1
|
Turkmen BA, Yazici E, Erdogan DG, Suda MA, Yazici AB. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry 2021; 21:562. [PMID: 34763683 PMCID: PMC8588660 DOI: 10.1186/s12888-021-03578-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Klotho and its relationship with neurotrophic factors and cognition in schizophrenia has not yet been investigated. In this study, the hypothesis that the blood serum levels of BDNF, GDNF, NGF and Klotho in schizophrenia patients and healthy controls would be related to cognitive functions was investigated. METHODS In this study, two groups were assessed: schizophrenia patients (case group) who were hospitalised in the Psychiatry Clinic of Sakarya University Training and Research Hospital and healthy volunteers (control group). The patients were evaluated on the 1st and 20th days of their hospitalisation with the Positive and Negative Syndrome Scale (PANSS), the Brief Psychiatric Rating Scale (BPRS), the General Assessment of Functioning Scale (GAF) and the Clinical Global Impression Scale (CGI). For cognitive assessment, both groups were evaluated with the Wechsler Memory Scale-Visual Production Subtest (Wechsler Memory Scale III-Visual Reproduction Subtest) and the Stroop test. RESULTS BDNF, GDNF, NGF and Klotho levels were lower in schizophrenia patients than in healthy controls. In the schizophrenia patients, on the 20th day of treatment, there was a statistically significant increase in BDNF compared to the 1st day of treatment. BDNF, GDNF and Klotho showed positive correlations with some cognitive functions in the healthy controls. BDNF, GDNF, NGF and Klotho levels were intercorrelated and predictive of each other in both groups. CONCLUSION This study suggests a relationship between cognitive functions, neurotrophic factors and Klotho. Most of the results are the first of their kind in the extant literature, while other results are either similar to or divergent from those generated in previous studies. Therefore, new, enhanced studies are needed to clarify the role of Klotho and neurotrophic factors in schizophrenia.
Collapse
Affiliation(s)
- Betul Aslan Turkmen
- grid.459902.30000 0004 0386 5536Department of Psychiatry, Sakarya Training and Research Hospital, Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University, Medical Faculty, Sakarya, Turkey.
| | - Derya Guzel Erdogan
- grid.49746.380000 0001 0682 3030Department of Physiology, Sakarya University, Medical Faculty, Sakarya, Turkey
| | - Mehmet Akif Suda
- grid.459902.30000 0004 0386 5536Department of Psychiatry, Sakarya Training and Research Hospital, Sakarya, Turkey
| | - Ahmet Bulent Yazici
- grid.49746.380000 0001 0682 3030Department of Psychiatry, Sakarya University, Medical Faculty, Sakarya, Turkey
| |
Collapse
|
2
|
Eldahan KC, Williams HC, Cox DH, Gollihue JL, Patel SP, Rabchevsky AG. Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury. Exp Neurol 2020; 323:113083. [DOI: 10.1016/j.expneurol.2019.113083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
|
3
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
4
|
Symptomatic arrhythmias due to syringomyelia-induced severe autonomic dysfunction. Clin Res Cardiol 2014; 103:839-45. [PMID: 24847769 DOI: 10.1007/s00392-014-0725-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Syringomyelia is characterized by cavity formation in the spinal cord, most often at C2-Th9 level. Clinical manifestation reflects extent and localization of the spinal cord injury. CASES 20-year old woman was admitted for recurrent rest-related presyncopes with sudden manifestation. Paroxysms of sinus bradycardia with SA and AV blocks were repeatedly documented during symptoms. There was normal echocardiographic finding, (para) infectious etiology was not proved. Character of the ECG findings raised suspicion on neurogenic cause. Autonomic nervous system testing demonstrated abnormalities reflecting predominant sympathetic dysfunction. Suspicion on incipient myelopathy was subsequently confirmed by MRI, which discovered syringomyelia at Th5 level as the only pathology. A 52-year old man with hypotrophic quadruparesis resulting from perinatal brain injury was sent for 2-years lasting symptoms (sudden palpitation, sweating, muscle tightness, shaking) with progressive worsening. Symptoms occurred in association with sudden increase of sinus rhythm rate and blood pressure that were provoked by minimal physical activity. Presence of significant autonomic dysregulation with baroreflex hyperreactivity in orthostatic test and symptomatic postural orthostatic tachycardia with verticalization-associated hypertension were proved. MRI revealed syringomyelia at C7 and Th7 level affecting sympathetic centers at these levels. Sympathetic fibers dysfunction at C-Th spinal level may cause significant autonomic dysfunction with arrhythmic manifestation.
