1
|
Jabarpour M, Siavashi V, Asadian S, Babaei H, Jafari SM, Nassiri SM. Hyperbilirubinemia-induced pro-angiogenic activity of infantile endothelial progenitor cells. Microvasc Res 2018; 118:49-56. [DOI: 10.1016/j.mvr.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/04/2018] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
|
2
|
Palmela I, Correia L, Silva RFM, Sasaki H, Kim KS, Brites D, Brito MA. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro study. Front Neurosci 2015; 9:80. [PMID: 25821432 PMCID: PMC4358072 DOI: 10.3389/fnins.2015.00080] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022] Open
Abstract
Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Inês Palmela
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Leonor Correia
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rui F M Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Hiroyuki Sasaki
- Division of Fine Morphology, Core Research Facilities, The Jikei University School of Medicine Tokyo Japan
| | - Kwang S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine Baltimore, MA, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Maria A Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
3
|
Brito MA, Palmela I, Cardoso FL, Sá-Pereira I, Brites D. Blood–Brain Barrier and Bilirubin: Clinical Aspects and Experimental Data. Arch Med Res 2014; 45:660-76. [DOI: 10.1016/j.arcmed.2014.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
|
4
|
Bisht K, Tampe J, Shing C, Bakrania B, Winearls J, Fraser J, Wagner KH, Bulmer AC. Endogenous Tetrapyrroles Influence Leukocyte Responses to Lipopolysaccharide in Human Blood: Pre-Clinical Evidence Demonstrating the Anti-Inflammatory Potential of Biliverdin. ACTA ACUST UNITED AC 2014; 5:1000218. [PMID: 25177524 PMCID: PMC4145741 DOI: 10.4172/2155-9899.1000218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis is associated with abnormal host immune function in response to pathogen exposure, including endotoxin (lipopolysaccharide; LPS). Cytokines play crucial roles in the induction and resolution of inflammation in sepsis. Therefore, the primary aim of this study was to investigate the effects of endogenous tetrapyrroles, including biliverdin (BV) and unconjugated bilirubin (UCB) on LPS-induced cytokines in human blood. Biliverdin and UCB are by products of haem catabolism and have strong cytoprotective, antioxidant and anti-inflammatory effects. In the present study, whole human blood supplemented with BV and without was incubated in the presence or absence of LPS for 4 and 8 hours. Thereafter, whole blood was analysed for gene and protein expression of cytokines, including IL-1β, IL-6, TNF, IFN-γ, IL-1Ra and IL-8. Biliverdin (50 μM) significantly decreased the LPS-mediated gene expression of IL-1β, IL-6, IFN-γ, IL-1Ra and IL-8 (P<0.05). Furthermore, BV significantly decreased LPS-induced secretion of IL-1β and IL-8 (P<0.05). Serum samples from human subjects and, wild type and hyperbilirubinaemic Gunn rats were also used to assess the relationship between circulating bilirubin and cytokine expression/production. Significant positive correlations between baseline UCB concentrations in human blood and LPS-mediated gene expression of IL-1β (R=0.929), IFN-γ (R=0.809), IL-1Ra (R=0.786) and IL-8 (R=0.857) were observed in blood samples (all P<0.05). These data were supported by increased baseline IL-1β concentrations in hyperbilirubinaemic Gunn rats (P<0.05). Blood samples were also investigated for complement receptor-5 (C5aR) expression. Stimulation of blood with LPS decreased gene expression of C5aR (P<0.05). Treatment of blood with BV alone and in the presence of LPS tended to decrease C5aR expression (P=0.08). These data indicate that supplemented BV inhibits the ex vivo response of human blood to LPS. Surprisingly, however, baseline UCB was associated with heighted inflammatory response to LPS. This is the first study to explore the effects of BV in a preclinical human model of inflammation and suggests that BV could represent an anti-inflammatory target for the prevention of LPS mediated inflammation in vivo.
Collapse
Affiliation(s)
- Kavita Bisht
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Jens Tampe
- Griffith Enterprise, Griffith University, Nathan, QLD, Australia
| | - Cecilia Shing
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Bhavisha Bakrania
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - James Winearls
- Gold Coast University Hospital Intensive Care Unit and Gold Coast University Hospital Critical Care Research Group, Gold Coast, QLD, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, QLD, Australia
| | - Karl-Heinz Wagner
- Emerging Field Oxidative Stress and DNA Stability and Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Andrew C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia ; Gold Coast University Hospital Intensive Care Unit and Gold Coast University Hospital Critical Care Research Group, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Kapitulnik J, Benaim C, Sasson S. Endothelial Cells Derived from the Blood-Brain Barrier and Islets of Langerhans Differ in their Response to the Effects of Bilirubin on Oxidative Stress Under Hyperglycemic Conditions. Front Pharmacol 2012; 3:131. [PMID: 22811666 PMCID: PMC3396126 DOI: 10.3389/fphar.2012.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/21/2012] [Indexed: 12/04/2022] Open
Abstract
Unconjugated bilirubin (UCB) is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS). High glucose levels (hyperglycemia) generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB). In the current study we show that UCB (1–40 μM) induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM) levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langerhans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM) glucose levels. While UCB (0.1–40 μM) did not alter ROS production in cells exposed to normal glucose, relatively low (“physiological”) UCB concentrations (0.1–5 μM) attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20–40 μM) increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.
