1
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
2
|
Shear DA, Dixon CE, Bramlett HM, Mondello S, Dietrich WD, Deng-Bryant Y, Schmid KE, Wang KKW, Hayes RL, Povlishock JT, Kochanek PM, Tortella FC. Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:523-37. [PMID: 26670792 DOI: 10.1089/neu.2015.4115] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide (vitamin B3) was the first drug selected for cross-model testing by the Operation Brain Trauma Therapy (OBTT) consortium based on a compelling record of positive results in pre-clinical models of traumatic brain injury (TBI). Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Nicotinamide (50 or 500 mg/kg) was delivered intravenously at 15 min and 24 h after injury with subsequent behavioral, biomarker, and histopathological outcome assessments. There was an intermediate effect on balance beam performance with the high (500 mg/kg) dose in the CCI model, but no significant therapeutic benefit was detected on any other motor task across the OBTT TBI models. There was an intermediate benefit on working memory with the high dose in the FPI model. A negative effect of the low (50 mg/kg) dose, however, was observed on cognitive outcome in the CCI model, and no cognitive improvement was observed in the PBBI model. Lesion volume analysis showed no treatment effects after either FPI or PBBI, but the high dose of nicotinamide resulted in significant tissue sparing in the CCI model. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-1 (UCH-L1) in blood at 4 or 24 h after injury. Negative effects (both doses) were detected on biomarker levels of GFAP after FPI and on biomarker levels of UCH-L1 after PBBI. The high dose of nicotinamide, however, reduced GFAP levels after both PBBI and CCI. Overall, our results showed a surprising lack of benefit from the low dose nicotinamide. In contrast, and partly in keeping with the literature, some benefit was achieved with the high dose. The marginal benefits achieved with nicotinamide, however, which appeared sporadically across the TBI models, has reduced enthusiasm for further investigation by the OBTT Consortium.
Collapse
Affiliation(s)
- Deborah A Shear
- 1 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - C Edward Dixon
- 2 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Helen M Bramlett
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,4 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Stefania Mondello
- 5 Department of Neurosciences, University of Messina , Messina, Italy
| | - W Dalton Dietrich
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Ying Deng-Bryant
- 1 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Kara E Schmid
- 1 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Kevin K W Wang
- 6 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research , Banyan Biomarkers, Inc., Alachua, Florida
| | - John T Povlishock
- 8 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Patrick M Kochanek
- 9 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Frank C Tortella
- 1 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
3
|
Anderson GD, Peterson TC, Farin FM, Bammler TK, Beyer RP, Kantor ED, Hoane MR. The effect of nicotinamide on gene expression in a traumatic brain injury model. Front Neurosci 2013; 7:21. [PMID: 23550224 PMCID: PMC3581799 DOI: 10.3389/fnins.2013.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/06/2013] [Indexed: 12/30/2022] Open
Abstract
Microarray-based transcriptional profiling was used to determine the effect of nicotinamide on gene expression in an experimental traumatic brain injury (TBI) model. Ingenuity Pathway Analysis (IPA) was used to evaluate the effect on relevant functional categories and canonical pathways. At 24 h, 72 h, and 7 days, respectively, 70, 58, and 76%, of the differentially expressed genes were up-regulated in the vehicle treated compared to the sham animals. At 24 h post-TBI, there were 150 differentially expressed genes in the nicotinamide treated animals compared to vehicle; the majority (82%) down-regulated. IPA analysis identified a significant effect of nicotinamide on the functional categories of cellular movement, cell-to-cell-signaling, antigen presentation and cellular compromise, function, and maintenance and cell death. The canonical pathways identified were signaling pathways primarily involved with the inflammatory process. At 72 h post-cortical contusion injury, there were 119 differentially expressed genes in the nicotinamide treated animals compared to vehicle; the majority (90%) was up-regulated. IPA analysis identified a significant effect of nicotinamide on cell signaling pathways involving neurotransmitters, neuropeptides, growth factors, and ion channels with little to no effect on inflammatory pathways. At 7 days post-TBI, there were only five differentially expressed genes with nicotinamide treatment compared to vehicle. Overall, the effect of nicotinamide on counteracting the effect of TBI resulted in significantly decreased number of genes differentially expressed by TBI. In conclusion, the mechanism of the effect of nicotinamide on secondary injury pathways involves effects on inflammatory response, signaling pathways, and cell death.