Collapse
|
5
|
Weaver LC, Fleming JC, Mathias CJ, Krassioukov AV. Disordered cardiovascular control after spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2013; 109:213-33. [PMID: 23098715 DOI: 10.1016/b978-0-444-52137-8.00013-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Damage to the spinal cord disrupts autonomic pathways, perturbing cardiovascular homeostasis. Cardiovascular dysfunction increases with higher levels of injury and greater severity. Disordered blood pressure control after spinal cord injury (SCI) has significant ramifications as cord-injured people have an increased risk of developing heart disease and stroke; cardiovascular dysfunction is currently a leading cause of death among those with SCI. Despite the clinical significance of abnormal cardiovascular control following SCI, this problem has been generally neglected by both the clinical and research community. Both autonomic dysreflexia and orthostatic hypotension are known to prevent and delay rehabilitation, and significantly impair the overall quality of life after SCI. Starting with neurogenic shock immediately after a higher SCI, ensuing cardiovascular dysfunctions include orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. Disordered temperature regulation accompanies these autonomic dysfunctions. This chapter reviews the human and animal studies that have furthered our understanding of the pathophysiology and mechanisms of orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. The cardiovascular dysfunction that occurs during sexual function and exercise is elaborated. New awareness of cardiovascular dysfunction after SCI has led to progress toward inclusion of this important autonomic problem in the overall assessment of the neurological condition of cord-injured people.
Collapse
|
6
|
Sugiyama Y, Suzuki T, Yates BJ. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body. Exp Brain Res 2011; 210:515-27. [PMID: 21267550 DOI: 10.1007/s00221-011-2550-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/31/2010] [Indexed: 01/30/2023]
Abstract
Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance produced by vestibular stimulation differ between body regions. Electrical stimulation of vestibular afferents produces an inhibition of most hindlimb vasoconstrictor fibers and a decrease in hindlimb vascular resistance, but an initial excitation of most upper body vasoconstrictor fibers accompanied by an increase in upper body vascular resistance. The present study tested the hypothesis that neurons in the principal vasomotor region of the brainstem, the rostral ventrolateral medulla (RVLM), whose projections extended past the T10 segment, to spinal levels containing sympathetic preganglionic neurons regulating lower body blood flow, respond differently to electrical stimulation of the vestibular nerve than RVLM neurons whose axons terminate rostral to T10. Contrary to our hypothesis, the majority of RVLM neurons were excited by vestibular stimulation, despite their level of projection in the spinal cord. These findings indicate that the RVLM is not solely responsible for establishing the patterning of vestibular-sympathetic responses. This patterning apparently requires the integration by spinal circuitry of labyrinthine signals transmitted from the brainstem, likely from regions in addition to the RVLM.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
7
|
Llewellyn-Smith IJ. Anatomy of synaptic circuits controlling the activity of sympathetic preganglionic neurons. J Chem Neuroanat 2009; 38:231-9. [DOI: 10.1016/j.jchemneu.2009.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/17/2023]
|
8
|
Su CK, Ho CM, Kuo HH, Wen YC, Chai CY. Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro. J Biomed Sci 2009; 16:44. [PMID: 19409080 PMCID: PMC2687431 DOI: 10.1186/1423-0127-16-44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 05/01/2009] [Indexed: 02/07/2023] Open
Abstract
