1
|
Gupta P, Sur S, Naseem A, Malik S. Effect of Photoperiod and Illuminance on Daily Activity Patterns, Physiology, and NPY Peptide Expression in Migratory Redheaded Buntings (Emberiza bruniceps). Neuroendocrinology 2024; 114:993-1004. [PMID: 39053433 DOI: 10.1159/000540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Light is the primary source of energy and regulates seasonal changes in physiology and behavior. The role of photoperiod has been much investigated in several bird species, but the role of illumination in seasonal adaptations of passerine finches is less understood. We, therefore, investigated the effects of photoperiod and illuminance on migratory physiology in a Palearctic-Indian migratory finch, redheaded bunting (Emberiza bruncieps). METHODS Photosensitive buntings maintained under short days (8L:16D) were divided into three groups receiving 5, 25, and 100 lux of white daytime illuminance, respectively. Thereafter, using photoperiodic manipulation three life history states, i.e., nonmigratory (NM), premigratory (PM), and migratory (MIG) states were induced in the buntings. The birds in the MIG state were consecutively perfused after seven nights of Zugunruhe (nighttime migratory restlessness) for neuropeptide Y (NPY)-immunohistochemistry, which is involved in a wide range of functions including energy homeostasis, vision, and fat deposition in birds. RESULTS We found differential effects of illuminance on locomotor activity and physiology. Photostimulated birds showed intense nighttime activity in the MIG state. We observed premigratory hyperphagia in the birds, with increased food intake in the 100 lux group, which was reflected in the body mass gain in the MIG state. NPY expression on the periphery of the nucleus rotundus suggests its potential role in visual acuity, where the NPY-cell count significantly decreased under 25 lux illumination. CONCLUSION We demonstrate that migrating birds may also experience physiological effects from changes in daytime illumination. We observed illuminance-dependent variations in the quantity of food consumed by the birds. It indicates that the illuminance may also impact the encephalic centers that control food intake.
Collapse
Affiliation(s)
- Preeti Gupta
- Department of Zoology, University of Lucknow, Lucknow, India
- Department of Physiology, King Georges Medical University, Lucknow, India
| | - Sayantan Sur
- Department of Zoology, University of Lucknow, Lucknow, India
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Asma Naseem
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
2
|
Kamkrathok B, Sartsoongnoen N, Chaiseha Y. Neuropeptide Y and maternal behavior in the female native Thai chicken. Acta Histochem 2021; 123:151698. [PMID: 33711725 DOI: 10.1016/j.acthis.2021.151698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
Maternal care behaviors in birds include incubation and rearing behaviors. During incubating period, the hens stop laying and eating less due to food restriction as a natural fasting when compared with the rearing hens, resulting in low production of eggs and chicks. Neuropeptide Y (NPY), a neurotransmitter/neuromodulator, is very well known to be involved in food intake regulation in birds and mammals. The objective of this study is to elucidate the association between NPY and maternal behaviors in the female native Thai chicken. The distributions of NPY-immunoreactive (-ir) neurons and fibers in the brain of the incubating (INC), nest-deprived (ND), and replaced-egg-with-chicks (REC) hens at day 6 were determined utilizing immunohistochemistry technique. The results revealed that the distributions of NPY-ir neurons and fibers were observed within the septalis lateralis, nucleus rotundus, and nucleus dorsolateralis anterior thalami, with predominantly located within the the nucleus paraventricularis magnocellularis (PVN). NPY-ir fibers were located throughout the brain and the densest NPY-ir fibers were distributed in a discrete region lying close to the ventriculus tertius (third ventricle) through the hypothalamus. Changes in the number of NPY-ir neurons within the PVN of the INC, ND, and REC hens were compared at different time points (at days 6 and 14). Interestingly, the number of NPY-ir neurons within the PVN was significantly higher (P < 0.05) in the INC hens when compared with those of the ND and REC hens at day 14 but not day 6. In addition, the number of NPY-ir neurons within the PVN of the INC hens was significantly increased (P < 0.05) from day 6 to day 14 but not the ND and REC hens. These results indicated, for the first time, the asscociation between NPY and maternal behaviors in the femle native Thai chicken. Change in the number of NPY-ir neurons within the PVN during the transition from incubating to rearing behavior suggested the possible role of NPY in the regulation of the maternal behaviors in this equatorial species. In addition, the native Thai chicken might be an excellent animal model for the study of this phenomenon.