Collapse
Affiliation(s)
- Jaime Kapitulnik
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | |
Collapse
|
6
|
Dennery PA. Evaluating the beneficial and detrimental effects of bile pigments in early and later life. Front Pharmacol 2012; 3:115. [PMID: 22737125 PMCID: PMC3381237 DOI: 10.3389/fphar.2012.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 12/28/2022] Open
Abstract
The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigments with important cellular functions. The impact of bile pigments on health and disease are reviewed, as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronosyl transferase gene (UGTA1), which is key to the elimination of excess bilirubin and to the prevention of its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| |
Collapse
|
7
|
Gazzin S, Strazielle N, Tiribelli C, Ghersi-Egea JF. Transport and metabolism at blood-brain interfaces and in neural cells: relevance to bilirubin-induced encephalopathy. Front Pharmacol 2012; 3:89. [PMID: 22629246 PMCID: PMC3355510 DOI: 10.3389/fphar.2012.00089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/25/2012] [Indexed: 01/16/2023] Open
Abstract
Bilirubin, the end-product of heme catabolism, circulates in non-pathological plasma mostly as a protein-bound species. When bilirubin concentration builds up, the free fraction of the molecule increases. Unbound bilirubin then diffuses across blood-brain interfaces (BBIs) into the brain, where it accumulates and exerts neurotoxic effects. In this classical view of bilirubin neurotoxicity, BBIs act merely as structural barriers impeding the penetration of the pigment-bound carrier protein, and neural cells are considered as passive targets of its toxicity. Yet, the role of BBIs in the occurrence of bilirubin encephalopathy appears more complex than being simple barriers to the diffusion of bilirubin, and neural cells such as astrocytes and neurons can play an active role in controlling the balance between the neuroprotective and neurotoxic effects of bilirubin. This article reviews the emerging in vivo and in vitro data showing that transport and metabolic detoxification mechanisms at the blood-brain and blood-cerebrospinal fluid barriers may modulate bilirubin flux across both cellular interfaces, and that these protective functions can be affected in chronic unconjugated hyperbilirubinemia. Then the in vivo and in vitro arguments in favor of the physiological antioxidant function of intracerebral bilirubin are presented, as well as the potential role of transporters such as ABCC1 and metabolizing enzymes such as cytochromes P-450 in setting the cerebral cell- and structure-specific toxicity of bilirubin following hyperbilirubinemia. The relevance of these data to the pathophysiology of bilirubin-induced neurological diseases is discussed.
Collapse
Affiliation(s)
- Silvia Gazzin
- Italian Liver Foundation, AREA Science Park Basovizza Trieste, Italy
| | | | | | | |
Collapse
|
8
|
Palmela I, Sasaki H, Cardoso FL, Moutinho M, Kim KS, Brites D, Brito MA. Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood-brain barrier lining. Front Cell Neurosci 2012; 6:22. [PMID: 22590454 PMCID: PMC3349234 DOI: 10.3389/fncel.2012.00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/23/2012] [Indexed: 01/07/2023] Open
Abstract
In neonatal jaundice, high levels of unconjugated bilirubin (UCB) may induce neurological dysfunction (BIND). Recently, it was observed that UCB induces alterations on brain microvasculature, which may facilitate its entrance into the brain, but little is known about the steps involved. To evaluate if UCB damages the integrity of human brain microvascular endothelial cells (HBMECs), we used 50 or 100 μM UCB plus human serum albumin, to mimic the neuropathological conditions where levels of UCB free species correspond to moderate and severe neonatal jaundice, respectively. Our results point to a biphasic response of HBMEC to UCB depending on time of exposure. The early response includes increased number of caveolae and caveolin-1 expression, as well as upregulation of vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) with no alterations of the paracellular permeability. In contrast, effects by sustained hyperbilirubinemia are the reduction in zonula occludens (ZO)-1 and β-catenin levels and thus of tight junctions (TJ) strands and cell-to-cell contacts. In addition, reduction of the transendothelial electrical resistance (TEER) and increased paracellular permeability are observed, revealing loss of the barrier properties. The 72 h of HBMEC exposure to UCB triggers a cell response to the stressful stimulus evidenced by increased autophagy. In this later condition, the UCB intracellular content and the detachment of both viable and non-viable cells are increased. These findings contribute to understand why the duration of hyperbilirubinemia is considered one of the risk factors of BIND. Indeed, facilitated brain entrance of the free UCB species will favor its parenchymal accumulation and neurological dysfunction.
Collapse
Affiliation(s)
- Inês Palmela
- Faculty of Pharmacy, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
9
|
Cardoso FL, Kittel Á, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 2012; 7:e35919. [PMID: 22586454 PMCID: PMC3346740 DOI: 10.1371/journal.pone.0035919] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/27/2012] [Indexed: 11/21/2022] Open
Abstract
Background Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Methodology/Principal Findings Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. Conclusions LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.