An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25 degrees C, but it fails in SND genesis at < or = 10 degrees C. Basal levels of the c-Fos expression in the spinal cords incubated at < or = 10 degrees C and ~25 degrees C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at < or = 10 degrees C. However, in the spinal cords incubated at ~25 degrees C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | - Hsiao-Hui Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | - Yu-Chuan Wen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Chok-Yung Chai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| |
Collapse
|
9
|
Responses of thoracic spinal interneurons to vestibular stimulation. Exp Brain Res 2009; 195:89-100. [PMID: 19283370 DOI: 10.1007/s00221-009-1754-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 02/23/2009] [Indexed: 02/01/2023]
Abstract
Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical stimulation of the vestibular nerve or natural stimulation of otolith organs and the anterior and posterior semicircular canals using rotations in vertical planes. A majority of thoracic interneurons (74/102) responded to vestibular nerve stimulation at median latencies of 6.5 ms (minimum of approximately 3 ms), suggesting that labyrinthine inputs were relayed to these neurons through trisynaptic and longer pathways. Thoracic interneuronal responses to vertical rotations were similar to those of graviceptors such as otolith organs, and a wide array of tilt directions preferentially activated different cells. Such responses were distinct from those of cells in the cervical and lumbar enlargements, which are mainly elicited by ear-down tilts and are synchronous with stimulus position when low rotational frequencies are delivered, but tend to be in phase with stimulus velocity when high frequencies are employed. The dynamic properties of thoracic interneuronal responses to tilts were instead similar to those of thoracic motoneurons and sympathetic preganglionic neurons. However, the preferred tilt directions of the interneurons were more heterogeneous than thoracic spinal outputs, showing that the outputs do not simply reflect an addition of local interneuronal activity.
Collapse
|
10
|
Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG. Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008; 509:382-99. [PMID: 18512692 PMCID: PMC2536612 DOI: 10.1002/cne.21771] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complete thoracic (T) spinal cord injury (SCI) above the T6 level typically results in autonomic dysreflexia, an abnormal hypertensive condition commonly triggered by nociceptive stimuli below the level of SCI. Overexpression of nerve growth factor in the lumbosacral spinal cord induces profuse sprouting of nociceptive pelvic visceral afferent fibers that correlates with increased hypertension in response to noxious colorectal distension. After complete T4 SCI, we evaluated the plasticity of propriospinal neurons conveying visceral input rostrally to thoracic sympathetic preganglionic neurons. The anterograde tracer biotinylated dextran amine (BDA) was injected into the lumbosacral dorsal gray commissure (DGC) of injured/nontransected rats immediately after injury (acute) or 2 weeks later (delayed). At 1 or 2 weeks after delayed or acute injections, respectively, a higher density (P < 0.05) of BDA(+) fibers was found in thoracic dorsal gray matter of injured vs. nontransected spinal cords. For corroboration, fast blue (FB) or cholera toxin subunit beta (CTb) was injected into the T9 dorsal horns 2 weeks postinjury/nontransection. After 1 week transport, more retrogradely labeled (P < 0.05) DGC propriospinal neurons (T13-S1) were quantified in injured vs. nontransected cords. We also monitored immediate early gene c-fos expression following colorectal distension and found increased (P < 0.01) c-Fos(+) cell numbers throughout the DGC after injury. Collectively, these results imply that, in conjunction with local primary afferent fiber plasticity, injury-induced sprouting of DGC neurons may be a key constituent in relaying visceral sensory input to sympathetic preganglionic neurons that elicit autonomic dysreflexia after high thoracic SCI.