Collapse
Affiliation(s)
- Boonyarit Kamkrathok
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Natagarn Sartsoongnoen
- Program of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Yupaporn Chaiseha
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
3
|
Hamza IM, Mobarak YM, Hafez HS. Hippocampus anatomical structure and distribution of agrin proteoglycan and ryanodine receptor expression boost bird food caching behavior. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1885757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- I. M. Hamza
- Faculty of Science, Zoology Department, Suez University, Suez, Egypt
| | - Y. M. Mobarak
- Faculty of Science, Zoology Department, Suez University, Suez, Egypt
| | - H. S. Hafez
- Faculty of Science, Zoology Department, Suez University, Suez, Egypt
| |
Collapse
|
4
|
Zhou H, Wang X, Lin J, Zhao Z, Chang C. Distribution of Cadherin in the Parahippocampal Area of Developing Domestic Chicken Embryos. Exp Neurobiol 2020; 29:11-26. [PMID: 32122105 PMCID: PMC7075654 DOI: 10.5607/en.2020.29.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal formation is important in spatial learning and memory. Members of the cadherin superfamily are observed in the neural system with diverse spatial and temporal expression patterns and are involved in many biological processes. To date, the avian hippocampal formation is not well understood. In this study, we examined the expression of cadherin mRNA in chicken and mouse brains to investigate the morphological and cytoarchitectural bases of hippocampal formation. Profiles of the spatiotemporal expression of cadherin mRNAs in the developing chicken embryonic parahippocampal area (APH) are provided, and layer-specific expression and spatiotemporal expression were observed in different subdivisions of the APH. That fact that some cadherins (Cdh2, Cdh8, Pcdh8 and Pcdh10) showed conserved regional expression both in the hippocampus and entorhinal cortex of mice and the hippocampal formation of chickens partially confirmed the structural homology proposed by previous scientists. This study indicates that some cadherins can be used as special markers of the avian hippocampal formation.
Collapse
Affiliation(s)
- He Zhou
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Department of General and Visceral Surgery, Goethe-University Hospital, Frankfurt am Main 60596, Germany
| | - XiaoFan Wang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China
| | - JunTang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453000, China
| | - Ze Zhao
- School of Law, Shanghai University of Finance and Economics, Shanghai 200000, China
| | - Cheng Chang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Birth Defect Prevention Key Laboratory, National Health Commission of the People's Republic of China, Zhengzhou 450000, China.,Center of Cerebral Palsy Surgical Research and Treatment, ZhengZhou University, Zhengzhou 450000, China
| |
Collapse
|
5
|
Loveland JL, Stewart MG, Vallortigara G. Effects of oxytocin‐family peptides and substance P on locomotor activity and filial preferences in visually naïve chicks. Eur J Neurosci 2019; 50:3674-3687. [DOI: 10.1111/ejn.14520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jasmine L. Loveland
- Center for Mind/Brain Sciences (CIMeC) University of Trento Rovereto Italy
- Behavioural Genetics and Evolutionary Ecology Research Group Max Planck Institute for Ornithology Seewiesen Germany
| | - Michael G. Stewart
- Department of Life, Health and Chemical Sciences The Open University Milton Keynes UK
| | | |
Collapse
|
6
|
Fokidis HB, Ma C, Radin B, Prior NH, Adomat HH, Guns ES, Soma KK. Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. J Comp Neurol 2018; 527:347-361. [DOI: 10.1002/cne.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chunqi Ma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| | - Benjamin Radin
- Department of Biology; Rollins College; Winter Park Florida
| | - Nora H. Prior
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Program in Neuroscience and Cognitive Neuroscience; University of Maryland; College Park Maryland
| | - Hans H. Adomat
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
| | - Emma S. Guns
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
- Department of Urological Sciences; University of British Columbia; Vancouver British Columbia Canada
| | - Kiran K. Soma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Graduate Program in Neuroscience; University of British Columbia; Vancouver British Columbia Canada
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
7
|
Montagnese CM, Székely T, Csillag A, Zachar G. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus). Front Neuroanat 2015; 9:90. [PMID: 26236200 PMCID: PMC4500960 DOI: 10.3389/fnana.2015.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 12/06/2022] Open
Abstract
Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species.