Collapse
Affiliation(s)
- G D Anderson
- Department of Pharmacy, University of Washington Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Ankolekar S, Rewell S, Howells DW, Bath PMW. The Influence of Stroke Risk Factors and Comorbidities on Assessment of Stroke Therapies in Humans and Animals. Int J Stroke 2012; 7:386-97. [DOI: 10.1111/j.1747-4949.2012.00802.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The main driving force behind the assessment of novel pharmacological agents in animal models of stroke is to deliver new drugs to treat the human disease rather than to increase knowledge of stroke pathophysiology. There are numerous animal models of the ischaemic process and it appears that the same processes operate in humans. Yet, despite these similarities, the drugs that appear effective in animal models have not worked in clinical trials. To date, tissue plasminogen activator is the only drug that has been successfully used at the bedside in hyperacute stroke management. Several reasons have been put forth to explain this, but the failure to consider comorbidities and risk factors common in older people is an important one. In this article, we review the impact of the risk factors most studied in animal models of acute stroke and highlight the parallels with human stroke, and, where possible, their influence on evaluation of therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Rewell
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | - David W. Howells
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | | |
Collapse
|
5
|
Antenor-Dorsey JAV, O'Malley KL. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity. Mol Neurodegener 2012; 7:5. [PMID: 22315973 PMCID: PMC3322348 DOI: 10.1186/1750-1326-7-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 02/08/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury. RESULTS Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model. CONCLUSIONS Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.
Collapse
Affiliation(s)
- Jo Ann V Antenor-Dorsey
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
6
|
Timsit S, Menn B. Cyclin-dependent kinase inhibition with roscovitine: neuroprotection in acute ischemic stroke. Clin Pharmacol Ther 2012; 91:327-32. [PMID: 22218073 DOI: 10.1038/clpt.2011.312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stroke is the third most common cause of mortality and the leading cause of disability in industrialized country. According to population based-studies, ischemic stroke accounts for 67-80% of all strokes. Thrombolysis is used during the acute phase in only 2-5% of ischemic patients. Clinical trials of candidate neuroprotective agents have failed to identify viable therapies for ischemic stroke in humans. There is therefore a great need for new therapeutic strategies, considering that not all brain cells die immediately after ischemic stroke.
Collapse
Affiliation(s)
- S Timsit
- CHRU Brest, Hôpital de la Cavale Blanche, Département de Neurologie, Faculté de Médecine et des Sciences de la Santé, INSERM U-613 de Brest, Brest, France.
| | | |
Collapse
|
7
|
Maynard KI. Hormesis pervasiveness and its potential implications for pharmaceutical research and development. Dose Response 2011; 9:377-86. [PMID: 22013400 DOI: 10.2203/dose-response.11-026.maynard] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This mini-review illustrates that hormesis is not only confined to the areas of biochemistry, radiation biology and toxicology, where it is traditionally known, but illustrates, by citing published scientific literature, that it is found across a wide range of biomedical science and clinical medicine such as neuroscience, cardiology and oncology. The use of techniques and technology, including high through-put screening, micro-dosing or phase 0 studies, pharmacometrics and adaptive trial design in the clinic, are proposed to illustrate how acknowledging the potential impact of hormesis throughout different stages of drug discovery and development, including hurdles related to efficacy and safety, could help the pharmaceutical industry address some of its major and frequently mentioned challenges.
