1
|
Nesbit MO, Chai A, Axerio-Cilies P, Phillips AG, Wang YT, Held K. The selective dopamine D 1 receptor agonist SKF81297 modulates NMDA receptor currents independently of D 1 receptors. Neuropharmacology 2022; 207:108967. [PMID: 35077763 DOI: 10.1016/j.neuropharm.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Dopamine D1 receptor (D1R) agonists are frequently used to study the role of D1Rs in neurotransmission and behaviour. They have been repeatedly shown to modulate glutamatergic NMDAR currents in the prefrontal cortex (PFC), giving rise to the idea that D1R activation tunes glutamatergic networks by regulating NMDAR activity. We report that the widely used D1R agonist SKF81297 potentiates NMDAR currents in a dose-dependent manner, independently of D1R activation in mPFC slices, cortical neuron cultures and NMDAR-expressing recombinant HEK293 cells. SKF81297 potentiated NMDAR currents through both GluN2A and GluN2B subtypes in the absence of D1R expression, while inhibiting NMDAR currents through GluN2C and GluN2D subtypes. In contrast, the D1R ligands SKF38393, dopamine and SCH23390 inhibited GluN2A- and GluN2B-containing NMDAR currents. SKF81297 also inhibited GluN2A- and GluN2B-containing NMDAR currents at higher concentrations and when glutamate/glycine levels were high, exhibiting bidirectional modulation. To our knowledge, these findings are the first report of a D1R-independent positive modulatory effect of a D1R ligand on NMDA receptors. Importantly, our results further emphasize the possibility of off-target effects of many D1R ligands, which has significant implications for interpreting the large body of research relying on these compounds to examine dopamine functions.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Anping Chai
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Peter Axerio-Cilies
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Katharina Held
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration and Laboratory of Ion Channel Research, Department of Molecular Medicine, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Darvish-Ghane S, Quintana C, Beaulieu JM, Martin LJ. D1 receptors in the anterior cingulate cortex modulate basal mechanical sensitivity threshold and glutamatergic synaptic transmission. Mol Brain 2020; 13:121. [PMID: 32891169 PMCID: PMC7487672 DOI: 10.1186/s13041-020-00661-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
The release of dopamine (DA) into target brain areas is considered an essential event for the modulation of many physiological effects. While the anterior cingulate cortex (ACC) has been implicated in pain related behavioral processes, DA modulation of synaptic transmission within the ACC and pain related phenotypes remains unclear. Here we characterized a Crispr/Cas9 mediated somatic knockout of the D1 receptor (D1R) in all neuronal subtypes of the ACC and find reduced mechanical thresholds, without affecting locomotion and anxiety. Further, the D1R high-efficacy agonist SKF 81297 and low efficacy agonist (±)-SKF-38393 inhibit α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) currents in the ACC. Paradoxically, the D1R antagonists SCH-23390 and SCH 33961 when co-applied with D1R agonists produced a robust short-term synergistic depression of AMPAR currents in the ACC, demonstrating an overall inhibitory role for D1R ligands. Overall, our data indicate that absence of D1Rs in the ACC enhanced peripheral sensitivity to mechanical stimuli and D1R activation decreased glutamatergic synaptic transmission in ACC neurons.
Collapse
Affiliation(s)
- Soroush Darvish-Ghane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Clémentine Quintana
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Loren J Martin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L1C6, Canada.
| |
Collapse
|
3
|
Zhang L, Bose P, Warren RA. Dopamine preferentially inhibits NMDA receptor-mediated EPSCs by acting on presynaptic D1 receptors in nucleus accumbens during postnatal development. PLoS One 2014; 9:e86970. [PMID: 24784836 PMCID: PMC4006738 DOI: 10.1371/journal.pone.0086970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de recherche Fernand-Seguin, University of Montreal, Montreal, Canada
- Department of Physiology, University of Montreal, Montreal, Canada
| | - Poulomee Bose
- Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Richard A. Warren
- Centre de recherche Fernand-Seguin, University of Montreal, Montreal, Canada
- Department of Psychiatry, University of Montreal, Montreal, Canada
- * E-mail:
| |
Collapse
|
4
|
Abstract
Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson's disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette's syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.