Collapse
Affiliation(s)
- Catherine M Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| |
Collapse
|
8
|
Devraj S, Kumari Y, Rastogi A, Rani S, Kumar V. Neuropeptide Y mRNA and peptide in the night-migratory redheaded bunting brain. Cell Tissue Res 2014; 354:551-62. [PMID: 23797336 DOI: 10.1007/s00441-013-1667-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
This study investigated the distribution of neuropeptide Y (NPY) in the brain of the night-migratory redheaded bunting (Emberiza bruniceps). We first cloned the 275-bp NPY gene in buntings, with ≥95% homology with known sequences from other birds. The deduced peptide sequence contained all conserved 36 amino acids chain of the mature NPY peptide, but lacked 6 amino acids that form the NPY signal peptide. Using digosigenin-labeled riboprobe prepared from the cloned sequence, the brain cells that synthesize NPY were identified by in-situ hybridization. The NPY peptide containing cell bodies and terminals (fibers) were localized by immunocytochemistry. NPY mRNA and peptide were widespread throughout the bunting brain. This included predominant pallial and sub-pallial areas (cortex piriformis, cortex prepiriformis, hyperpallium apicale, hippocampus, globus pallidus) and thalamic and hypothalamic nuclei (organum vasculosum laminae terminalis, nucleus (n.) dorsolateralis anterior thalami, n. rotundus, n. infundibularis) including the median eminence and hind brain (n. pretectalis, n. opticus basalis, n. reticularis pontis caudalis pars gigantocellularis). The important structures with only NPY-immunoreactive fibers included the olfactory bulb, medial and lateral septal areas, medial preoptic nucleus, medial suprachiasmatic nucleus, paraventricular nucleus, ventromedial hypothalamic nucleus, optic tectum, and ventro-lateral geniculate nucleus. These results demonstrate that NPY is possibly involved in the regulation of several physiological functions (e.g. daily timing feeding, and reproduction) in the migratory bunting.
Collapse
|
9
|
Harris RB, Carling MD, Lovette IJ. The influence of sampling design on species tree inference: a new relationship for the New World chickadees (Aves: Poecile). Evolution 2013; 68:501-13. [PMID: 24111665 DOI: 10.1111/evo.12280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
Abstract
In this study, we explore the long-standing issue of how many loci are needed to infer accurate phylogenetic relationships, and whether loci with particular attributes (e.g., parsimony informativeness, variability, gene tree resolution) outperform others. To do so, we use an empirical data set consisting of the seven species of chickadees (Aves: Paridae), an analytically tractable, recently diverged group, and well-studied ecologically but lacking a nuclear phylogeny. We estimate relationships using 40 nuclear loci and mitochondrial DNA using four coalescent-based species tree inference methods (BEST, *BEAST, STEM, STELLS). Collectively, our analyses contrast with previous studies and support a sister relationship between the Black-capped and Carolina Chickadee, two superficially similar species that hybridize along a long zone of contact. Gene flow is a potential source of conflict between nuclear and mitochondrial gene trees, yet we find a significant, albeit low, signal of gene flow. Our results suggest that relatively few loci with high information content may be sufficient for estimating an accurate species tree, but that substantially more loci are necessary for accurate parameter estimation. We provide an empirical reference point for researchers designing sampling protocols with the purpose of inferring phylogenies and population parameters of closely related taxa.
Collapse
Affiliation(s)
- Rebecca B Harris
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14850; Department of Biology and Burke Museum, University of Washington, Seattle, Washington.