Collapse
|
8
|
Kristian T, Balan I, Schuh R, Onken M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J Neurosci Res 2011; 89:1946-55. [PMID: 21488086 DOI: 10.1002/jnr.22626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/12/2022]
Abstract
Both acute and chronic neurodegenerative diseases are frequently associated with mitochondrial dysfunction as an essential component of mechanisms leading to brain damage. Although loss of mitochondrial functions resulting from prolonged activation of the mitochondrial permeability transition (MPT) pore has been shown to play a significant role in perturbation of cellular bioenergetics and in cell death, the detailed mechanisms are still elusive. Enzymatic reactions linked to glycolysis, the tricarboxylic acid cycle, and mitochondrial respiration are dependent on the reduced or oxidized form of nicotinamide dinucleotide [NAD(H)] as a cofactor. Loss of mitochondrial NAD(+) resulting from MPT pore opening, although transient, allows detrimental depletion of mitochondrial and cellular NAD(+) pools by activated NAD(+) glycohydrolases. Poly(ADP-ribose) polymerase (PARP) is considered to be a major NAD(+) degrading enzyme, particularly under conditions of extensive DNA damage. We propose that CD38, a main cellular NAD(+) level regulator, can significantly contribute to NAD(+) catabolism. We discuss NAD(+) catabolic and NAD(+) synthesis pathways and their role in different strategies to prevent cellular NAD(+) degradation in brain, particularly following an ischemic insult. These therapeutic approaches are based on utilizing endogenous intermediates of NAD(+) metabolism that feed into the NAD(+) salvage pathway and also inhibit CD38 activity.
Collapse
Affiliation(s)
- Tibor Kristian
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
9
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
10
|
The Wlds transgene reduces axon loss in a Charcot-Marie-Tooth disease 1A rat model and nicotinamide delays post-traumatic axonal degeneration. Neurobiol Dis 2010; 42:1-8. [PMID: 21168501 DOI: 10.1016/j.nbd.2010.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 12/02/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy and a duplication of the peripheral myelin protein of 22 kDa (PMP22) gene causes the most frequent subform CMT1A. Clinical impairments are determined by the amount of axonal loss. Axons of the spontaneous mouse mutant Wallerian degeneration slow (Wlds) show markedly reduced degeneration following various types of injuries. Protection is conferred by a chimeric Wlds gene encoding an N-terminal part of ubiquitination factor Ube4b and full length nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1). Nmnat1 enzyme generates nicotinamide adenine dinucleotide (NAD) from nicotinamide mononucleotide. Here, in a Pmp22 transgenic animal model of Charcot-Marie-Tooth disease type 1A (CMT rat), the Wlds transgene reduced axonal loss and clinical impairments without altering demyelination. Furthermore, nicotinamide - substrate precursor of the Nmnat1 enzyme - transiently delayed posttraumatic axonal degeneration in an in vivo model of acute peripheral nerve injury, but to a lower extent than Wlds. In contrast, 8 weeks of nicotinamide treatment did not influence axonal loss or clinical manifestations in the CMT rat. Therefore, nicotinamide can partially substitute for the protective Wlds effect in acute traumatic, but not in chronic secondary axonal injury. Future studies are needed to develop axon protective therapy in CMT1A which may be combined with therapeutic strategies aimed at downregulation of toxic PMP22 overexpression.
Collapse
|
11
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
12
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
Evidence is presented which supports the conclusion that the hormetic dose-response model is the most common and fundamental in the biological and biomedical sciences, being highly generalizable across biological model, endpoint measured and chemical class and physical agent. The paper provides a broad spectrum of applications of the hormesis concept for clinical medicine including anxiety, seizure, memory, stroke, cancer chemotherapy, dermatological processes such as hair growth, osteoporosis, ocular diseases, including retinal detachment, statin effects on cardiovascular function and tumour development, benign prostate enlargement, male sexual behaviours/dysfunctions, and prion diseases.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Calabrese EJ. Drug therapies for stroke and traumatic brain injury often display U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit Rev Toxicol 2008; 38:557-77. [PMID: 18615310 DOI: 10.1080/10408440802014287] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article explores the occurrence of U-shaped dose responses induced by neuroprotective agents in animal stroke and traumatic brain injury (TBI) screening/preclinical studies. The assessment was stimulated by suggestions that U-shaped dose responses may be common for neuroprotective agents in stroke and TBI models, and its lack of both recognition and understanding may be a factor contributing to the failure of many promising drugs to be protective in clinical trials. Over 30 agents with neuroprotective properties in animal stroke/TBI models were identified that act via U-shaped dose responses in a broad range of experimental protocols. These findings suggest that U-shaped dose responses in animal stroke/TBI models may be a general occurrence and have significant implications for drug discovery, drug development, and clinical practice.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, School of Public Health and Health Sciences, Environmental Health Sciences Division, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
