; however, there was an insignificant trend in infarct reduction if cycloheximide was administered 12 hr after HI, and no protective effect was observed when administration was delayed until 24 hr after HI. In summary, cycloheximide was neuroprotective when given within 6 hr after HI in the developing newborn rat brain.
Collapse
Affiliation(s)
- Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Saem Kang
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Soo Hyun Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu Jin Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jang Hoon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Munhyang Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Sheline CT, Wei L. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience 2006; 140:235-46. [PMID: 16563643 DOI: 10.1016/j.neuroscience.2006.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 02/03/2006] [Accepted: 02/08/2006] [Indexed: 11/28/2022]
Abstract
We previously demonstrated that copper facilitated the formation of reactive oxygen species, and inhibited pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase in vitro and in animal models of Wilson's disease in vivo. However, direct Cu(2+) toxicity has only been demonstrated for Wilson's disease. We now hypothesize that inhibition of these mitochondrial dehydrogenases might also contribute to many other injuries and disorders that are reactive oxygen species-mediated. We have modeled reactive oxygen species-mediated injuries using inducers of reactive oxygen species such as hydrogen peroxide, ethacrynic acid or menadione, or another redox active metal (Cd(2+)). Here we demonstrated that these toxic exposures were accompanied by an early marked reduction in both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase activities, followed by a decrease in neuronal mitochondrial transmembrane potential and ATP, prior to murine cortical neuronal death. Thiamine (6 mM), and dihydrolipoic acid (50 microM), required cofactors for pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase (thiamine as thiamine pyrophosphate), attenuated the reactive oxygen species-induced reductions in these enzyme activities, as well as subsequent loss of mitochondrial transmembrane potential and ATP, and neuronal death. We next tested the effect of thiamine supplementation on an in vivo model of reactive oxygen species-mediated injury, transient middle cerebral artery occlusion, and reperfusion in rats. Oral or i.p. thiamine administration reduced the middle cerebral artery occlusion-induced infarct. These data suggest that reactive oxygen species-induced neuronal death may be caused in part by reactive oxygen species-mediated inhibition of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase in vitro and in vivo, and that thiamine or dihydrolipoic acid may constitute potential therapeutic agents not just against Cu(2+) neurotoxicity, but may reduce neuronal degeneration in the broader range of diseases mediated by free radical stress.
Collapse
Affiliation(s)
- C T Sheline
- Department of Neurology and Center for the Study of Nervous System Injury, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
15
|
Xu XH, Zhang SM, Yan WM, Li XR, Zhang HY, Zheng XX. Development of cerebral infarction, apoptotic cell death and expression of X-chromosome-linked inhibitor of apoptosis protein following focal cerebral ischemia in rats. Life Sci 2006; 78:704-12. [PMID: 16139848 DOI: 10.1016/j.lfs.2005.05.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 05/10/2005] [Indexed: 01/23/2023]
Abstract
The aim of this study was to investigate the role of apoptosis or necrosis in the development of delayed infarct, and the relationship between the level of XIAP gene, caspase-3 activation and ischemic cell death following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAo) for 50 min and reperfusion for 0.5, 4, 8, 24 h, 3, 7, 14 days. On TTC-stained coronal sections, delayed infarct was observed to develop in the whole MCA territory, especially in frontoparietal cortex after ischemia. Near total infarct was shown in striatum 24 h after MCAo, while delayed infarct was evident in the cortex. By day 3, the infarct had progressively expanded to the nearly whole area of the frontoparietal cortex. Flow cytometric analysis of Annexin-V (marks apoptosis) and PI (propidium iodide, marks necrosis) labeling cells showed that MCAo dominantly induced necrosis in ischemic core, striatum. Apoptosis contributed to delayed infarct and cell death in the border zone, dorsolateral cortex and hippocampus. The time-course of caspase-3 activation was consistent with the changes of apoptosis and infarct following MCAo. Further RT-PCR experiments indicated that there was a biphasic regulation of XIAP in time- and region-dependent manner after ischemia. In the infarct core (striatum), following a transient and slight increase during 0.5 h to 4 h post-MCAo, expression of XIAP mRNA markedly decreased. On the other hand, a longer and larger upregulation of XIAP was observed at early time points in border zone (0.5 to 8 h, in dorsolateral cortex; 0.5 to 24 h in hippocampus), then the level of XIAP reduced. A negative correlation was observed between apoptosis and regulation of XIAP gene in these regions. Our findings suggest a possible association between expression of XIAP gene, apoptosis and delayed infarct following ischemia.
Collapse
Affiliation(s)
- Xiao-Hong Xu
- Chemistry and Life Science College, Zhejiang Normal University, Jinhua, 321004, P.R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Luft AR, Buitrago MM, Kaelin-Lang A, Dichgans J, Schulz JB. Protein synthesis inhibition blocks consolidation of an acrobatic motor skill. Learn Mem 2004; 11:379-82. [PMID: 15286180 DOI: 10.1101/lm.72604] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before sessions 1, 2, and 3. Although CHX did not affect improvement of performance within session 1, between-session improvement was impaired. In overtrained animals, comparable injections of CHX had no effect on rotarod performance. These findings suggest that consolidation of motor skills requires protein synthesis.