| | | | | |
Collapse
|
10
|
Gould KL, Gilbertson KE, Hrvol AJ, Nelson JC, Seyfer AL, Brantner RM, Kamil AC. Differences in relative hippocampus volume and number of hippocampus neurons among five corvid species. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:56-70. [PMID: 23364270 DOI: 10.1159/000345560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/02/2012] [Indexed: 11/19/2022]
Abstract
The relative size of the avian hippocampus (Hp) has been shown to be related to spatial memory and food storing in two avian families, the parids and corvids. Basil et al. [Brain Behav Evol 1996;47:156-164] examined North American food-storing birds in the corvid family and found that Clark's nutcrackers had a larger relative Hp than pinyon jays and Western scrub jays. These results correlated with the nutcracker's better performance on most spatial memory tasks and their strong reliance on stored food in the wild. However, Pravosudov and de Kort [Brain Behav Evol 2006;67:1-9] raised questions about the methodology used in the 1996 study, specifically the use of paraffin as an embedding material and recalculation for shrinkage. Therefore, we measured relative Hp volume using gelatin as the embedding material in four North American species of food-storing corvids (Clark's nutcrackers, pinyon jays, Western scrub jays and blue jays) and one Eurasian corvid that stores little to no food (azure-winged magpies). Although there was a significant overall effect of species on relative Hp volume among the five species, subsequent tests found only one pairwise difference, blue jays having a larger Hp than the azure-winged magpies. We also examined the relative size of the septum in the five species. Although Shiflett et al. [J Neurobiol 2002;51:215-222] found a difference in relative septum volume amongst three species of parids that correlated with storing food, we did not find significant differences amongst the five species in relative septum. Finally, we calculated the number of neurons in the Hp relative to body mass in the five species and found statistically significant differences, some of which are in accord with the adaptive specialization hypothesis and some are not.
Collapse
Affiliation(s)
- Kristy L Gould
- Department of Psychology, Luther College, Decorah, IA 52101, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Roth TC, Brodin A, Smulders TV, LaDage LD, Pravosudov VV. Is bigger always better? A critical appraisal of the use of volumetric analysis in the study of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2010; 365:915-31. [PMID: 20156816 DOI: 10.1098/rstb.2009.0208] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A well-developed spatial memory is important for many animals, but appears especially important for scatter-hoarding species. Consequently, the scatter-hoarding system provides an excellent paradigm in which to study the integrative aspects of memory use within an ecological and evolutionary framework. One of the main tenets of this paradigm is that selection for enhanced spatial memory for cache locations should specialize the brain areas involved in memory. One such brain area is the hippocampus (Hp). Many studies have examined this adaptive specialization hypothesis, typically relating spatial memory to Hp volume. However, it is unclear how the volume of the Hp is related to its function for spatial memory. Thus, the goal of this article is to evaluate volume as a main measurement of the degree of morphological and physiological adaptation of the Hp as it relates to memory. We will briefly review the evidence for the specialization of memory in food-hoarding animals and discuss the philosophy behind volume as the main currency. We will then examine the problems associated with this approach, attempting to understand the advantages and limitations of using volume and discuss alternatives that might yield more specific hypotheses. Overall, there is strong evidence that the Hp is involved in the specialization of spatial memory in scatter-hoarding animals. However, volume may be only a coarse proxy for more relevant and subtle changes in the structure of the brain underlying changes in behaviour. To better understand the nature of this brain/memory relationship, we suggest focusing on more specific and relevant features of the Hp, such as the number or size of neurons, variation in connectivity depending on dendritic and axonal arborization and the number of synapses. These should generate more specific hypotheses derived from a solid theoretical background and should provide a better understanding of both neural mechanisms of memory and their evolution.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
12
|
Xie F, London SE, Southey BR, Annangudi SP, Amare A, Rodriguez-Zas SL, Clayton DF, Sweedler JV. The zebra finch neuropeptidome: prediction, detection and expression. BMC Biol 2010; 8:28. [PMID: 20359331 PMCID: PMC2873334 DOI: 10.1186/1741-7007-8-28] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background Among songbirds, the zebra finch (Taeniopygia guttata) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions. Results Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; in situ hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally. Conclusions The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.
Collapse
Affiliation(s)
- Fang Xie
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Smulders TV, Gould KL, Leaver LA. Using ecology to guide the study of cognitive and neural mechanisms of different aspects of spatial memory in food-hoarding animals. Philos Trans R Soc Lond B Biol Sci 2010; 365:883-900. [PMID: 20156814 PMCID: PMC2830245 DOI: 10.1098/rstb.2009.0211] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too simplistic to predict that all scatter-hoarding animals will outperform non-hoarding animals on all tests of spatial memory. Instead, we argue that we should look at the detailed ecology and natural history of each species. This understanding of natural history then allows us to make predictions about which aspects of spatial memory should be better in which species. We use the natural hoarding behaviour of the three best-studied groups of scatter-hoarding animals to make predictions about three aspects of their spatial memory: duration, capacity and spatial resolution, and we test these predictions against the existing literature. Having laid out how ecology and natural history can be used to predict detailed cognitive abilities, we then suggest using this approach to guide the study of the neural basis of these abilities. We believe that this complementary approach will reveal aspects of memory processing that would otherwise be difficult to discover.