15
|
Sikora A, Szajerski P, Piotrowski Ł, Zielonka J, Adamus J, Marcinek A, Gębicki J. Radical scavenging properties of nicotinamide and its metabolites. Radiat Phys Chem Oxf Engl 1993 2008. [DOI: 10.1016/j.radphyschem.2007.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kao SJ, Liu DD, Su CF, Chen HI. Niacinamide abrogates the organ dysfunction and acute lung injury caused by endotoxin. J Cardiovasc Pharmacol 2007; 50:333-42. [PMID: 17878764 DOI: 10.1097/fjc.0b013e3180cbd18a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Poly (ADP-ribose) synthabse (PARS) or polymerase (PARP) is a cytotoxic enzyme causing cellular damage. Niacinamide inhibits PARS or PARP. The present experiment tests the effects of niacinamide (NCA) on organ dysfunction and acute lung injury (ALI) following lipopolysaccharide (LPS). LPS was administered to anesthetized rats and to isolated rat lungs. In anesthetized rats, LPS caused systemic hypotension and increased biochemical factors, nitrate/nitrite (NOx), methyl guanidine (MG), tumor necrosis factoralpha (TNFalpha), and interleukin-1beta (IL-1beta). In isolated lungs, LPS increased lung weight (LW) to body weight ratio, LW gain, protein and dye tracer leakage, and capillary permeability. The insult also increased NOx, MG, TNFalpha, and IL-1beta in lung perfusate, while decreased adenosine triphosphate (ATP) content with an increase in PARP activity in lung tissue. Pathological examination revealed pulmonary edema with inflammatory cell infiltration. These changes were abrogated by posttreatment (30 min after LPS) with NCA. Following LPS, the inducible NO synthase (iNOS) mRNA expression was increased. NCA reduced the iNOS expression. Niacinamide exerts protective effects on the organ dysfunction and ALI caused by endotoxin. The mechanisms may be mediated through the inhibition on the PARP activity, iNOS expression and the subsequent suppression of NO, free radicals, and proinflammatory cytokines with restoration of ATP.
Collapse
Affiliation(s)
- Shang-Jyh Kao
- Division of Chest Medicine, Internal Medicine, Shin-Kong Wu-Ho-Su Memorial Hospital, School of Respiratory Therapy, Taipei Medical University, and College of Medicine, Fu-Jen University, Taipei, Taiwan
| | | | | | | |
Collapse
|
17
|
Ji D, Li GY, Osborne NN. Nicotinamide attenuates retinal ischemia and light insults to neurones. Neurochem Int 2007; 52:786-98. [PMID: 17976861 DOI: 10.1016/j.neuint.2007.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 01/26/2023]
Abstract
The aim of the present studies was to determine whether nicotinamide is effective in blunting the negative influence of ischemia/reperfusion to the rat retina in situ and of light to transformed retinal ganglion cells (RGC-5 cells) in culture. Ischemia was delivered to the retina of one eye of rats by raising the intraocular pressure. Nicotinamide was administered intraperitoneally just before ischemia and into the vitreous immediately after the insult. Electroretinograms (ERGs) of both eyes were recorded before and 5 days after ischemia. Seven days after ischemia, retinas were analysed for the localization of various antigens. Retinal and optic nerve extracts were also prepared for analysis of specific proteins and mRNAs. Also, RGC-5 cells in culture were given a light insult (1000 lux, 48 and 96 h) and evidence for reduced viability and apoptosis determined by a variety of procedures. Nicotinamide was added to some cultures to see whether it reversed the negative effect of light. Ischemia/reperfusion to the retina affected the localization of Thy-1, neuronal nitric oxide synthase (NOS) and choline acetyltransferase (ChAT), the a- and b-wave amplitudes of the ERG, the content of various retinal and optic nerve proteins and mRNAs. Significantly, nicotinamide statistically blunted many of the effects induced by ischemia/reperfusion which included the activation of poly-ADP-ribose polymerase (PARP). Light-induced apoptosis of RGC-5 cells in culture was attenuated by nicotinamide and the PARP inhibitor NU1025. The presented data show that nicotinamide attenuates injury to the retina and RGC-5 cells in culture caused by ischemia/reperfusion and by light, respectively. Evidence is provided to suggest that nicotinamide acts as a PARP inhibitor and possibly an antioxidant.