Collapse
Affiliation(s)
- Filipa L. Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Veszelka
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Inês Palmela
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Andrea Tóth
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Dora Brites
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mária A. Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Maria A. Brito
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
10
|
Khan NM, Poduval TB. Immunomodulatory and immunotoxic effects of bilirubin: molecular mechanisms. J Leukoc Biol 2011; 90:997-1015. [PMID: 21807743 DOI: 10.1189/jlb.0211070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunomodulatory and immunotoxic effects of purified UCB have not been evaluated previously at clinically relevant UCB concentrations and UCB:BSA ratios. To delineate the molecular mechanism of UCB-induced immunomodulation, immune cells were exposed to clinically relevant concentrations of UCB. It inhibited LPS-induced B cell proliferation and cytokine production from splenic macrophages. UCB (≥25 μM) was toxic to unfractionated splenocytes, splenic T cells, B cells, macrophages, LPS-stimulated CD19(+) B cells, human PBMCs, and RBCs. Purified UCB also was found to be toxic to splenocytes and human PBMCs. UCB induced necrosis and apoptosis in splenocytes. UCB activated the extrinsic and intrinsic pathways of apoptosis, as reflected by the markers, such as CD95, caspase-8, Bax, MMP, cytoplasmic Ca(+2), caspase-3, and DNA fragmentation. UCB depleted GSH and activated p38MAPK. NAC, caspase inhibitors, and p38MAPK inhibitor attenuated the UCB-induced apoptosis. In vivo administration of ≥25 mg/kbw UCB induced atrophy of spleen, depletion of bone marrow cells, and leukopenia and decreased lymphocyte count and the T and B cell response to mitogens. UCB administration to mice led to induction of oxidative stress, activation of p38MAPK, and cell death in splenocytes. These parameters were attenuated by the injection of NAC and the p38MAPK inhibitor. Our results demonstrate for the first time that clinically relevant concentrations of UCB induce apoptosis and necrosis in immune cells by depleting cellular GSH. These findings should prove useful in understanding the immunosuppression associated with hyperbilirubinemia.
Collapse
Affiliation(s)
- Nazir M Khan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
11
|
Oakes GH, Bend JR. Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. J Biochem Mol Toxicol 2010; 24:73-88. [PMID: 20196124 DOI: 10.1002/jbt.20313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elevated concentrations of unconjugated bilirubin (UCB) are responsible for neonatal jaundice and can eventually lead to kernicterus or death. The molecular mechanism of UCB toxicity is incompletely elucidated. The purpose of this study was to analyze changes in gene regulation mediated by UCB to determine novel pathways that contribute to UCB-mediated toxicity. We employed microarray analysis to determine changes in gene regulation mediated by UCB at both pro- (50 microM) and antioxidant (70 nM) concentrations in Hepa 1c1c7 cells at 1 and 6 h. The changes observed in select genes were validated with qPCR. Using immunoblot analysis, we validated these changes at the protein level for select genes and documented the activation of two proteins involved in the endoplasmic reticulum (ER) stress pathway, eIF2 alpha and PERK. Following treatment with 50 microM UCB, microarray analysis revealed the upregulation of many genes involved in ER stress (ATF3, BiP, CHOP, Dnajb1, and Herp). We demonstrate that upregulation of the proapoptotic transcription factor CHOP results in increased intracellular protein content. It was determined that activation of proteins involved in ER stress was an early event in UCB toxicity as eIF2 alpha and PERK were both phosphorylated and activated by 1 h posttreatment. We also demonstrate that procaspase-12 content, a proposed initiator caspase in ER stress-mediated apoptosis, is decreased by 4 h posttreatment. In conclusion, this study demonstrates that elevated concentrations of UCB (50 microM) are able to activate select components of the ER stress pathway in Hepa 1c1c7 cells, which may contribute to UCB-mediated apoptosis.
Collapse
Affiliation(s)
- Garth H Oakes
- Department of Physiology & Pharmacology, Siebens-Drake Medical Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, Canada
| | | |
Collapse
|
12
|
Kumar S, Guha M, Choubey V, Maity P, Srivastava K, Puri SK, Bandyopadhyay U. Bilirubin inhibits Plasmodium falciparum growth through the generation of reactive oxygen species. Free Radic Biol Med 2008; 44:602-13. [PMID: 18070610 DOI: 10.1016/j.freeradbiomed.2007.10.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/28/2007] [Accepted: 10/17/2007] [Indexed: 11/25/2022]
Abstract
Free heme is very toxic because it generates highly reactive hydroxyl radicals ((.)OH) to cause oxidative damage. Detoxification of free heme by the heme oxygenase (HO) system is a very common phenomenon by which free heme is catabolized to form bilirubin as an end product. Interestingly, the malaria parasite, Plasmodium falciparum, lacks an HO system, but it forms hemozoin, mainly to detoxify free heme. Here, we report that bilirubin significantly induces oxidative stress in the parasite as evident from the increased formation of lipid peroxide, decrease in glutathione content, and increased formation of H(2)O(2) and (.)OH. Bilirubin can effectively inhibit hemozoin formation also. Furthermore, results indicate that bilirubin inhibits parasite growth and induces caspase-like protease activity, up-regulates the expression of apoptosis-related protein (Gene ID PFI0450c), and reduces the mitochondrial membrane potential. (.)OH scavengers such as mannitol, as well as the spin trap alpha-phenyl-n-tert-butylnitrone, effectively protect the parasite from bilirubin-induced oxidative stress and growth inhibition. These findings suggest that bilirubin, through the development of oxidative stress, induces P. falciparum cell death and that the malaria parasite lacks an HO system probably to protect itself from bilirubin-induced cell death as a second line of defense.