Collapse
Affiliation(s)
- Tom V Smulders
- Centre for Behaviour and Evolution and Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| | | | | |
Collapse
|
14
|
Leung CH, Goode CT, Young LJ, Maney DL. Neural distribution of nonapeptide binding sites in two species of songbird. J Comp Neurol 2009; 513:197-208. [PMID: 19132730 DOI: 10.1002/cne.21947] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vasotocin (VT) and its mammalian homologue, vasopressin (VP), modulate many social behaviors in a variety of vertebrate species. In songbirds, the effects of centrally administered VT vary according to species, which may reflect species-specific distributions of VT binding sites. Different radioligands used to map receptors in previous autoradiographical studies have revealed nonoverlapping distributions of VT binding, suggesting a heterogeneous population of more than one type of VT receptor. For two model songbird species, the white-throated sparrow (Zonotrichia albicollis) and zebra finch (Taeniopygia guttata), we labeled putative VT receptors with two radioligands, [(125)I]ornithine vasotocin analog ([(125)I]OVTA) and [(125)I]linear VP antagonist ([(125)I]HO-LVA). Competitive binding assays in the lateral septum showed that both ligands were effectively displaced by both VT and a related nonapeptide, mesotocin (MT), showing that these radioligands, which were developed to label mammalian nonapeptide receptors, label at least one population of related receptors in songbirds. [(125)I]OVTA labeled receptors throughout the telencephalon, diencephalon, midbrain, and brainstem, with a similar distribution in both species. In contrast, the binding of [(125)I]HO-LVA was restricted to the septal area, dorsal arcopallium, and optic tectum in sparrow and was essentially undetectable in zebra finch. Because the avian brain is likely to express multiple types of VT receptors, we hypothesize that the binding patterns of these radioligands represent a heterogeneous receptor population.
Collapse
Affiliation(s)
- Cary H Leung
- Department of Psychology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
15
|
Pirone A, Lenzi C, Marroni P, Betti L, Mascia G, Giannaccini G, Lucacchini A, Fabiani O. Neuropeptide Y in the Brain and Retina of the Adult Teleost Gilthead Seabream (Sparus aurata L.). Anat Histol Embryol 2008; 37:231-40. [DOI: 10.1111/j.1439-0264.2007.00836.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Li J, Zeng SJ, Zhang XW, Zuo MX. The distribution of substance P and met-enkephalin in vocal control nuclei among oscine species and its relation to song complexity. Behav Brain Res 2006; 172:202-11. [PMID: 16806516 DOI: 10.1016/j.bbr.2006.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/14/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
Substance P (SP) and methionine-enkephalin (ENK) have been reported to appear in song control nuclei of oscine species. However, it remains unknown whether or not SP and ENK location in song control nuclei is correlated with song behavior. To address this issue, the present study first measured two variables for song complexity, i.e., song repertoire sizes, and syllable repertoire sizes in 11 oscine species. Then, we examined the distribution of SP and ENK in four control nuclei, two in the motor pathway, i.e., HVC and the robust nucleus of arcopallium (RA), and the other two in the forebrain pathway, i.e., Area X and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Finally, we measured the relative amounts of immunoreactivity for SP and ENK in song control nuclei, and tested whether they were correlated with song complexity. Our results showed that: (1) SP and ENK were broadly distributed in the song control nuclei of studied species. However, SP immunohistochemistry was more robust in comparison with ENK, and SP is generally more abundant in the two song learning nuclei than those in the two song producing ones; (2) SP and ENK staining patterns in song control nuclei did not show any obvious phylogenetic relationship among studied oscine species; (3) there was a significant correlation between the relative amounts of immunoreactivity for SP and the song and syllable repertoire sizes. Our results suggest that SP or ENK might be involved in song behavior, such as birdsong learning or memory.