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
- Department of Physiology, University of Kentucky, Lexington, KY 40536−0509
| | - Hanad Duale
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
- Department of Physiology, University of Kentucky, Lexington, KY 40536−0509
| | - Adrian A. Cameron
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
| | - Sarah M. Abshire
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
| | - Travis S. Lyttle
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
- Department of Physiology, University of Kentucky, Lexington, KY 40536−0509
| |
Collapse
|
11
|
Lewis DI, Coote JH. Electrophysiological characteristics of vasomotor preganglionic neurons and related neurons in the thoracic spinal cord of the rat: an intracellular study in vivo. Neuroscience 2007; 152:534-46. [PMID: 18055125 DOI: 10.1016/j.neuroscience.2007.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/10/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022]
Abstract
Sympathetic preganglionic neurons (SPN) represent the final central neurons in the sympathetic pathways which regulate vasomotor tone; they therefore play a pivotal role in the re-distribution of cardiac output to different vascular beds in response to environmental challenges. While the consensus view is that activity in these neurons is due mainly to supraspinal inputs, the possibility that some activity may be generated intrinsically and modified by synaptic inputs cannot be excluded. Therefore, in order to distinguish between these two possibilities, the electrophysiological properties of cardiovascular-like SPN in the upper thoracic spinal cord of the anesthetized rat were examined and their response to activation of vasodepressor inputs was investigated. Intracellular recordings were made from 22 antidromically identified SPN of which 17 displayed irregular, but maintained, spontaneous activity; no evidence of bursting behavior or pacemaker-like activity was observed. Stimulation of the aortic depressor nerve or a vasodepressor site within the nucleus tractus solitarius (NTS) resulted in a membrane hyperpolarization, decrease in cell input resistance and long-lasting cessation of neuronal firing in SPN including a sub-population which had cardiac-modulated patterns of activity patterns. Recordings were also undertaken from 80 non-antidromically-activated neurons located in the vicinity of SPN; 23% of which fired in phase with the cardiac cycle, with this peak of activity occurring before similar increases in cardiac-modulated SPN. Stimulation of vasodepressor regions of the NTS evoked a membrane hyperpolarization and decrease in cell input resistance in cardiac-modulated but not non-modulated interneurons. These studies show that activity patterns in SPN in vivo are determined principally by synaptic inputs. They also demonstrate that spinal interneurons which exhibit cardiac-modulated patterns of activity are postsynaptically inhibited following activation of baroreceptor pathways. However, the question as to whether these inhibitory pathways and/or disfacilitation of tonic excitatory drive underlies the baroreceptor-mediated inhibition of SPN remains to be determined.
Collapse
Affiliation(s)
- D I Lewis
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
12
|
Elimination of rat spinal substance P receptor bearing neurons dissociates cardiovascular and nocifensive responses to nicotinic agonists. Neuropharmacology 2007; 54:269-79. [PMID: 18037142 DOI: 10.1016/j.neuropharm.2007.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/31/2007] [Accepted: 09/11/2007] [Indexed: 11/23/2022]
Abstract
Intrathecal (IT) delivery of nicotinic agonists evokes dose dependent nocifensive behavior and cardiovascular responses. Previous studies suggested that these effects may be attenuated by the loss of substance P positive (sP(+)) primary afferents. To further characterize these cell systems, we examined the effect of selectively destroying neurokinin 1 receptor bearing (NK1-r(+)) dorsal horn neurons on IT nicotinic agonist evoked responses. In the dorsal spinal cord, confocal immunohistochemical microscopy revealed that nAChR subunits (alpha3, alpha4, alpha5, beta2 and beta4), NeuN B (neuronal marker) and NK1-r were all co-expressed in the superficial dorsal horn; however alpha3, alpha5, beta2 and beta4 exhibited the highest degree of colocalization with NK1-r expressing neurons. After intrathecal substance P-saporin (sP-SAP), NK1-r(+) cell bodies and dendrites in the superficial dorsal horn were largely abolished. The greatest loss in co-expression of nAChR subunits with NK1-r was observed with alpha3, alpha5, beta2 and beta4 subunits. Following intrathecal sP-SAP, the nocifensive responses to all nicotinic agonists were reduced; however, in contrast, while cardiovascular responses evoked by IT nicotine were unaltered, IT cytisine and epibatidine exhibited enhanced tachycardia and pressor responses. These results indicate subunit-specific relationships between the NK1-r and nicotinic receptor systems. The loss of nocifensive activity after destruction of the NK1-r bearing cells in spite of the persistence of nicotinic subunits on other cells, emphasizes the importance of the superficial marginal neuron in mediating these nicotinic effects. Further, the exaggerated cardiovascular responses to cytisine following loss of NK1-r bearing cells suggest the presence of a nicotinic receptor-mediated stimulation of inhibitory circuits at the spinal level.