Collapse
Affiliation(s)
- Sanjay Kumar
- Drug Target Discovery and Development Division, Central Drug Research Institute, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Bjelaković G, Stojanović I, Jevtović-Stoimenov T, Kostić G, Sokolović D, Ilić M, Bjelaković L. Polyamine oxidase activity in peripheral blood of newborn infants with neonatal hyperbilirubinemia: is bilirubin an antioxidant? J Basic Clin Physiol Pharmacol 2008; 19:103-18. [PMID: 19024928 DOI: 10.1515/jbcpp.2008.19.2.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Neonatal hyperbilirubinemia can be physiological and pathological and most frequently is a consequence of faster erythrocytes (RBC) hemolysis. Free unconjugated bilirubin is a highly toxic compound, especially for the central nervous system. The most abundant polyamines circulating in blood are spermidine (Spd) and spermine (Sp), which are mainly localized in RBC, where they control membrane permeability. Polyamine oxidase (PAO) exerts an important activity in the plasma and erythrocytes of newborn infants with hyperbilirubinemia, catalyzing the oxidative deamination of Sp and Spd, producing potentially toxic agents that induce apoptosis of mammalian cells. The present study investigated polyamine metabolism by measuring PAO activity in the blood of newborn infants with hyperbilirubinemia and explored the possible antioxidant function of bilirubin through monitoring malondialdehyde (MDA) levels. METHODS The study included 43 newborns, 10 in the control and 33 in the diseased group. Blood PAO activity and bilirubin and MDA levels were measured using spectrophotometric methods. RESULTS/DISCUSSION Our results indicate that bilirubin, at physiologic concentrations, protects neonatal erythrocytes against oxidative stress. The positive correlation between PAO activity and MDA levels with high bilirubin concentrations (> 200 micromol/L) in newborn infants indicates that in pathological conditions, bilirubin cannot exert its antioxidant function. CONCLUSION Investigating the function of polyamines in erythrocytes and the importance of PAO related to hemolysis and bilirubin synthesis is necessary to shed light on the functions of PAO and its metabolites on the permeability of the erythrocyte membrane.
Collapse
|
14
|
Sequeira D, Watchko JF, Daood MJ, O'Day TL, Mahmood B. Unconjugated bilirubin efflux by bovine brain microvascular endothelial cells in vitro. Pediatr Crit Care Med 2007; 8:570-5. [PMID: 17906594 DOI: 10.1097/01.pcc.0000288716.63685.1b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The passage of unconjugated bilirubin (UCB) across the blood-brain barrier into the central nervous system is a crucial first step in the development of kernicterus. The objective of the current study was to characterize the passage of UCB across primary bovine brain microvascular endothelial cell (BBMVEC) monolayers in vitro. DESIGN Experimental study. SETTING Research institute. SUBJECTS BBMVECs. INTERVENTIONS Tritiated UCB (H-UCB) transport at 60, 80, 100, 200, 300, and 400 nM concentrations was tested in both the apical to basolateral (A--> B) and basolateral to apical (B-->A) directions in BBMVEC monolayers in vitro with or without preincubation with pharmacologic active transport inhibitors cyclosporine A, indomethacin, or MK571. MEASUREMENTS AND MAIN RESULTS The rate of H-UCB transport in the B-->A direction was 6.2- to 7.3-fold higher than in the A-->B direction, suggesting active efflux of UCB. Cyclosporine A (5 microM), a model inhibitor of P-glycoprotein, enhanced A-->B while decreasing B-->A UCB transport, resulting in an overall decrease in BBMVEC UCB efflux of between 46% and 54%. Indomethacin (10 microM) and MK-571 (50 microM), respectively a substrate and potent inhibitor of multidrug resistance-associated protein-1, had no effect. CONCLUSIONS We conclude that 1) UCB is transported by BBMVEC monolayers in vitro in a net B-->A direction (i.e., active efflux); and 2) cyclosporine A partially inhibits such transport. We speculate that the blood-brain barrier limits the passage and central nervous system retention of UCB by active transport and that this may be accounted in part by P-glycoprotein.
Collapse
Affiliation(s)
- Deryk Sequeira
- Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
15
|
Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem 2007; 113:259-67. [PMID: 18158647 DOI: 10.1080/13813450701783513] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vascular endothelial cell (VEC) dysfunction in diabetes has been associated with hyperglycaemia-induced intra- and extracellular glycation of proteins and to overproduction of glucose-derived free radicals. VEC protect their intracellular environment against an increased influx of glucose in face of hyperglycaemia by reducing the expression and plasma membrane abundance of their glucose transporter-1 (GLUT-1). We investigated the hypothesis that glucose-derived free radicals induce this down-regulatory mechanism in VEC, but proved the contrary. In fact, pro-oxidants significantly increased the expression and plasma membrane abundance of GLUT-1 and the rate of glucose transport in VEC while abolishing high-glucose-induced down-regulation of the hexose transport system. The resulting uncontrolled influx of glucose followed by overproduction of glucose-derived ROS further up-regulates the rate of glucose transport, and vice versa. This perpetuating glycoxidative stress finally leads to the collapse of the auto-regulatory protective mechanism and accelerates the development of dysfunctional endothelium in blood vessels.