Collapse
Affiliation(s)
- Nicolas X Tritsch
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
5
|
Brain stimulation reward is altered by affecting dopamine-glutamate interactions in the central extended amygdala. Neuroscience 2012; 224:1-14. [PMID: 22906479 DOI: 10.1016/j.neuroscience.2012.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 11/22/2022]
Abstract
This work compares the effects on brain stimulation reward (BSR) when combining D2 dopamine receptor and AMPA glutamate receptor manipulations in the sublenticular central extended amygdala (SLEAc) and the nucleus accumbens shell (NAc shell). Thirty-seven male Long Evans rats received medial forebrain bundle (MFB) stimulation electrodes and bilateral injection guide cannulae aimed at either the SLEAc or the NAc shell. The rate-frequency paradigm was used to assess drug-induced changes in stimulation reward effectiveness and in response rate following 0.5 μl infusions of 0.50 μg of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX) (AMPA receptor antagonist), 10.0 μg of quinpirole (D2 receptor agonist), 0.25 μg of AMPA (AMPA receptor agonist), 3.0 μg of eticlopride (D2 receptor antagonist), 0.50 μg of NBQX with 10.0 μg of quinpirole, and 0.25 μg of AMPA with 3.0 μg of eticlopride. The drugs were injected both ipsi- and contralateral to the stimulation site. AMPA blockade and D2 stimulation synergized to reduce BSR's reward efficacy when directed at the SLEAc contralateral to the stimulation site whereas changes in reward efficacy were primarily D2-dependent following injections into the ipsilateral SLEAc. When injected into the NAc shell the drugs had only one significant effect on the frequency required to maintain half-maximal responding: injections of NBQX with quinpirole ipsilateral to the stimulation site increased required frequency significantly more than did injections of saline. Contrary to expectations, stimulating AMPA receptors with and without co-blockade of D2 receptors also decreased the stimulation's reward efficacy, although these effects may reflect general behavioral disruption more than effects on reward per se. These results indicate a role for the SLEAc in BSR and also suggest that SLEAc neurons ipsi- and contralateral to the stimulated MFB play their roles in BSR through different mechanisms.
Collapse
|
6
|
Waraczynski M, Salemme J, Farral B. Brain stimulation reward is affected by D2 dopamine receptor manipulations in the extended amygdala but not the nucleus accumbens. Behav Brain Res 2010; 208:626-35. [DOI: 10.1016/j.bbr.2010.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 12/06/2009] [Accepted: 01/10/2010] [Indexed: 12/13/2022]
|
7
|
André VM, Cepeda C, Cummings DM, Jocoy EL, Fisher YE, William Yang X, Levine MS. Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids. Eur J Neurosci 2009; 31:14-28. [PMID: 20092552 DOI: 10.1111/j.1460-9568.2009.07047.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Striatal medium-sized spiny neurons (MSSNs) receive glutamatergic inputs modulated presynaptically and postsynaptically by dopamine. Mice expressing the gene for enhanced green fluorescent protein as a reporter gene to identify MSSNs containing D1 or D2 receptor subtypes were used to examine dopamine modulation of spontaneous excitatory postsynaptic currents (sEPSCs) in slices and postsynaptic N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) currents in acutely isolated cells. The results demonstrated dopamine receptor-specific modulation of sEPSCs. Dopamine and D1 agonists increased sEPSC frequency in D1 receptor-expressing MSSNs (D1 cells), whereas dopamine and D2 agonists decreased sEPSC frequency in D2 receptor-expressing MSSNs (D2 cells). These effects were fully (D1 cells) or partially (D2 cells) mediated through retrograde signaling via endocannabinoids. A cannabinoid 1 receptor (CB1R) agonist and a blocker of anandamide transporter prevented the D1 receptor-mediated increase in sEPSC frequency in D1 cells, whereas a CB1R antagonist partially blocked the decrease in sEPSC frequency in D2 cells. At the postsynaptic level, low concentrations of a D1 receptor agonist consistently increased NMDA and AMPA currents in acutely isolated D1 cells, whereas a D2 receptor agonist decreased these currents in acutely isolated D2 cells. These results show that both glutamate release and postsynaptic excitatory currents are regulated in opposite directions by activation of D1 or D2 receptors. The direction of this regulation is also specific to D1 and D2 cells. We suggest that activation of postsynaptic dopamine receptors controls endocannabinoid mobilization, acting on presynaptic CB1Rs, thus modulating glutamate release differently in glutamate terminals projecting to D1 and D2 cells.