Collapse
Affiliation(s)
- Dan Ji
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK
| | | | | |
Collapse
|
18
|
Hoane MR, Tan AA, Pierce JL, Anderson GD, Smith DC. Nicotinamide treatment reduces behavioral impairments and provides cortical protection after fluid percussion injury in the rat. J Neurotrauma 2006; 23:1535-48. [PMID: 17020488 DOI: 10.1089/neu.2006.23.1535] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined the ability of nicotinamide (vitamin B3) to improve functional outcome in a dose-dependent manner following fluid percussion injury (FPI). Injured (duration of unconsciousness mean = 85.8 sec; apnea = 9.9 sec), rats were administered nicotinamide (500 or 50 mg/kg; ip) or saline at 15 min and 24 h. Serum analysis of nicotinamide concentrations were conducted 1 h following the last injection. Sensorimotor and cognitive tests were conducted for 35 days following FPI. Both the 500 and 50 mg/kg doses of nicotinamide significantly facilitated recovery on the vibrissae-forelimb placing test compared to saline treatment, which showed chronic impairments. Both treatments also significantly improved performance on the bilateral tactile adhesive removal test. On the cognitive tests, the 500 mg/kg dose, but not the 50 mg/kg dose, improved performance on a working memory task in the Morris water maze (MWM). However, acquisition of a reference memory task in the MWM was not improved. Serum analysis showed that the 500 mg/kg dose significantly raised nicotinamide concentrations by 30-fold and the 50 mg/kg dose by 3-fold compared to the saline administration. This study demonstrated that raising nicotinamide concentrations resulted in the reduction of the behavioral impairments following FPI. In fact, the 500 mg/kg dose prevented the occurrence of the behavioral deficits on the bilateral tactile removal and working memory tests. Both doses significantly reduced tissue loss and glial fibrillary acid protein (GFAP) expression in the cortex. The 500 mg/kg dose reduced GFAP expression in the hippocampus. This data suggests that nicotinamide has substantial preclinical efficacy for TBI, and there appears to be some differences in the ability of the doses to improve performance in the MWM.
Collapse
Affiliation(s)
- Michael R Hoane
- Restorative Neuroscience Laboratory, Department of Psychology, Southern Illinois University, Carbondale, Illinois 62901, USA.
| | | | | | | | | |
Collapse
|
19
|
Hoane MR, Gilbert DR, Holland MA, Pierce JL. Nicotinamide reduces acute cortical neuronal death and edema in the traumatically injured brain. Neurosci Lett 2006; 408:35-9. [PMID: 16987607 DOI: 10.1016/j.neulet.2006.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/05/2006] [Accepted: 07/08/2006] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that administration of nicotinamide (Vitamin B(3)) in animal models of traumatic brain injury (TBI) and ischemia significantly reduced the size of infarction or injury and improved functional recovery. The present study evaluated the ability of nicotinamide to provide acute neuroprotection and edema reduction following TBI. Groups of rats were assigned to nicotinamide (500mg/kg) or saline (1.0ml/kg) treatment conditions and received contusion injuries or sham surgeries. Drug treatment was administered 15min following injury. Brains were harvested 24h later and either processed for histology or water content. Frozen sections were stained with the degenerating neuron stain (Fluoro-Jade B) (FJ) and cell counts were performed at the site of injury. Additional brains were processed for water content (a measure of injury-induced edema). Results of this study showed that administration of nicotinamide following TBI significantly reduced the number of FJ(+) neurons in the injured cortex compared to saline-treated animals. Examination of the water content of the brains also revealed that administration of nicotinamide significantly attenuated the amount of water compared to saline-treated animals in the injured cortex. These results indicate that nicotinamide administration significantly reduced neuronal death and attenuated cerebral edema following injury. The current findings suggest that nicotinamide significantly modulates acute pathophysiological processes following injury and that this may account for its beneficial effects on recovery of function following injury.