Collapse
Affiliation(s)
- G Cohen
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
16
|
Han F, Shirasaki Y, Fukunaga K. Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem 2006; 99:97-106. [PMID: 16987238 DOI: 10.1111/j.1471-4159.2006.04048.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microsphere embolism (ME)-induced up-regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells of brain microvessels was observed 2-48 h after ischemia. eNOS induction preceded disruption of the blood-brain barrier (BBB) observed 6-72 h after ischemia. In vascular endothelial cells, ME-induced eNOS expression was closely associated with protein tyrosine nitration, which is a marker of generation of peroxynitrite. Leakage of rabbit IgG from microvessels was also evident around protein tyrosine nitration-immunoreactive microvessels. To determine whether eNOS expression and protein tyrosine nitration in vascular endothelial cells mediates BBB disruption in the ME brain, we tested the effect of a novel calmodulin-dependent NOS inhibitor, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), which inhibits eNOS activity and, in turn, protein tyrosine nitration. Concomitant with inhibition of protein tyrosine nitration in vascular endothelial cells, DY-9760e significantly inhibited BBB disruption as assessed by Evans blue (EB) excretion. DY-9760e also inhibited cleavage of poly (ADP-ribose) polymerase as a marker of the apoptotic pathway in vascular endothelial cells. Taken together with previous evidence in which DY-9760e inhibited brain edema, ME-induced eNOS expression in vascular endothelial cells likely mediates BBB disruption and, in turn, brain edema.
Collapse
Affiliation(s)
- Feng Han
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
17
|
Cohen G, Livovsky DM, Kapitulnik J, Sasson S. Bilirubin increases the expression of glucose transporter-1 and the rate of glucose uptake in vascular endothelial cells. Rev Diabet Stud 2006; 3:127-33. [PMID: 17487336 PMCID: PMC1783585 DOI: 10.1900/rds.2006.3.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The close contact between the endothelial cell monolayer in blood vessels and blood plasma allows free diffusion of the hydrophobic unconjugated bilirubin (BR) into these cells. BR can exert both anti- and pro-oxidative effects in various types of cells in a dose-dependent manner. High glucose levels downregulate the expression of the glucose transporter-1 (GLUT-1) and the rate of glucose uptake in vascular endothelial cell (VEC). Pro-oxidants, on the other hand, up-regulate this system in VEC. We aimed to investigate potential effects of BR on the glucose transport system in VEC. METHODS Primary cultures of bovine aortic endothelial cells were exposed to BR, and the rate of hexose transport, GLUT-1 expression and plasma membrane localization were determined. RESULTS BR induced oxidative stress in VEC, and significantly augmented the rate of glucose transport and GLUT-1 expression and plasma membrane localization in these cells. BR also reversed the high glucose-induced downregulation of the glucose transport system in VEC. CONCLUSION The pro-oxidative properties of BR are responsible for its effects on the regulation of glucose transport in vascular endothelium. Pathological concentrations of BR in the vascular compartment (jaundice) may influence the cellular handling of glucose in diabetes.
Collapse
|
18
|
Karageorgos N, Patsoukis N, Chroni E, Konstantinou D, Assimakopoulos SF, Georgiou C. Effect of N-acetylcysteine, allopurinol and vitamin E on jaundice-induced brain oxidative stress in rats. Brain Res 2006; 1111:203-12. [PMID: 16884703 DOI: 10.1016/j.brainres.2006.06.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/20/2022]
Abstract
We examined the possible protective effect of certain antioxidants (N-acetylcysteine, allopurinol and vitamin E) against the oxidative stress of brain tissue induced by experimental obstructive jaundice in rats. Thirty-six male Wistar rats were randomly divided into six groups; group I control, group II sham operated, group III bile duct ligated and groups IV, V, and VI in which the rats, after bile duct ligation, were given every day an intraperitoneal injection with N-acetylcysteine, allopurinol and Vit-E respectively. All rats were sacrificed on the tenth day by exsanguination and the oxidative state in samples from cortex, midbrain and cerebellum was assessed by measuring the thiol redox state and lipid peroxidation quantified by MDA measurements. The main finding was that all three antioxidants decrease lipid peroxidation in the three brain areas. Cysteine levels increased and protein thiol levels were reserved only in the group treated with N-acetylcysteine, whereas oxidized glutathione increased dramatically in the group treated with allopurinol, suggesting that each antioxidant agent had a certain influence profile on the different antioxidant defense systems. The observed effects of the antioxidants in this experimental model could also provide insight into some aspects of jaundice-induced hepatic encephalopathy in humans.