Collapse
Affiliation(s)
- Véronique M André
- Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, NPI 58-258, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Brito VI, Rozanski VE, Beyer C, Küppers E. Dopamine regulates the expression of the glutamate transporter GLT1 but not GLAST in developing striatal astrocytes. J Mol Neurosci 2009; 39:372-9. [PMID: 19685014 DOI: 10.1007/s12031-009-9273-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/22/2009] [Indexed: 11/25/2022]
Abstract
Dopamine and L: -glutamate are important signals which guide the development of functional neural circuits within the striatal complex. Disequilibrium of these neurotransmitter systems is believed to be etiological for the genesis of neurological and psychiatric diseases. Since dopamine plays a crucial role for the early transmitter-regulated differentiation of striatal GABAergic neurons, we emphasized that dopaminergic transmission may also be involved in the fine tuning of intra-striatal glutamate action. In this study, we report that dopamine decreases the expression of the glutamate transporter GLT1 but not GLAST in striatal astrocytes by measuring gene and protein expression. Using glutamate-uptake approaches, we demonstrate an increase in glutamate clearance of externally added glutamate in dopamine-treated cultures compared to controls. Our findings imply that dopamine regulates the availability of L: -glutamate in the developing striatum. It is also suggested that the application of dopaminergic drugs can interfere with ontogenetic processes within the striatal complex.
Collapse
Affiliation(s)
- Veronica I Brito
- Department of Cellular Neurobiology, Eberhard-Karls University of Tübingen, Institute of Anatomy, 72074 Tübingen, Germany
| | | | | | | |
Collapse
|
9
|
Han P, Whelan P. Modulation of AMPA currents by D1-like but not D2-like receptors in spinal motoneurons. Neuroscience 2009; 158:1699-707. [DOI: 10.1016/j.neuroscience.2008.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/04/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
|
10
|
Tong H, Gibb AJ. Dopamine D1 receptor inhibition of NMDA receptor currents mediated by tyrosine kinase-dependent receptor trafficking in neonatal rat striatum. J Physiol 2008; 586:4693-707. [PMID: 18703578 PMCID: PMC2614044 DOI: 10.1113/jphysiol.2008.158931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 08/13/2008] [Indexed: 02/04/2023] Open
Abstract
NMDA receptors are of particular importance in the control of synaptic strength and integration of synaptic activity. Dopamine receptor modulation of NMDA receptors in neonatal striatum may influence the efficacy of synaptic transmission in the cortico-striatal pathway and if so, this modulation will affect the behaviour of the basal ganglia network. Here, we show that in acute brain slices of neonatal (P7) rat striatum the dopamine D1 receptor agonist SKF-82958 significantly decreases NMDA receptor currents in patch-clamp whole-cell recordings. This inhibition is not abolished by application of a G protein inhibitor (GDP-beta-S) or irreversible G protein activator (GTP-gamma-S) suggesting a G protein-independent mechanism. In addition, intracellular application of protein tyrosine kinase inhibitors (lavendustin A or PP2) abolished D1 inhibition of NMDA currents. In contrast, in older animals (P28) D1 receptor activation produces a potentiation of the NMDA response which suggests there is a developmental switch in D1 modulation of striatal NMDA receptors. Single-channel recordings show that direct D1 receptor inhibition of NMDA receptors cannot be observed in isolated membrane patches. We hypothesize that D1 inhibition in whole-cell recordings from neonatal rats may be mediated by a change in NMDA receptor trafficking. Consistent with this hypothesis, intracellular application of a dynamin inhibitory peptide (QVPSRPNRAP) abolished D1 inhibition of NMDA receptor currents. We therefore conclude that a tyrosine kinase-dependent alteration of NMDA receptor trafficking underlies D1 dopamine receptor-mediated down-regulation of NMDA receptor currents in medium spiny neurons of neonatal rat striatum.
Collapse
Affiliation(s)
- Huaxia Tong
- Department of Pharmacology, University College London, London, UK
| | | |
Collapse
|
11
|
Khoboko T, Russell VA. Effects of development and dopamine depletion on striatal NMDA receptor-mediated calcium uptake. Metab Brain Dis 2008; 23:9-30. [PMID: 17594134 DOI: 10.1007/s11011-007-9050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/04/2007] [Indexed: 10/23/2022]
Abstract
Calcium (Ca(2+)) is the currency of N-methyl-D-aspartate (NMDA) receptor mediated signal transduction pathways involved in the modification of synaptic efficacy during regulation of excitatory inputs into the striatum. The aim of the present study was to investigate the effects of development and dopamine depletion on NMDA receptor function. NMDA receptors were stimulated by incubation of striatal sections (350 microm) in buffer containing NMDA (100 microm) for 2 min, the slices were washed and uptake of radioactively labelled calcium ((45)Ca(2+)) was measured. Dopamine depletion has been reported to result in alterations of glutamate receptor expression and upregulation of NMDA receptor activity. However, the results of the present study show that dopamine depletion does not alter NMDA-stimulated Ca(2+) uptake into rat striatal slices in vitro. Unilateral striatal dopamine depletion was achieved by infusion of 6-hydroxydopamine (6-OHDA, 13.5 microg/4.5 microl) into the medial forebrain bundle (MFB) of the left hemisphere of ten rats. NMDA-stimulated (45)Ca(2+) uptake into striata following dopamine depletion was not significantly different from NMDA-stimulated (45)Ca(2+) uptake into striata obtained from sham-operated rats. Other factors that induce changes in NMDA receptor function include development and aging. In young rats aged 7 weeks old (n = 7) and 16 weeks old (n = 6) a significant 2-3 fold decrease in striatal NMDA receptor function was observed with increasing age over the 9 week period of development. To our knowledge these are the first results to show developmental decreases of NMDA receptor function in the striatum of juvenile rats.