Collapse
Affiliation(s)
- Michael R Hoane
- Restorative Neuroscience Laboratory, Brain and Cognitive Science Program, Department of Psychology, Center for Integrative Research in Cognitive and Neural Sciences, MC 6502, Southern Illinois University, Carbondale, IL 62901, USA.
| | | | | | | |
Collapse
|
20
|
Hoane MR, Wolyniak JG, Akstulewicz SL. Administration of riboflavin improves behavioral outcome and reduces edema formation and glial fibrillary acidic protein expression after traumatic brain injury. J Neurotrauma 2006; 22:1112-22. [PMID: 16238487 DOI: 10.1089/neu.2005.22.1112] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that administration of riboflavin, vitamin B2, significantly reduced edema formation following experimental stroke. The present study evaluated the ability of B2 to improve behavioral function, reduce edema formation, and limit glial fibrillary acidic protein (GFAP) expression following frontal cortex contusion injury. Groups of rats were assigned to B2 (7.5 mg/kg) or saline (1.0 ml/kg) treatment conditions and received contusion injuries or sham procedures. Drug treatment was administered 15 min and 24 h following injury. Rats were examined on a variety of tests to measure sensorimotor performance (bilateral tactile removal test), and cognitive ability (acquisition of reference and working memory) in the Morris water maze. Administration of B2 following injury significantly reduced the behavioral impairments observed on the bilateral tactile removal test and improved the acquisition of both reference and working memory tests compared to saline-treated rats. The lesion analysis showed that B2 reduced the size of the lesion. Examination of GFAP expression around the lesion revealed that B2 significantly reduced the number of GFAP+ astrocytes. Edema formation following injury was also significantly reduced by B2 administration. These findings are the first to show that B2 administration significantly improved behavioral outcome and reduced lesion volume, edema formation, and the expression of GFAP following traumatic brain injury. These findings suggest that B2 may have therapeutic potential for the treatment of TBI.
Collapse
Affiliation(s)
- Michael R Hoane
- Restorative Neuroscience Laboratory, Brain and Cognitive Science Program, Department of Psychology, Southern Illinois University, Carbondale, IL 62901, USA.
| | | | | |
Collapse
|
21
|
Watchko JF. Bilirubin induced apoptosis in vitro: insights for kernicterus: commentary on the article by Hankø et al. on page 179. Pediatr Res 2005; 57:177-8. [PMID: 15585678 DOI: 10.1203/01.pdr.0000150727.50378.ea] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jon F Watchko
- Division of Neonatology and Developmental Biology, Department of Pediatrics, University of Pittsburgh School of Medicine, Room 4230, Magee-Womens Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Lin Y, Desbois A, Jiang S, Hou ST. Group B vitamins protect murine cerebellar granule cells from glutamate/NMDA toxicity. Neuroreport 2005; 15:2241-4. [PMID: 15371742 DOI: 10.1097/00001756-200410050-00020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The role of B group vitamins in preventing neuronal death against excitotoxicity was investigated. Neuronal death of cultured mouse cerebellar granule neurons (CGNs) caused by glutamate (50 microM) or NMDA (200 microM) was delayed in CGNs that had been treated with riboflavin (B2), folic acid (B9) or cynocobalamin (B12) for 18 h. Such neuroprotection by B2, B9 and B12 was in a dose- and time-dependent manner. In contrast, application of thiamin (B1), nicotinamide (B3), d-pantothenic acid (B5), pyridoxine (B6) or carnitine (BT) did not ameliorate glutamate or NMDA-mediated excitotoxicity to CGCs. These results are the first indication that certain B group vitamins are not only required for the normal brain function, but can also play a protective role against excitotoxicity to the brain.