Collapse
|
13
|
Khastgir J, Drake MJ, Abrams P. Recognition and effective management of autonomic dysreflexia in spinal cord injuries. Expert Opin Pharmacother 2007; 8:945-56. [PMID: 17472540 DOI: 10.1517/14656566.8.7.945] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autonomic dysreflexia is a potentially life-threatening hypertensive medical emergency that occurs most often in spinal cord-injured individuals with spinal lesions at or above the mid-thoracic spinal cord level. It is a condition that remains poorly recognised outside of spinal cord injury centres, which may result in adverse outcomes including mortality from potentially delayed diagnosis and treatment. Acute autonomic dysreflexia is characterised by severe paroxysmal hypertension associated with throbbing headaches, profuse sweating, nasal stuffiness, flushing of the skin above the level of the lesion, bradycardia, apprehension and anxiety, which is sometimes accompanied by cognitive impairment. The key to effective management is prevention of the condition, by recognition and avoidance of factors that initiate the condition. When it occurs, immediate recognition and reversal of trigger factors along with prompt administration of pharmacological treatment is of paramount importance in order to prevent complications, which include intracranial and retinal haemorrhage, convulsions, cardiac irregularities and death. Promising data from recent animal studies may hold the key to future treatment options.
Collapse
Affiliation(s)
- Jay Khastgir
- Bristol Urological Institute, Southmead Hospital, Bristol, UK.
| | | | | |
Collapse
|
14
|
Deuchars SA. Multi-tasking in the spinal cord--do 'sympathetic' interneurones work harder than we give them credit for? J Physiol 2007; 580:723-9. [PMID: 17347266 PMCID: PMC2075457 DOI: 10.1113/jphysiol.2007.129429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of interneurones in the control of sympathetic activity has been somewhat of a mystery since, for many years, it was difficult to target these cells for study. Recently scientists have started to unravel the action potential properties of these neurones, where they receive their inputs from and where they project to. This review looks at the information known to date about sympathetic interneurones. The locations of these neurones and their local axonal ramifications suggest that they play a more widespread function than previously thought. Therefore the data to support such a theory are also examined.
Collapse
Affiliation(s)
- Susan A Deuchars
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
| |
Collapse
|
15
|
Pan B, Kim EJ, Schramm LP. Increased close appositions between corticospinal tract axons and spinal sympathetic neurons after spinal cord injury in rats. J Neurotrauma 2006; 22:1399-410. [PMID: 16379578 DOI: 10.1089/neu.2005.22.1399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatments for spinal cord injury may promote new spinal cord synapses. However, the potential for new synapses between descending somatomotor and spinal sympathetic neurons has not been investigated. We studied rats with intact spinal cords and rats after a chronic, bilateral, dorsal spinal hemisection. We identified sympathetically related spinal neurons by transynaptic, retrograde transport of renally injected pseudorabies virus. We counted retrogradely labeled sympathetic preganglionic neurons (SPN) and putative sympathetic interneurons (IN) that, under light microscopy, appeared closely apposed by anterogradely labeled axons of the corticospinal tract (CST) and by axons descending from the well-established sympathetic regulatory region in the rostral ventrolateral medulla (RVLM). Spinal sympathetic neurons that were closely apposed by CST axons were significantly more numerous in lesioned rats than in unlesioned rats. CST axons closely apposed 5.4% of SPN and 10.3% of IN in rats with intact spinal cords, and 38.0% of SPN and 37.3% of IN in rats with chronically lesioned spinal cords. Further, CST appositions in SCI rats consisted of many more varicosities than those in uninjured rats. SPN and IN closely apposed by axons from the RVLM were not more numerous in lesioned rats. However, RVLM axons apposed many more SPN than IN in both control and lesioned rats. Therefore, RVLM sympathoexcitation may be mediated largely by direct synapses on SPN. Although we have not determined the functional significance of close appositions between the CST and spinal sympathetic neurons, we suggest that future studies of spinal cord repair and regeneration include an evaluation of potential, new, somatic-autonomic interactions.