Collapse
Affiliation(s)
- Thabelo Khoboko
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | | |
Collapse
|
12
|
Moyer JT, Wolf JA, Finkel LH. Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 2007; 98:3731-48. [PMID: 17913980 DOI: 10.1152/jn.00335.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic modulation produces a variety of functional changes in the principal cell of the striatum, the medium spiny neuron (MSN). Using a 189-compartment computational model of a ventral striatal MSN, we simulated whole cell D1- and D2-receptor-mediated modulation of both intrinsic (sodium, calcium, and potassium) and synaptic currents (AMPA and NMDA). Dopamine (DA) modulations in the model were based on a review of published experiments in both ventral and dorsal striatum. To objectively assess the net effects of DA modulation, we combined reported individual channel modulations into either D1- or D2-receptor modulation conditions and studied them separately. Contrary to previous suggestions, we found that D1 modulation had no effect on MSN nonlinearity and could not induce bistability. In agreement with previous suggestions, we found that dopaminergic modulation leads to changes in input filtering and neuronal excitability. Importantly, the changes in neuronal excitability agree with the classical model of basal ganglia function. We also found that DA modulation can alter the integration time window of the MSN. Interestingly, the effects of DA modulation of synaptic properties opposed the effects of DA modulation of intrinsic properties, with the synaptic modulations generally dominating the net effect. We interpret this lack of synergy to suggest that the regulation of whole cell integrative properties is not the primary functional purpose of DA. We suggest that D1 modulation might instead primarily regulate calcium influx to dendritic spines through NMDA and L-type calcium channels, by both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Jason T Moyer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
13
|
Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, Schallert T, Georgieff MK, Rao R. Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 2007; 137:1043-9. [PMID: 17374674 PMCID: PMC1892181 DOI: 10.1093/jn/137.4.1043] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gestational and early postnatal iron deficiency occurs commonly in humans and results in altered behaviors suggestive of striatal dysfunction. We hypothesized that early iron deficiency alters the metabolome of the developing striatum and accounts for abnormalities in striatum-dependent behavior in rats. Sixteen metabolite concentrations from a 9-11 microL volume within the striatum were serially assessed in 10 iron-deficient and 10 iron-sufficient rats on postnatal days 8, 22 (peak anemia), and 37 (following recovery from anemia) using (1)H NMR spectroscopy at 9.4 tesla. Chin-elicited bilateral forelimb placing and vibrissae-elicited unilateral forelimb placing were also assessed on these days. Iron deficiency altered metabolites indexing energy metabolism, neurotransmission, glial integrity, and myelination over time (P < 0.05). Successful development of behaviors was delayed in the iron-deficient group (P < or = 0.01). Alterations in creatine, glucose, glutamine, glutamate, N-acetylaspartate, myo-inositol, and glycerophosphorylcholine + phosphorylcholine concentrations accounted for 77-83% of the behavioral variability during peak anemia on postnatal day 22 in the iron-deficient group. Correction of anemia normalized the striatal metabolome but not the behaviors on postnatal day 37. These novel data imply that alterations in the metabolite profile of the striatum likely influence later neural functioning in early iron deficiency.