Collapse
Affiliation(s)
- Jia Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | |
Collapse
|
17
|
Abstract
Spatial memory and the hippocampal formation (HF) of food-hoarding birds have been put forward as a prime example of how natural selection has shaped a cognitive system and its neural underpinnings. Here, I review what we know about the HF of hoarding birds and lay out the work that is currently underway to use this system to obtain a better understanding of hippocampal function in general. This interdisciplinary programme includes evolutionary, ecological, psychological, ethological, and neuroscientific approaches to the study of behaviour and cognition. Firstly, we need to understand the behaviour of the birds in their natural environment, and identify the aspects of cognition and behaviour that may be especially valuable for the species under study. Secondly, these cognitive and behavioural traits are compared to closely-related non-hoarding species. Thirdly, we also compare HF anatomy between closely-related hoarding and non-hoarding species, identifying possible neural mechanisms underlying behavioural differences. Finally, behavioural and neuroscientific approaches are combined in experiments directly investigating the involvement of the HF or any of its anatomical and physiological aspects in the behaviours under study. This process loops back upon itself in many different ways, with all the different approaches informing each other. In this way we are making progress in understanding the functioning of the HF, not only in food-hoarding birds, but in all vertebrates.
Collapse
Affiliation(s)
- Tom Victor Smulders
- School of Biology (Psychology, Brain and Behaviour) and Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK.
| |
Collapse
|
18
|
Nair-Roberts RG, Erichsen JT, Reboreda JC, Kacelnik A. Distribution of substance P reveals a novel subdivision in the hippocampus of parasitic South American cowbirds. J Comp Neurol 2006; 496:610-26. [PMID: 16615130 DOI: 10.1002/cne.20915] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parasitic cowbirds monitor potential hosts' nests and return to lay when appropriate, a task that is likely to involve spatial recall. Seasonal and sexual behavioral variations in the cowbirds correlate with anatomical changes in the hippocampal formation. During the breeding season, parasites have larger hippocampal formations than nonparasites. In parasitic species in which females alone perform nest bookkeeping, females have larger hippocampal formations than males. We investigated the distribution of the neuropeptide substance P (SP) in three sympatric cowbirds: two obligate parasites (shiny cowbird and screaming cowbird) and one nonparasite (bay-winged cowbird). Distribution of SP was similar to that in other songbirds, except for a previously undescribed field of dense SP-rich terminals within the hippocampus that we call the hippocampal SP terminal field (SPh). We found robust species differences in the volume of this new area, measured relative to the remainder of the telencephalon. SPh was largest in the generalist parasite (shiny cowbird) and smallest in the nonparasitic species (bay-winged cowbird). In the specialist parasite (screaming cowbird), SPh was smaller than in the generalist parasite but larger than in the nonparasitic species. SPh overlaps with two subdivisions described in the pigeon that have been related to the mammalian dentate gyrus and subiculum. The area containing SPh receives a major input from the lateral mammillary nucleus, which is probably the avian equivalent of the mammalian supramammillary nucleus (SUM), the main source of extrinsic SP input to mammalian hippocampus. SPh may be the termination of a pathway homologous to the SP-rich projection from SUM to the hippocampus in mammals.
Collapse
|
19
|
Goodson JL, Evans AK, Lindberg L. Chemoarchitectonic subdivisions of the songbird septum and a comparative overview of septum chemical anatomy in jawed vertebrates. J Comp Neurol 2004; 473:293-314. [PMID: 15116393 PMCID: PMC2576523 DOI: 10.1002/cne.20061] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Available data demonstrate that the avian septal region shares a number of social behavior functions and neurochemical features in common with mammals. However, the structural and functional subdivisions of the avian septum remain largely unexplored. In order to delineate chemoarchitectural zones of the avian septum, we prepared a large dataset of double-, triple-, and quadruple-labeled material in a variety of songbird species (finches and waxbills of the family Estrildidae and a limited number of emberizid sparrows) using antibodies against 10 neuropeptides and enzymes. Ten septal zones were identified that were placed into lateral, medial, caudocentral, and septohippocampal divisions, with the lateral and medial divisions each containing multiple zones. The distributions of numerous immunoreactive substances in the lateral septum closely match those of mammals (i.e., distributions of met-enkephalin, vasotocin, galanin, calcitonin gene-related peptide, tyrosine hydroxylase, vasoactive intestinal polypeptide, substance P, corticotropin-releasing factor, and neuropeptide Y), enabling detailed comparisons with numerous chemoarchitectonic zones of the mammalian lateral septum. Our septohippocampal and caudocentral divisions are topographically comparable to the mammalian septohippocampal and septofimbrial nuclei, respectively, although additional data will be required to establish homology. The present data also demonstrate the presence of a medial septal nucleus that is histochemically comparable to the medial septum of mammals. The avian medial septum is clearly defined by peptidergic markers and choline acetyltransferase immunoreactivity. These findings should provide a useful framework for functional and comparative studies, as they suggest that many features of the septum are highly conserved across vertebrate taxa.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
20
|
Gaikwad A, Biju KC, Saha SG, Subhedar N. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus. J Chem Neuroanat 2004; 27:55-70. [PMID: 15036363 DOI: 10.1016/j.jchemneu.2003.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/14/2003] [Accepted: 11/29/2003] [Indexed: 11/15/2022]
Abstract
Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.