Collapse
Affiliation(s)
- Yanpeng Lin
- Department of Clinical Neurological Sciences, The No. 252 Hospital of P.L.A., No. 81, Huayuan Street, Baoding City, Hebei Province, China, 071000
| | | | | | | |
Collapse
|
23
|
Gupta S, Kaul CL, Sharma SS. Neuroprotective effect of combination of poly (ADP-ribose) polymerase inhibitor and antioxidant in middle cerebral artery occlusion induced focal ischemia in rats. Neurol Res 2004; 26:103-7. [PMID: 14977067 DOI: 10.1179/016164104773026624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India We have investigated the neuroprotective potential of combination of poly (ADP-ribose) polymerase inhibitor (nicotinamide or 3-aminobenzamide) and antioxidant (melatonin) in middle cerebral artery occlusion (MCAo) induced focal ischemia in rats. MCAo of 2 h followed by 22 h reperfusion produced large volume of cerebral infarction (mean +/- SEM 211.38 +/- 8.35 mm3), volume of edema (60 +/- 2 mm3) and neurological deficits (4.45 +/- 0.25). Combination of nicotinamide (500 mg kg(-1), i.p.) and melatonin (10 mg kg(-1), i.p.) significantly decreased infarct volume to 48 +/- 2.58 mm3 as compared to their individual drug (nicotinamide 76 +/- 12.49mm3, melatonin 76.17 +/- 1.24 mm3). A significant improvement was observed in edema volume and neurological deficits with this combination. Combination of 3-aminobenzamide (20 mg kg(-1), i.p.) and melatonin (10 mg kg(-1), i.p.) also produced similar reduction in infarction, edema and neurological score. These results indicate that the combination of poly (ADP-ribose) polymerase inhibitor and antioxidant produce enhanced neuroprotection. Clinical availability and wide therapeutic margin of nicotinamide and melatonin make them a promising drug combination for clinical evaluation in stroke patients.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) 160 062, Punjab, India
| | | | | |
Collapse
|
24
|
Macleod MR, O'Collins T, Howells DW, Donnan GA. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 2004; 35:1203-8. [PMID: 15060322 DOI: 10.1161/01.str.0000125719.25853.20] [Citation(s) in RCA: 486] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The extensive neuroprotective literature describing the efficacy of candidate drugs in focal ischemia has yet to lead to the development of effective stroke treatments. Ideally, the choice of drugs taken forward to clinical trial should be based on an unbiased assessment of all available data. Such an assessment might include not only the efficacy of a drug but also the in vivo characteristics and limits--in terms of time window, dose, species, and model of ischemia used--to that efficacy. To our knowledge, such assessments have not been made. Nicotinamide is a candidate neuroprotective drug with efficacy in experimental stroke, but the limits to and characteristics of that efficacy have not been fully described. METHODS Systematic review and modified meta-analysis of studies of experimental stroke describing the efficacy of nicotinamide. The search strategy ensured ascertainment of studies published in full and those published in abstract only. DerSimonian and Laird random effects meta-analysis was used to account for heterogeneity between studies. RESULTS Nicotinamide improved outcome by 0.287 (95% confidence interval 0.227 to 0.347); it was more effective in temporary ischemia models, after intravenous administration, in animals without comorbidities, and in studies published in full rather than in abstract. Studies scoring highly on a quality measure gave more precise estimates of the global effect. CONCLUSIONS Meta-analysis provides an effective technique for the aggregation of data from experimental stroke studies. We propose new standards for reporting such studies and a systematic approach to aggregating data from the neuroprotective literature.
Collapse
|
25
|
Hoane MR, Akstulewicz SL, Toppen J. Treatment with vitamin B3 improves functional recovery and reduces GFAP expression following traumatic brain injury in rats. J Neurotrauma 2004; 20:1189-99. [PMID: 14651806 DOI: 10.1089/089771503770802871] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that administration of vitamin B(3) (B(3)) in animal models of ischemia significantly reduced the size of infarction and improved functional recovery. The present study evaluated the effect of administration of B(3) on recovery of function following traumatic brain injury (TBI), incorporating the bilateral medial frontal cortex contusion injury model. Groups of rats were assigned to B(3) (500 mg/kg) or saline (1.0 ml/kg) treatment conditions and received contusion injuries or sham surgeries. Drug treatment was administered 15 min and 24 h following injury. Rats were examined on a variety of tests to measure sensorimotor performance (bilateral tactile adhesive removal), skilled forelimb use (staircase test), and cognitive ability (reference and working memory) in the Morris Water Maze. Administration of B(3) following injury significantly reduced the behavioral impairments observed on the bilateral tactile removal test, but not on skilled forelimb use. The acquisition of reference and working memory tests were also significantly improved compared to saline-treated rats. Examination of the brains revealed that administration of B(3) significantly reduced the size of the lesion compared to treatment with saline. In addition, examination of glial fibrillary acidic protein (GFAP) expression around the lesion revealed that B(3) significantly reduced the number of GFAP(+) astrocytes. These results indicate that B(3) administration significantly improved behavioral outcome following injury, reduced the size of the lesion, and reduced the expression of GFAP. The current findings suggest that B(3) may have therapeutic potential for the treatment of TBI.