Collapse
Affiliation(s)
- Kay L Ward
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ragozzino D, Di Angelantonio S, Trettel F, Bertollini C, Maggi L, Gross C, Charo IF, Limatola C, Eusebi F. Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J Neurosci 2006; 26:10488-98. [PMID: 17035533 PMCID: PMC6674698 DOI: 10.1523/jneurosci.3192-06.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We examined the effects of the chemokine fractalkine (CX3CL1) on EPSCs evoked by electrical stimulation of Schaffer collaterals in patch-clamped CA1 pyramidal neurons from rat hippocampal slices. Acute application of CX3CL1 caused a sustained reduction of EPSC amplitude, with partial recovery after washout. CX3CL1-induced EPSC depression is postsynaptic in nature, because paired-pulse ratio was maintained, amplitude distribution of spontaneous excitatory postsynaptic currents shifted to lower values, and whole-cell current responses to AMPA were reversibly inhibited. EPSC depression by CX3CL1 is mediated by CX3CL1 receptor (CX3CR1), because CX3CL1 was unable to influence EPSC amplitude in CA1 pyramidal neurons from CX3CR1 knock-out mice. CX3CL1-induced depression of both EPSC and AMPA current was not observed in the absence of afferent fiber stimulation or AMPA receptor activation, respectively, indicating the requirement of sustained receptor activity for its development. Findings obtained from hippocampal slices, cultured hippocampal neurons, and transfected human embryonic kidney cells indicate that a Ca2+-, cAMP-, and phosphatase-dependent process is likely to modulate CX3CL1 effects because of the following: (1) CX3CL1-induced depression was antagonized by intracellular BAPTA, 8Br-cAMP, phosphatase inhibitors, and pertussis toxin (PTX); (2) CX3CL1 inhibited forskolin-induced cAMP formation sensitive to PTX; and (3) CX3CL1 inhibited forskolin-induced Ser845 GluR1 phosphorylation, which was sensitive to PTX and dependent on Ca2+ and phosphatase activity. Together, these findings indicate that CX3CL1 negatively modulates AMPA receptor function at active glutamatergic synapses through cell-signaling pathways by influencing the balance between kinase and phosphatase activity.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1
- Cell Line
- Cells, Cultured
- Chemokine CX3CL1
- Chemokines, CX3C/genetics
- Chemokines, CX3C/metabolism
- Chemokines, CX3C/pharmacology
- Enzyme Inhibitors/pharmacology
- Glutamic Acid/metabolism
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Synapses/drug effects
- Synapses/metabolism
Collapse
Affiliation(s)
- Davide Ragozzino
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, Centro di Eccellenza BEMM, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Håkansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G. Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 2005; 96:482-8. [PMID: 16336634 DOI: 10.1111/j.1471-4159.2005.03558.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the striatum, stimulation of dopamine D2 receptors results in attenuation of glutamate responses. This effect is exerted in large part via negative regulation of AMPA glutamate receptors. Phosphorylation of the GluR1 subunit of the AMPA receptor has been proposed to play a critical role in the modulation of glutamate transmission, in striatal medium spiny neurons. Here, we have examined the effects of blockade of dopamine D2-like receptors on the phosphorylation of GluR1 at the cAMP-dependent protein kinase (PKA) site, Ser845, and at the protein kinase C and calcium/calmodulin-dependent protein kinase II site, Ser831. Administration of haloperidol, an antipsychotic drug with dopamine D2 receptor antagonistic properties, increases the phosphorylation of GluR1 at Ser845, without affecting phosphorylation at Ser831. The same effect is observed using eticlopride, a selective dopamine D2 receptor antagonist. In contrast, administration of the dopamine D2-like agonist, quinpirole, decreases GluR1 phosphorylation at Ser845. The increase in Ser845 phosphorylation produced by haloperidol is abolished in dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) knockout mice, or in mice in which the PKA phosphorylation site on DARPP-32 (i.e. Thr34) has been mutated (Thr34-->Ala mutant mice), and requires tonic activation of adenosine A2A receptors. These results demonstrate that dopamine D2 antagonists increase GluR1 phosphorylation at Ser845 by removing the inhibitory tone exerted by dopamine D2 receptors on the PKA/DARPP-32 cascade.