Collapse
Affiliation(s)
- Andreas R Luft
- Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Canzoniero LMT, Babcock DJ, Gottron FJ, Grabb MC, Manzerra P, Snider BJ, Choi DW. Raising intracellular calcium attenuates neuronal apoptosis triggered by staurosporine or oxygen-glucose deprivation in the presence of glutamate receptor blockade. Neurobiol Dis 2004; 15:520-8. [PMID: 15056459 DOI: 10.1016/j.nbd.2003.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Revised: 07/21/2003] [Accepted: 10/18/2003] [Indexed: 10/26/2022] Open
Abstract
The relationship between intracellular Ca(2+) ([Ca(2+)](i)) regulation and programmed cell death is not well-defined; both increases and decreases in [Ca(2+)](i) have been observed in cells undergoing apoptosis. We determined [Ca(2+)](i) in cultured murine cortical neurons undergoing apoptosis after exposure to staurosporine or following oxygen-glucose deprivation in the presence of glutamate receptor antagonists. Neuronal [Ca(2+)](i) was decreased 1-4 h after exposure to staurosporine (30 nM). A [Ca(2+)](i) decrease was also observed 1 h after the end of the oxygen-glucose deprivation period when MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were added to the bathing medium during the deprivation period. A similar decrease in [Ca(2+)](i) produced by reducing extracellular Ca(2+) or chelating intracellular Ca(2+) was sufficient to induce neuronal apoptosis. Raising [Ca(2+)](i) either by activating voltage-sensitive Ca(2+) channels with (-) Bay K8644 or by application of low concentrations of kainate attenuated both staurosporine and oxygen-glucose deprivation-induced apoptosis.
Collapse
Affiliation(s)
- Lorella M T Canzoniero
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Hildebrandt-Eriksen ES, Christensen T, Diemer NH. Mild focal cerebral ischemia in the rat. The effect of local temperature on infarct size. Neurol Res 2002; 24:781-8. [PMID: 12500701 DOI: 10.1179/016164102101200898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We aimed at investigating a new model of mild focal cerebral ischemia in rats with repeated, noninvasive magnetic resonance scanning combined with histology. Magnetic resonance imaging yielded information about infarct development enabling us to test the putative growth of the infarct over time. The effect of local temperature at the occlusion site in this model was furthermore tested. Thirty-three Wistar rats were subjected to 30 min of simultaneous common carotid artery and distal middle cerebral artery occlusion or sham treatment. Animals were magnetic resonance-scanned repeatedly between day one and day 14 after surgery, then sacrificed, and paraffin brain sections stained. All animals scanned 24 h after reperfusion showed an area of edema in the affected cortex, which later was identified as an infarct. Animals with a temperature of 33.9 +/- 1.5 degrees C at the MCA site (hypothermic) showed smaller infarcts (14.4 +/- 10 mm3) than animals with normothermic local temperature (36.7 +/- 0.2 degrees C, 57.7 +/- 26.4 mm3). Infarct size was maximal on day 3 after ischemia but decreased as edema subsided. Infarct volumes from histology and magnetic resonance imaging correlated well. The model reproducibly yielded cortical infarcts, which did not grow after edema had subsided. Local temperature had a considerable effect on final infarct size.
Collapse
Affiliation(s)
- Elisabeth S Hildebrandt-Eriksen
- Laboratory of Neuropathology, Institute of Molecular Pathology, Medical School, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
Candelario-Jalil E, Alvarez D, González-Falcón A, García-Cabrera M, Martínez-Sánchez G, Merino N, Giuliani A, León OS. Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Pharmacol 2002; 453:189-95. [PMID: 12398903 DOI: 10.1016/s0014-2999(02)02422-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclooxygenase-2 is involved in the inflammatory component of the ischemic cascade, playing an important role in the delayed progression of the brain damage. The present study evaluated the pharmacological effects of the selective cyclooxygenase-2 inhibitor nimesulide on delayed neuronal death of hippocampal CA1 neurons following transient global cerebral ischemia in gerbils. Administration of therapeutically relevant doses of nimesulide (3, 6 and 12 mg/kg; i.p.) 30 min before ischemia and at 6, 12, 24, 48 and 72 h after ischemia significantly (P<0.01) reduced hippocampal neuronal damage. Treatment with a single dose of nimesulide given 30 min before ischemia also resulted in a significant increase in the number of healthy neurons in the hippocampal CA1 sector 7 days after ischemia. Of interest is the finding that nimesulide rescued CA1 pyramidal neurons from ischemic death even when treatment was delayed until 24 h after ischemia (34+/-9% protection). Neuroprotective effect of nimesulide is still evident 30 days after the ischemic episode, providing the first experimental evidence that cyclooxygenase-2 inhibitors confer a long-lasting neuroprotection. Oral administration of nimesulide was also able to significantly reduce brain damage, suggesting that protective effects are independent of the route of administration. The present study confirms the ability of cyclooxygenase-2 inhibitors to reduce brain damage induced by cerebral ischemia and indicates that nimesulide can provide protection when administered for up to 24 h post-ischemia.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, 10600, Havana City, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|