Collapse
Affiliation(s)
- Michael R Hoane
- Brain Injury Laboratory, Department of Psychology and Program in Neuroscience, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | |
Collapse
|
26
|
Sarhan S, Wettstein JG, Maynard KI. Delayed treatment with 5-nitro-6,7-dichloro-1,4-dihydro-2,3-quinoxalinedione, a glycine site N-methyl-D-aspartate antagonist, protects against permanent middle cerebral artery occlusion in male rats. Neurosci Lett 2003; 347:147-50. [PMID: 12875907 DOI: 10.1016/s0304-3940(03)00693-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The glycine site, N-methyl-D-aspartate antagonist 5-nitro-6,7-dichloro-1,4-dihydro-2,3-quinoxalinedione (ACEA1021) was previously tested only in models of transient stroke with pre-treatment paradigms. We therefore tested whether it would protect in two models of permanent stroke in two rat strains with delayed treatment. Intravenous ACEA1021 reduced cerebral infarction by 62% (15 min treatment delay) and 42% (2 h treatment delay), relative to vehicle-injected rats, when subjected to a modified Tamura and permanent intraluminal filament model of stroke, respectively. In comparison, intravenous nicotinamide (500 mg/kg), which was tested in separate animal cohorts, had no significant effect on infarction. These data show that ACEA1021 protects against permanent focal cerebral ischemia, even with a 2 h post-treatment delay. Characterization of the therapeutic window with longer outcome times including infarction and neurobehavioral endpoints is needed.
Collapse
Affiliation(s)
- Shakir Sarhan
- CNS Disease Group, Aventis Inc., 1041 Route 202-206, Bridgewater, NJ 08807, USA
| | | | | |
Collapse
|
27
|
Richard Green A, Odergren T, Ashwood T. Animal models of stroke: do they have value for discovering neuroprotective agents? Trends Pharmacol Sci 2003; 24:402-8. [PMID: 12915049 DOI: 10.1016/s0165-6147(03)00192-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been a series of high-profile failures of drugs in clinical trials of acute ischaemic stroke that were designed to meet criteria necessary for drug regulatory approval. This has, again, called into question the value of animal models for identifying effective neuroprotective agents. Here, we review evidence that physiological changes (reperfusion, hyperglycaemia, hypothermia and blood pressure) produce comparable changes in outcome in both animal models and human stroke patients, which indicates that the models should identify clinically effective neuroprotective agents. We suggest that most clinical failures have occurred because compounds were administered differently in animal and clinical studies. We review earlier guidelines on the information that is necessary from preclinical studies before a compound enters clinical trials, and propose modifications to these guidelines.
Collapse
|
28
|
Maiese K, Chong ZZ. Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci 2003; 24:228-32. [PMID: 12767721 DOI: 10.1016/s0165-6147(03)00078-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although usually identified as an essential cellular nutrient for cellular growth and maintenance, nicotinamide is under development as a novel cytoprotectant for acute and chronic neurodegenerative disorders. Here, we outline support for the premise that nicotinamide both prevents and reverses neuronal and vascular cell injury. Nicotinamide fosters DNA integrity and maintains phosphatidylserine membrane asymmetry to prevent cellular inflammation, cellular phagocytosis and vascular thrombosis. The downstream cellular and molecular cascades are considered vital for the cytoprotection offered by nicotinamide. These pathways encompass the modulation of Akt, the forkhead transcription factor FKHRL1, mitochondrial membrane potential, caspase activities and cellular energy metabolism, but remain independent of intracellular pH and mitogen-activated protein kinases. As both a therapeutic agent and an investigational tool, nicotinamide offers new therapeutic strategies for degenerative disorders of the CNS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University, School of Medicine Detroit, St Antoine, MI 48201, USA.
| | | |
Collapse
|