Collapse
Affiliation(s)
- Kerstin Håkansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, Chase TN. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol 2005; 196:422-9. [PMID: 16203001 DOI: 10.1016/j.expneurol.2005.08.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 08/26/2005] [Indexed: 11/24/2022]
Abstract
AMPA and NMDA receptors, abundantly expressed on striatal medium spiny neurons, have been implicated in the regulation of corticostriatal synaptic efficacy. To evaluate the contribution of both glutamate receptor types to the pathogenesis of motor response alterations associated with dopaminergic treatment, we studied the ability of the selective AMPA receptor antagonist GYKI-47261 and the selective NMDA receptor antagonists, MK-801 and amantadine, to mitigate these syndromes in rodent and primate models of Parkinson's disease. The effects of GYKI-47261 and amantadine (or MK-801), alone and in combination, were compared for their ability to modify dyskinesias induced by levodopa. In rats, simultaneous administration of subthreshold doses of AMPA and NMDA receptor antagonists completely normalized the wearing-off response to acute levodopa challenge produced by chronic levodopa treatment (P < 0.05). In primates, the glutamate antagonists GYKI-47261 and amantadine, co-administered at low doses (failing to alter dyskinesia scores), reduced levodopa-induced dyskinesias by 51% (P < 0.05). The simultaneous AMPA and NMDA receptor blockade acts to provide a substantially greater reduction in the response alterations induced by levodopa than inhibition of either of these receptors alone. The results suggest that mechanisms mediated by both ionotropic glutamate receptors make an independent contribution to the pathogenesis of these motor response changes and further that a combination of both drug types may provide relief from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone.
Collapse
MESH Headings
- Amantadine/pharmacology
- Animals
- Antiparkinson Agents/pharmacology
- Behavior, Animal
- Benzazepines/pharmacology
- Benzodiazepines/pharmacology
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dopamine Agents/adverse effects
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- Haplorhini
- Levodopa/adverse effects
- Male
- Motor Activity/drug effects
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Quinpirole/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Rotarod Performance Test/methods
- Time Factors
Collapse
Affiliation(s)
- F Bibbiani
- ETB, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dizgah IM, Karimian SM, Zarrindast MR, Sohanaki H. Attenuation of morphine withdrawal signs by a D1 receptor agonist in the locus coeruleus of rats. Neuroreport 2005; 16:1683-6. [PMID: 16189477 DOI: 10.1097/01.wnr.0000180142.91644.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, the effects of intra-locus coeruleus injection of a dopamine D(1) receptor agonist (SKF38393) on naloxone-induced withdrawal signs of morphine-dependent rats were examined. Twenty different withdrawal signs were assessed. The total withdrawal score was calculated and used as an index of withdrawal intensity for comparison. The D(1) agonist and antagonist were injected 15 and 30 min prior to expression of naloxone-induced withdrawal signs, respectively. SKF38393 (2 and 4 microg/site) decreased while SCH23390 (a D(1) antagonist) had no effect on the total withdrawal score. On the other hand, SCH23390 (25 ng/site) reversed the SKF38393 effect. It may be concluded that activation of dopamine D(1) receptors in the locus coeruleus attenuates naloxone-induced withdrawal.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/antagonists & inhibitors
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/therapeutic use
- Animals
- Behavior, Animal/drug effects
- Benzazepines/administration & dosage
- Benzazepines/pharmacology
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/therapeutic use
- Injections
- Locus Coeruleus/physiology
- Male
- Morphine Dependence
- Naloxone/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Substance Withdrawal Syndrome/drug therapy
Collapse
Affiliation(s)
- Iraj Mirzaii Dizgah
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Iran
| | | | | | | |
Collapse
|
18
|
Kennedy L, Shelbourne PF, Dewar D. Alterations in dopamine and benzodiazepine receptor binding precede overt neuronal pathology in mice modelling early Huntington disease pathogenesis. Brain Res 2005; 1039:14-21. [PMID: 15781041 DOI: 10.1016/j.brainres.2005.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/06/2005] [Accepted: 01/10/2005] [Indexed: 11/26/2022]
Abstract
Huntington disease (HD) is an inherited, late onset, progressive neurodegenerative disorder. Primary degeneration appears to selectively occur in striatal medium spiny neurones but this is most likely preceded by a period of neuronal dysfunction. Altered levels of neurotransmitter receptors may disrupt neuronal function and contribute to a toxic environment within the brain. In the present study, a knock-in HD mouse modelling early stages of the disease was used to determine whether alterations in neurotransmitter receptor densities occurred before overt neuronal loss. Receptor autoradiography demonstrated reduced dopamine D2 and increased benzodiazepine receptor binding in the striatum of HD animals compared to wild-type littermates. The density of benzodiazepine receptor binding was also increased in the cerebral cortex of the HD mice. Changes in opioid and dopamine D1 receptor densities were more subtle and influenced by the genetic background of the mice. Our findings are consistent with the hypothesis that alterations in neurotransmitter receptor density precede cell loss and may be an active cellular response to the initial stages of HD pathogenesis.