Collapse
|
19
|
Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 2006; 28:399-414. [PMID: 16759443 DOI: 10.1179/016164106x115008] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Increasing body of experimental and clinical data indicates that early brain injury after initial bleeding largely contributes to unfavorable outcome after subarachnoid hemorrhage (SAH). This review presents molecular mechanisms underlying brain injury at its early stages after SAH. METHODS PubMed was searched using term 'subarachnoid hemorrhage' and key words referring to molecular and cellular pathomechanisms of SAH-induced early brain injury. RESULTS The authors reviewed intracranial phenomena and molecular agents that contribute to the early development of pathological sequelae of SAH in cerebral and vascular tissues, including cerebral ischemia and its interactions with injurious blood components, blood-brain barrier disruption, brain edema and apoptosis. DISCUSSION It is believed that detailed knowledge of molecular signaling pathways after SAH will serve to improve therapeutic interventions. The most promising approach is the protection of neurovascular unit including anti-apoptosis therapy.
Collapse
|
20
|
Abstract
Overproduction of reactive oxygen species under pathophysiological conditions, including dyslipidemia, hypertension, diabetes, and smoking, is integral in the development of cardiovascular diseases (CVD). The reactive oxygen species released from all types of vascular cells regulate various signaling pathways that mediate not only vascular inflammation in atherogenesis but also antioxidative and antiinflammatory responses. One such protective and stress-induced protein is heme oxygenase (HO). HO is the first rate-limiting enzyme in heme breakdown to generate equimolar quantities of carbon monoxide, biliverdin, and free ferrous iron. Accumulating evidence has shown that inducible HO (HO-1) and its products function as adaptive molecules against oxidative insults. The proposed mechanisms by which HO-1 exerts its cytoprotective effects include its abilities to degrade the pro-oxidative heme, to release biliverdin and subsequently convert it bilirubin, both of which have antioxidant properties, and to generate carbon monoxide, which has antiproliferative and antiinflammatory as well as vasodilatory properties. Herein, I highlight the relationship of HO and cardiovascular disease, especially atherosclerosis, gene-targeting approaches in animal models, and the potential for and concern about HO-1 as a novel therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Toshisuke Morita
- Department of Laboratory Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan.
| |
Collapse
|
21
|
Zhang Y, Zhang X, Park TS, Gidday JM. Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab 2005; 25:868-77. [PMID: 15729291 DOI: 10.1038/sj.jcbfm.9600081] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral ischemia-reperfusion leads to vascular dysfunction characterized by endothelial cell injury or death. In the present study, we used an in vitro model to elucidate mechanisms of human brain microvascular endothelial cell (HBMEC) injury after episodic ischemia-reperfusion. Near-confluent HBMEC cultures were exposed to intermittent hypoxia-reoxygenation (HX/RO) and, at different recovery time points, cell viability was assessed by the MTT assay, apoptotic death by fluorescence microscopy of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL)-positive cells, and nuclear translocation of apoptosis-inducing factor (AIF) and cleavage of poly(ADP-ribose) polymerase-1 (PARP-1) by immunoblotting of subcellular fractions. Reductions in HBMEC viability were proportional to the number of HX/RO cycles, and not the total duration of hypoxia. Using four cycles of 1-h HX with 1 h of intervening normoxic RO, cell viability was reduced 30% to 40% between 12 and 48 h. Treatment with the PARP-1 inhibitors 3-aminobenzamide or 4-amino-1,8-naphthalimide during the insult improved HBMEC viability at 24 h after insult, and resulted in dose-dependent reductions in TUNEL-positivity at 16 h after insult, but not if these treatments were delayed by 4 h. HX/RO-induced increases in nuclear AIF translocation, as well as PARP-1 cleavage, were also reduced dose-dependently at 4 h after insult by the inhibitors. The caspase inhibitor z-VAD-fmk blocked PARP-1 cleavage, but did not affect AIF translocation and was only modestly cytoprotective. These findings indicate that PARP-1 activation and a PARP-1-dependent, caspase-independent, nuclear translocation of AIF contribute to apoptotic cerebral endothelial cell death after ischemia-reperfusion, underscoring the potential for ischemic microvascular protection by inhibiting PARP activation or preventing AIF translocation.
Collapse
Affiliation(s)
- Yunhong Zhang
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
22
|
Kumral A, Genc S, Genc K, Duman N, Tatli M, Sakizli M, Ozkan H. Hyperbilirubinemic Serum Is Cytotoxic and Induces Apoptosis in Murine Astrocytes. Neonatology 2005; 87:99-104. [PMID: 15539765 DOI: 10.1159/000081969] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/09/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND High levels of unconjugated bilirubin can be neurotoxic and gliotoxic. However, the effect of serum from patients with neonatal indirect hyperbilirubinemia on astrocyte viability has never been investigated. OBJECTIVES In the present study, we searched for the possible toxic effect of hyperbilirubinemic serum on murine astrocytes. METHODS Heat-inactivated patient serum was added to astrocyte cultures at different concentrations varying from 1 to 20%, and cultures were incubated for 24, 48, and 72 h. Sera from healthy infants without hyperbilirubinemia were used as controls. Cytotoxicity was evaluated according to the release of lactate dehydrogenase in the culture medium. Apoptotic cell death was determined by anti-single-strand DNA immunostaining. RESULTS The results of the present study show that hyperbilirubinemic serum induces cytotoxicity and apoptotic astrocyte death in a concentration- and time-dependent manner. CONCLUSIONS We conclude that serum from patients with neonatal indirect hyperbilirubinemia is cytotoxic to murine astrocytes.