Collapse
Affiliation(s)
- Baohan Pan
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 605 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
16
|
Cameron AA, Smith GM, Randall DC, Brown DR, Rabchevsky AG. Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci 2006; 26:2923-32. [PMID: 16540569 PMCID: PMC3535471 DOI: 10.1523/jneurosci.4390-05.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe spinal cord injuries above mid-thoracic levels can lead to a potentially life-threatening hypertensive condition termed autonomic dysreflexia, which is often triggered by painful distension of pelvic viscera (bladder or bowel) and consequent sensory fiber activation, including nociceptive C-fibers. Interruption of tonically active medullo-spinal pathways after injury causes disinhibition of thoracolumbar sympathetic preganglionic neurons, and intraspinal sprouting of nerve growth factor (NGF)-responsive primary afferent fibers is thought to contribute to their hyperactivity. We investigated spinal levels that are critical for eliciting autonomic dysreflexia using a model of noxious colorectal distension (CRD) after complete spinal transection at the fourth thoracic segment in rats. Post-traumatic sprouting of calcitonin gene-related peptide (CGRP)-immunoreactive primary afferent fibers was selectively altered at specific spinal levels caudal to the injury with bilateral microinjections of adenovirus encoding the growth-promoting NGF or growth-inhibitory semaphorin 3A (Sema3a) compared with control green fluorescent protein (GFP). Two weeks later, cardio-physiological responses to CRD were assessed among treatment groups before histological analysis of afferent fiber density at the injection sites. Dysreflexic hypertension was significantly higher with NGF overexpression in lumbosacral segments compared with GFP, whereas similar overexpression of Sema3a significantly reduced noxious CRD-evoked hypertension. Quantitative analysis of CGRP immunostaining in the spinal dorsal horns showed a significant correlation between the extent of fiber sprouting into the spinal segments injected and the severity of autonomic dysreflexia. These results demonstrate that site-directed genetic manipulation of axon guidance molecules after complete spinal cord injury can alter endogenous circuitry to modulate plasticity-induced autonomic pathophysiology.