Collapse
Affiliation(s)
- Laura Kennedy
- Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G11 6NU, UK
| | | | | |
Collapse
|
19
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1132] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
20
|
Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitrova T, Sherzai A, Mouradian MM, Chase TN. Effects of serotonin 5-HT1A agonist in advanced Parkinson's disease. Mov Disord 2005; 20:932-6. [PMID: 15791634 DOI: 10.1002/mds.20370] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Intermittent stimulation of striatal dopaminergic receptors seems to contribute to motor dysfunction in advanced Parkinson's disease (PD). With severe dopaminergic denervation, exogenous levodopa is largely decarboxylated to dopamine in serotonergic terminals. If 5-HT1A autoreceptors regulate dopamine as well as serotonin release, in parkinsonian patients inhibition of striatal serotonergic neuron firing might help maintain more physiological intrasynaptic dopamine concentrations and thus ameliorate motor fluctuations and dyskinesias. To evaluate this hypothesis, effects of a selective 5-HT1A agonist, sarizotan, given orally at 2 and 5 mg twice daily to 18 relatively advanced parkinsonian patients, were compared with baseline placebo function during a 3-week, double-blind, placebo-controlled, proof-of-concept study. Sarizotan alone or with intravenous levodopa had no effect on parkinsonian severity. But at safe and tolerable doses, sarizotan coadministration reduced levodopa-induced dyskinesias and prolonged its antiparkinsonian response (P < or = 0.05). Under the conditions of this study, our findings suggest that 5-HT1A receptor stimulation in levodopa-treated parkinsonian patients can modulate striatal dopaminergic function and that 5-HT1A agonists may be useful as levodopa adjuvants in the treatment of PD.
Collapse
Affiliation(s)
- William Bara-Jimenez
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Functional studies at the level of individual neurons have greatly contributed to our current understanding of basal ganglia function and dysfunction. However, identification of the expressed genes responsible for these distinct neuronal phenotypes is less advanced. Qualitative and quantitative single-cell gene-expression profiling, combined with electrophysiological analysis, allows phenotype-genotype correlations to be made for individual neurons. In this review, progress on gene-expression profiling of individual, functionally characterized basal ganglia neurons is discussed, focusing on ion channels and receptors. In addition, methodological issues are discussed and emerging novel techniques are introduced that will enable a genome-wide comparison of function and gene expression for individual neurons.
Collapse
Affiliation(s)
- Birgit Liss
- Molecular Neurobiology, Institute for Physiology, Philipps-University Marburg, Deutschhausstrasse 2, 35033 Marburg, Germany
| | | |
Collapse
|
23
|
Chase TN. Striatal plasticity and extrapyramidal motor dysfunction. Parkinsonism Relat Disord 2004; 10:305-13. [PMID: 15196510 DOI: 10.1016/j.parkreldis.2004.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 02/27/2004] [Indexed: 11/21/2022]
Abstract
Knowledge of molecular events contributing to motor dysfunction in Parkinson's disease has advanced rapidly during the past decade. Studies in animal models as well as in patients afflicted by this disorder suggest that the nonphysiologic stimulation of striatal dopamine receptors, first as a result of dopaminergic denervation and later as a consequence of the intermittent high-intensity stimulation produced by standard therapeutic regimens, leads to plastic changes in striatal medium spiny neurons. The clinical appearance of parkinsonism and subsequently of motor response complications is associated with the aberrant activation of signaling cascades within medium spiny neurons that modify the phosphorylation state of their ionotropic glutamatergic receptors. Resultant NMDA and AMPA receptor sensitization augments cortical excitatory input to these spiny efferent neurons, thus altering striatal output in ways that compromise motor function. These findings have already yielded new insight into mechanisms subserving motor memory and synaptic integration as well as accelerated development of novel approaches to the improved treatment of motor disability.