Collapse
Affiliation(s)
- Abdullah Kumral
- Department of Pediatrics, Dokuz Eylul University, Inciralti, TR-35340 Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
23
|
Oakes GH, Bend JR. Early steps in bilirubin-mediated apoptosis in murine hepatoma (Hepa 1c1c7) cells are characterized by aryl hydrocarbon receptor-independent oxidative stress and activation of the mitochondrial pathway. J Biochem Mol Toxicol 2005; 19:244-55. [PMID: 16173058 DOI: 10.1002/jbt.20086] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unconjugated bilirubin (UCB), the end product of heme catabolism, causes apoptosis in cells of the central nervous system, endothelial cells, and hepatotoma cells. However, the molecular mechanisms that contribute to UCB cytotoxicity remain unclear. The purpose of this study was to characterize the sequence of early events leading to UCB-mediated cytotoxicity in murine hepatoma Hepa 1c1c7 cells. In the present study, UCB (5-50 microM) was found to markedly increase the intracellular generation of reactive oxygen species (ROS) in a concentration-dependent manner, which is significantly elevated by 30 min post-treatment. This generation of ROS by UCB is not dependent on aryl hydrocarbon receptor (Ahr) signaling, as cells deficient in the Ahr (C12 cells) or the Ahr nuclear translocator protein (Arnt; C4 cells) were as efficient at generating ROS as wild type (WT) Hepa 1c1c7 cells. Mitochondrial membrane depolarization, evaluated with the lipophilic cationic dye, JC-1, occurred at least by 2 h after treatment with 50 muM UCB. Analysis of the caspase cascade demonstrated that activation of caspase-9 preceded activation of caspase-3. No conversion of procaspase-2 to active caspase-2 was detected in this study. These results demonstrate that UCB-mediated apoptosis in Hepa 1c1c7 cells is associated with increased oxidative stress and that caspase-9, and definitely not caspase-2, is the initiator caspase for apoptosis in UCB-treated Hepa 1c1c7 cells.
Collapse
Affiliation(s)
- Garth H Oakes
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
24
|
Keshavan P, Schwemberger SJ, Smith DLH, Babcock GF, Zucker SD. Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. Int J Cancer 2004; 112:433-45. [PMID: 15382069 DOI: 10.1002/ijc.20418] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bilirubin is the principal end product of heme degradation. Prompted by epidemiologic analyses demonstrating an inverse correlation between serum bilirubin levels and cancer mortality, we examined the effect(s) of bilirubin on the growth and survival of colon adenocarcinoma cells. Adenocarcinoma cell monolayers were treated with bilirubin over a range of bilirubin:BSA molar ratios (0-0.6), and viability was assessed colorimetrically. Apoptosis was characterized by TUNEL assay, annexin V staining and caspase-3 activation. The mechanism(s) by which bilirubin induces apoptosis was investigated by Western blotting for cytochrome c release, assaying for caspase-8 and caspase-9 activation and for mitochondrial depolarization by JC-1 staining. The direct effect of bilirubin on the membrane potential of isolated mitochondria was evaluated using light-scattering and fluorescence techniques. Bilirubin decreased the viability of all colon cancer cell lines tested in a dose-dependent manner. Cells exhibited substantial apoptosis when exposed to bilirubin concentrations ranging 0-50 microM, as demonstrated by an 8- to 10-fold increase in TUNEL and annexin V staining and in caspase-3 activity. Bilirubin treatment evokes specific activation of caspase-9, enhances cytochrome c release into the cytoplasm and triggers the mitochondrial permeability transition in colon cancer monolayers. Additionally, bilirubin directly induces the depolarization of isolated rat liver mitochondria, an effect that is not inhibited by cyclosporin A. Bilirubin stimulates apoptosis of colon adenocarcinoma cells in vitro through activation of the mitochondrial pathway, apparently by directly dissipating mitochondrial membrane potential. As this effect is triggered at concentrations normally present in the intestinal lumen, we postulate a physiologic role for bilirubin in modulating colon tumorigenesis.