Collapse
|
17
|
Rabchevsky AG. Segmental organization of spinal reflexes mediating autonomic dysreflexia after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2006; 152:265-74. [PMID: 16198706 PMCID: PMC3529572 DOI: 10.1016/s0079-6123(05)52017-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Spinal cord injuries above mid-thoracic levels can lead to a potentially life-threatening hypertensive condition termed autonomic dysreflexia that is often triggered by distension of pelvic viscera (bladder or bowel). This syndrome is characterized by episodic hypertension due to sudden, massive discharge of sympathetic preganglionic neurons in the thoracolumbar spinal cord. This hypertension is usually accompanied by bradycardia, particularly if the injury is caudal to the 2nd to 4th thoracic spinal segments. The development of autonomic dysreflexia is correlated with aberrant sprouting of peptidergic afferent fibers into the spinal cord below the injury. In particular, sprouting of nerve growth factor-responsive afferent fibers has been shown to have a major influence on dysreflexia, perhaps by amplifying the activation of disinhibited sympathetic neurons. Using a model of noxious bowel distension after complete thoracic spinal transection at the 4th thoracic segment in rats, we selectively altered C-fiber sprouting, at specified spinal levels caudal to the injury, with microinjections of adenovirus encoding the growth-promoting nerve growth factor or the growth-inhibitory semaphorin 3A. This was followed by assessment of physiological responses to colorectal distension and subsequent histology. Additionally, anterograde tract tracers were injected into the lumbosacral region to compare the extent of labeled propriospinal rostral projections in uninjured cords to those in cords after complete 4th thoracic transection. In summary, overexpression of chemorepulsive semaphorin 3A impeded C-fiber sprouting in lumbosacral segments and mitigated hypertensive autonomic dysreflexia, whereas the opposite results were obtained with nerve growth factor overexpression. Furthermore, compared to naïve rats, there were significantly more labeled lumbosacral propriospinal projections rostrally after thoracic injury. Collectively, our findings suggest that distension of pelvic viscera increases the excitation of expanded afferent terminals in the disinhibited lumbosacral spinal cord. This, in turn, triggers excitation and sprouting of local propriospinal neurons to relay visceral sensory stimuli and amplify the activation of sympathetic preganglionic neurons in the thoracolumbar cord, to enhance transmission in the spinal viscero-sympathetic reflex pathway. These responses are manifested as autonomic dysreflexia.
Collapse
Affiliation(s)
- Alexander G Rabchevsky
- University of Kentucky, Spinal Cord & Brain Injury Research Center and Department of Physiology, 741 South Limestone Street, B371 BBSRB, Lexington, KY 40536-0509, USA.
| |
Collapse
|
18
|
Schramm LP. Spinal sympathetic interneurons: Their identification and roles after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2006; 152:27-37. [PMID: 16198691 DOI: 10.1016/s0079-6123(05)52002-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary afferent neurons rarely, if ever, synapse on the sympathetic preganglionic neurons that regulate the cardiovascular system, nor do sympathetic preganglionic neurons normally exhibit spontaneous activity in the absence of excitatory inputs. Therefore, after serious spinal cord injury "spinal sympathetic interneurons" provide the sole excitatory and inhibitory inputs to sympathetic preganglionic neurons. Few studies have addressed the anatomy and physiology of spinal sympathetic interneurons, to a great extent because they are difficult to identify. Therefore, this chapter begins with descriptions of both neurophysiological and neuroanatomical criteria for identifying spinal sympathetic interneurons, and it discusses the advantages and disadvantages of each. Spinal sympathetic interneurons also have been little studied because their importance in intact animals has been unknown, whereas the roles of direct projections from the brain to sympathetic preganglionic neurons are better known. This chapter presents evidence that spinal sympathetic interneurons play only a minor role in sympathetic regulation when the spinal cord is intact. However, they play an important role after spinal cord injury, both in generating ongoing activity in sympathetic nerves and in mediating segmental and intersegmental sympathetic reflexes. The spinal sympathetic interneurons that most directly influence the activity of sympathetic preganglionic neurons after spinal cord injury are located close to their associated sympathetic preganglionic neurons, and the inputs from distant segments that mediate multisegmental reflexes are relayed to sympathetic preganglionic neurons multisynaptically via spinal sympathetic interneurons. Finally, spinal sympathetic interneurons are more likely to be excited and less likely to be inhibited by both noxious and innocuous somatic stimuli after chronic spinal transection. The onset of this hyperexcitability corresponds to morphological changes in both sympathetic preganglionic neurons and primary afferents, and it may reflect the pathophysiological processes that lead to autonomic dysreflexia and the hypertensive crises that may occur with it in people after chronic spinal injury.