Collapse
Affiliation(s)
- Thomas N Chase
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Building 10, Room 5C103, 90900 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Hernández-Echeagaray E, Starling AJ, Cepeda C, Levine MS. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Neurosci 2004; 19:2455-63. [PMID: 15128399 DOI: 10.1111/j.0953-816x.2004.03344.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamatergic afferents from the neocortex constitute the major excitatory input to striatal medium-sized spiny neurons (MSNs). Glutamate's actions on MSNs are modulated by dopamine (DA) through D1 and D2 receptor families. Although D1 modulation of glutamate responses has been well-characterized, the contribution of postsynaptic D2 receptors to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses has not been studied extensively. We examined DA modulation of AMPA currents using whole-cell voltage-clamp recordings of MSNs acutely dissociated and in slices. In dissociated cells, the D2 agonist quinpirole (10 micro m) produced small and inconsistent effects on AMPA currents. The magnitude of the current, as well as its modulation by quinpirole, was related to the dendritic elaboration of the dissociated cell. Thus, quinpirole altered AMPA currents only slightly when few initial dendritic segments were present. The amplitude of the current was greater and quinpirole consistently decreased this current in dissociated cells displaying at least three primary dendrites and several secondary and tertiary dendrites. Cyclothiazide, a compound that prevents AMPA receptor desensitization, greatly increased AMPA currents. In the presence of cyclothiazide, quinpirole also consistently reduced AMPA currents. Finally, in slices, AMPA current amplitude was always reduced after application of quinpirole. Sulpiride, a D2 antagonist, prevented attenuation of AMPA currents in both acutely dissociated neurons and neurons in slices. These results provide evidence that AMPA currents are attenuated by DA via activation of postsynaptic D2 receptors. In addition, they indicate that the dendrites and/or the amplitude of the current are important variables for DA modulation of AMPA currents in MSNs.
Collapse
Affiliation(s)
- Elizabeth Hernández-Echeagaray
- Mental Retardation Research Center, David Geffen School of Medicine, NPI, Room 58-258, 760 Westwood Plaza, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
25
|
Liu JC, DeFazio RA, Espinosa-Jeffrey A, Cepeda C, de Vellis J, Levine MS. Calcium modulates dopamine potentiation of N-methyl-D-aspartate Responses: Electrophysiological and imaging evidence. J Neurosci Res 2004; 76:315-22. [PMID: 15079860 DOI: 10.1002/jnr.20079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the striatum, dopamine (DA) exerts a major modulatory influence on voltage- and ligand-gated currents. Previously we have shown that DA modulates glutamatergic neurotransmission and that the direction of this modulation depends on, among other factors, the glutamate and DA receptor subtypes activated. These effects also involve DA-induced alterations in voltage-gated Ca(2+) currents. In the present experiments, the effects of Ca(2+) channel blockers on DA and D1 receptor-dependent potentiation of N-methyl-D-aspartate (NMDA) responses were examined in vitro in striatal slices using current clamp recording techniques. DA or D1 receptor agonists consistently enhanced NMDA responses. Cadmium and the more selective L-type Ca(2+) channel antagonists nifedipine and methoxyverapamil reduced the potentiation of NMDA responses by DA or D1 receptor activation. Furthermore, studies using Ca(2+) imaging with Fluo-3 in cultured cortical or dissociated striatal neurons demonstrated that DA and D1 agonists increased intracellular Ca(2+) transients induced by NMDA. These as well as previous findings indicate that in striatal neurons at least two mechanisms contribute to the enhancement of NMDA responses by DA receptor activation, facilitation of voltage-gated Ca(2+) currents and D1 receptor activation of the cAMP-protein kinase A cascade. The existence of multiple mechanisms leading to a similar outcome allows a certain degree of redundancy in the consequences of DA modulation.
Collapse
Affiliation(s)
- J C Liu
- Mental Retardation Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
26
|
Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jørgensen HA. Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 2003; 122:717-25. [PMID: 14622915 DOI: 10.1016/j.neuroscience.2003.08.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathophysiologic basis of tardive dyskinesia remains unclear, but several lines of evidence suggest that persistent neuronal changes in the basal ganglia produced by oxidative stress or glutamate toxicity may play a role, especially in the elderly. In the present study we examined whether histopathological alterations in substantia nigra are related to oral dyskinesia in a rodent model of tardive dyskinesia. Haloperidol decanoate (38 mg/kg/4 weeks) was administered to young (8 weeks) and old (38 weeks) rats for a total period of 28 weeks, and the development of vacuous chewing movements (VCM) was observed. Rats with high and low levels of VCM and saline-treated controls were analyzed for histopathological alterations. Reduced nerve cell number and atrophic neurons were prominent features in the substantia nigra of old rats with high levels of VCM. Some alterations were also present in the substantia nigra of the old rats with low levels of VCM and young rats with high VCM levels, but these were significantly less affected than the high VCM rats. These results show that the development of haloperidol-induced oral dyskinesias in old rats is associated with histopathological alterations in the substantia nigra. This suggests that nigral degeneration induced by neuroleptics may contribute to the development of persistent VCM in rats and possibly irreversible tardive dyskinesia in humans.
Collapse
Affiliation(s)
- O A Andreassen
- The Research Section, Department of Psychiatry, Ullevaal University Hospital and University of Oslo, Kirkeveien 166, N-0407, Oslo, Norway
| | | | | | | | | |
Collapse
|