Collapse
Affiliation(s)
- Archana Gaikwad
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | |
Collapse
|
21
|
Montagnese CM, Székely AD, Adám A, Csillag A. Efferent connections of septal nuclei of the domestic chick (Gallus domesticus): An anterograde pathway tracing study with a bearing on functional circuits. J Comp Neurol 2004; 469:437-56. [PMID: 14730592 DOI: 10.1002/cne.11018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in different subregions of the septum of domestic chicks. The main targets of septal projections comprised the ipsi- and contralateral septal nuclei, including the nucleus of the diagonal band, basal ganglia, including the ventral paleostriatum, lobus parolfactorius, nucleus accumbens, and olfactory tubercle, archistriatum, piriform cortex, and anterior neostriatum. Further diencephalic and mesencephalic septal projections were observed in the ipsilateral preoptic region, hypothalamus (the main regions of afferentation comprising the lateral hypothalamic nuclei, ventromedial, paraventricular and periventricular nuclei, and the mammillary region), dorsal thalamus, medial habenular and subhabenular nuclei, midbrain central gray, and ventral tegmental area. Contralateral projections were also encountered in the septal nuclei, ventral paleostriatum, periventricular and anteromedial hypothalamic nuclei, suprachiasmatic nucleus, and the lateral hypothalamic area. Avian septal efferents are largely similar to those of mammals, the main differences being a relatively modest hippocampal projection arising mainly from the nucleus of the diagonal band (as confirmed by a specific experiment with the retrograde pathway tracer True blue), the lack of interpeduncular projection, and a greater contingent of amygdalar efferents arising from the lateral septum rather than the nucleus of the diagonal band. This pattern of connectivity is likely to reflect an important role of the avian septal nuclei in the coordination of limbic circuits and the integration of a wide variety of information sources modulating the appropriate behavioral responses: attention and arousal level, memory formation, hormonally mediated behaviors, and their affective components (such as ingestive, reproductive, and parental behaviors), social interaction, locomotor modulation, and circadian rhythm.
Collapse
|
22
|
Zeng S, Zhang X, Peng W, Zuo M. Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications. J Comp Neurol 2004; 470:192-209. [PMID: 14750161 DOI: 10.1002/cne.11042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuropeptide immunohistochemistry and neural connectivity of areas surrounding the thalamic auditory nucleus (the nucleus ovoidalis [Ov]), as well as the areas to which it is connected, were investigated in a songbird, the Bengalese finch. The results showed that met-enkephalin was present in the Ov shell and most of the areas connected to it, but not in the Ov core. Anterograde and retrograde tracing studies showed that the Ov shell was more widely connected than the Ov core. The Ov shell was mainly connected to: 1). areas flanking the primary telencephalic auditory field (i.e., fields L2b, L1, and L3) and areas surrounding the robust nucleus of the archistriatum (RA); 2). several hypothalamic areas such as the nucleus ventromedialis hypothalami (VMN) and the nucleus anterior medialis hypothalami (AM). Some of these areas connected to the Ov shell are thought to be involved in auditory mediated neurosecretory activities. These results, which are similar to those reported previously in non-songbirds, suggest that the Ov shell and other surrounding areas of auditory and song-control nuclei are conserved in birds. These findings are discussed in terms of the evolution of the core-and-surround organization of auditory and song-control nuclei.
Collapse
Affiliation(s)
- Shaoju Zeng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | | | |
Collapse
|