Collapse
Affiliation(s)
- Lawrence P Schramm
- Department of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Gris D, Marsh DR, Dekaban GA, Weaver LC. Comparison of effects of methylprednisolone and anti-CD11d antibody treatments on autonomic dysreflexia after spinal cord injury. Exp Neurol 2005; 194:541-9. [PMID: 15890340 DOI: 10.1016/j.expneurol.2005.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/24/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Autonomic dysreflexia is a condition of episodic hypertension that develops after spinal cord injury (SCI). We previously showed that a two-day anti-inflammatory treatment with an anti-CD11d integrin monoclonal antibody (mAb), soon after SCI in rats, reduced the magnitude of dysreflexia for at least 6 weeks. Effects of methylprednisolone (MP), a commonly used neuroprotective treatment for SCI, on dysreflexia have never been examined. We compared the effects of a 2-day MP treatment and/or the anti-CD11d mAb on autonomic dysreflexia, elicited by colon distension, after clip-compression SCI at the 4th thoracic segment (T4) in rats. We assessed the effects of each treatment on the size of the calcitonin gene-related peptide (CGRP)-immunoreactive afferent arbour in the dorsal horn, as changes in this arbour can correlate with the development of dysreflexia. MP reduced autonomic dysreflexia by approximately 50% at 2 weeks after SCI, but this effect was lost by 6 weeks. At 2 weeks, the combined effects of MP and the mAb were not additive, reducing dysreflexia by approximately 50%. Neither MP nor the mAb treatment altered the area of CGRP-immunoreactive fibres in the lumbar cord, the crucial input region for dysreflexia initiated by colon distension. However, both treatments led to increased fibre areas in the T9 segment, correlated with greater tissue integrity and smaller lesions, delineated by inflammatory cells. In summary, MP only temporarily decreases autonomic dysreflexia after SCI. The early beneficial effects of both treatments on dysreflexia do not relate to changes in the CGRP-immunoreactive afferent arbour but may correlate with decreased lesion progression.
Collapse
Affiliation(s)
- Denis Gris
- Spinal Cord Injury Team, Laboratory of Spinal Cord Injury, BioTherapeutics Research Group, Robarts Research Institute and Graduate Program in Neuroscience, University of Western Ontario, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | | | | | |
Collapse
|
20
|
Tang X, Neckel ND, Schramm LP. Spinal interneurons infected by renal injection of pseudorabies virus in the rat. Brain Res 2004; 1004:1-7. [PMID: 15033414 DOI: 10.1016/j.brainres.2004.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 02/01/2023]
Abstract
The potency of spinal sympathetic reflexes is increased after spinal injury, and these reflexes may result in life-threatening hypertensive crises in humans. Few, if any, primary afferents project directly to sympathetic preganglionic neurons (SPN). Therefore, spinal sympathetic interneurons (IN) must play a major role in generating dysfunctional sympathetic activity after spinal cord injury. Furthermore, these IN are potentially aberrant targets, either for ascending and descending axons that may sprout after spinal cord injury or for axons that regenerate after spinal cord injury. We identified IN via the transsynaptic retrograde transport of pseudorabies virus (PRV) injected into the kidneys of rats. The proportion of infected IN ranged from approximately 1/3 to approximately 2/3 of the number of infected SPN. IN were heavily concentrated among the SPN in spinal lamina VII. However, IN were located in all lamina of the dorsal horn. The longitudinal distribution of infected IN was closely correlated with the longitudinal distribution of infected SPN. Few infected IN were found rostral or caudal to the longitudinal range of infected SPN. Infected IN were heterogeneous in both their sizes and the extent of their dendritic trees. The strong correlation between longitudinal distributions of infected IN and SPN supports physiological data demonstrating a segmental organization of spinal sympathetic reflexes. The paucity of infected IN in segments distant from SPN suggests that multisegmental sympathetic reflexes are mediated by projections onto IN rather than onto SPN themselves. The morphological heterogeneity of IN probably manifests the variety of systems that affect spinal sympathetic regulation.
Collapse
Affiliation(s)
- Xiaorui Tang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 606 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|