Collapse
Affiliation(s)
- Pavitra Keshavan
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
25
|
Imamura M, Luo B, Limbird J, Vitello A, Oka M, Ivy DD, McMurtry IF, Garat CV, Fallon MB, Carter EP. Hypoxic pulmonary hypertension is prevented in rats with common bile duct ligation. J Appl Physiol (1985) 2004; 98:739-47. [PMID: 15516365 DOI: 10.1152/japplphysiol.00556.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted. The purpose of this work was to examine the pulmonary vascular responses and adaptations to the combination of liver cirrhosis and chronic hypoxia (CH). In addition to hemodynamic measurements, we investigated whether pulmonary expression changes of eNOS, ET-1 and its receptors (endothelin A and B), or heme oxygenase 1 in experimental cirrhosis affect the development of hypoxic pulmonary hypertension. We induced cirrhosis in male Sprague-Dawley rats using common bile duct ligation (CBDL) and exposed them to CH (inspired PO2 approximately 76 Torr) or maintained them in Denver (Den, inspired PO2 approximately 122 Torr) for 3 wk. Our data show 1) CBDL-CH rats had a persistent blunted hypoxic pulmonary vasoconstriction similar to CBDL-Den; 2) the development of hypoxic pulmonary hypertension was completely prevented in the CBDL-CH rats, as indicated by normal pulmonary arterial pressure and lack of right ventricular hypertrophy and pulmonary arteriole remodeling; and 3) selective increases in expression of ET-1, pulmonary endothelin B receptor, eNOS, and heme oxygenase 1 are potential mechanisms of protection against hypoxic pulmonary hypertension in the CBDL-CH rats. These data demonstrate that unique and undefined hepatic-pulmonary interactions occur during liver cirrhosis and chronic hypoxia. Understanding these interactions may provide important information for the prevention and treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Masatoshi Imamura
- Cardiovascular-Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol 2004; 66:773-9. [PMID: 15269289 DOI: 10.1124/mol.104.002832] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jaime Kapitulnik
- Department of Pharmacology, School of Pharmacy, The Hebrew University of Jerusalem, POB 12065, 91120, Israel.
| |
Collapse
|
27
|
Fernandes A, Silva RFM, Falcão AS, Brito MA, Brites D. Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J Neuroimmunol 2004; 153:64-75. [PMID: 15265664 DOI: 10.1016/j.jneuroim.2004.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 11/19/2022]
Abstract
In hyperbilirubinemic newborns, sepsis is considered a risk factor for kernicterus. Evidence shows that injury to astrocytes triggers cytokine release. We examined the effects of unconjugated bilirubin (UCB) alone, or in combination with LPS, on the release of glutamate and cytokines from astrocytes in conditions inducing less than 10% of cell death. UCB leads to an increase of extracellular glutamate and highly enhances the release of TNF-alpha and IL-1beta, while inhibiting the production of IL-6. LPS potentiates immunostimulatory properties of UCB. These results point out the role of cytokines and provide a basis for the significance of sepsis in UCB encephalopathy.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Centro de Patogénese Molecular (UBMBE), Faculdade de Farmácia, University of Lisbon, Av. Forças Armadas, 1600-083 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
28
|
Kimura H, Gules I, Meguro T, Zhang JH. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res 2004; 990:148-56. [PMID: 14568339 DOI: 10.1016/s0006-8993(03)03450-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Several studies reported that the levels of proinflammatory cytokines such as TNF-alpha, IL-1beta, IL-6, and IL-8 are elevated in the cerebrospinal fluid (CSF) of patients after subarachnoid hemorrhage (SAH). Cytokines in CSF may contribute to the development of vasospasm and cerebral ischemia. In the present study, we investigated the possible cytotoxic effects of these cytokines on cultured cerebral microvascular endothelial cells. METHOD The effects of TNF-alpha, IL-1beta, IL-6, and IL-8 were tested using cell viability assay, DNA fragmentation analysis (DNA laddering), Western blot analysis (Anti-poly-(ADP-ribose) polymerase [PARP] antibody), and caspase-3 activity. RESULTS TNF-alpha and IL-1beta, but not IL-6 or IL-8, caused cell detachment in a dose-dependent manner (p<0.05). TNF-alpha (200 pg/ml) and IL-1beta (150 pg/ml) produced DNA ladders at 24-72 h. TNF-alpha but not IL-1beta cleaved the PARP from 116- to 85-kDa fragments and enhanced caspase-3 activity at 24-72 h after incubation with endothelial cells. Caspase-3 inhibitor at 10 micromol/l significantly prevented TNF-alpha-induced cell detachment (p<0.05). DISCUSSION TNF-alpha induces apoptosis in cultured cerebral endothelial cells through the cleavage of caspase-3. IL-1beta decreases the adherent cells, produces DNA ladders, but fails to cleave PARP or increase caspase-3 activity. IL-1beta may induce apoptosis in cerebral endothelial cells through different pathway from that of TNF-alpha.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
29
|
Abstract
High levels of unconjugated bilirubin can be neurotoxic and gliotoxic. However, the effect of bilirubin on oligodendrocyte viability has never been investigated. In the present study, we searched the possible toxic effect of bilirubin on differentiated rat oligodendrocytes. Bilirubin was added to oligodendrocyte cultures at different concentrations varied between 10 and 100 microM, and cultures were incubated for different times (24, 48 and 72 h). Cell viability was evaluated by trypan blue exclusion. The results showed that bilirubin decreased oligodendroglial cell viability in a concentration and time-dependent manner. Bilirubin induced apoptotic cell death as revealed by TUNEL staining and poly(ADP-ribose) polymerase cleavage. We found that bilirubin induced inducible nitric oxide synthase (NOS) mRNA expression in rat oligodendrocytes. Bilirubin also increased oligodendroglial nitrite production in a concentration-dependent manner and NOS inhibitor partly blocked bilirubin-induced cytotoxicity. These results suggest that bilirubin induces cytotoxicity, at least partly, via the induction of nitric oxide production in oligodendrocytes.
Collapse
Affiliation(s)
- Sermin Genc
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey.
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- David A Greenberg
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|