1
|
Thammayon N, Wongdee K, Teerapornpuntakit J, Jantarajit W, Panmanee J, Patigo A, Saparpakorn P, Tanramluk D, Charoenphandhu N. Calcium transport across intestinal epithelia depends on voltage-gated sodium channels and endocannabinoid system. Biochem Biophys Res Commun 2025; 758:151635. [PMID: 40120346 DOI: 10.1016/j.bbrc.2025.151635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The intestinal wall consists of a number of cell types, e.g., enterocytes, neurons, endocrine cells and muscle cells. While it is well established that intestinal calcium absorption is tightly regulated by circulating hormones, particularly 1,25-dihydroxyvitamin D3, little is known about whether factors from enteric neurons can modulate transepithelial calcium transport. Herein, we aimed to use a broad-spectrum inhibitor of voltage-gated sodium channels (Nav), namely tetrodotoxin (TTX), which blocks almost all Nav channels in enteric neurons, to elucidate the contribution of Nav channels to calcium transport. Our in silico molecular docking indicated that TTX could bind to glutamate and aspartate residues in the pore of several Nav channels (e.g., Nav1.2), thereby occluding the Na+-permeable pathway. By using radioactive 45Ca in Ussing chamber, 0.1 μM TTX was shown to markedly diminish the leucine-induced calcium transport in the rat duodenum. However, its inhibitory action was absent in the intestinal epithelium-like Caco-2 monolayer, which had no Nav-expressing cells. TTX did not have any effect on the duodenal permeability to Na+ or Cl-, or transepithelial resistance, suggesting that it did not cause tight junction leakage. Since endocannabinoids from enteric neurons normally modulate intestinal functions, we demonstrated that arachidonyl-2-chloroethylamide (CB1 agonist) significantly enhanced the duodenal calcium transport, which could be diminished by TTX. A carbon monoxide-releasing molecule (CORM-2), which reportedly blocked Nav1.5, was without any effect on calcium transport. In conclusion, Nav and CB1 contributed to calcium transport across the rat duodenum, thus corroborating the existence of neural control of intestinal calcium absorption.
Collapse
Affiliation(s)
- Nithipak Thammayon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Physiology Division, Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Walailak Jantarajit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Apinya Patigo
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Duangrudee Tanramluk
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
2
|
Steiger LJ, Tsintsadze T, Mattheisen GB, Smith SM. Somatic and terminal CB1 receptors are differentially coupled to voltage-gated sodium channels in neocortical neurons. Cell Rep 2023; 42:112247. [PMID: 36933217 PMCID: PMC10106091 DOI: 10.1016/j.celrep.2023.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Endogenous cannabinoid signaling is vital for important brain functions, and the same pathways can be modified pharmacologically to treat pain, epilepsy, and posttraumatic stress disorder. Endocannabinoid-mediated changes to excitability are predominantly attributed to 2-arachidonoylglycerol (2-AG) acting presynaptically via the canonical cannabinoid receptor, CB1. Here, we identify a mechanism in the neocortex by which anandamide (AEA), another major endocannabinoid, but not 2-AG, powerfully inhibits somatically recorded voltage-gated sodium channel (VGSC) currents in the majority of neurons. This pathway involves intracellular CB1 that, when activated by anandamide, decreases the likelihood of recurrent action potential generation. WIN 55,212-2 similarly activates CB1 and inhibits VGSC currents, indicating that this pathway is also positioned to mediate the actions of exogenous cannabinoids on neuronal excitability. The coupling between CB1 and VGSCs is absent at nerve terminals, and 2-AG does not block somatic VGSC currents, indicating functional compartmentalization of the actions of two endocannabinoids.
Collapse
Affiliation(s)
- Luke J Steiger
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timur Tsintsadze
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Glynis B Mattheisen
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen M Smith
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Bigsby S, Neapetung J, Campanucci VA. Voltage-gated sodium channels in diabetic sensory neuropathy: Function, modulation, and therapeutic potential. Front Cell Neurosci 2022; 16:994585. [PMID: 36467605 PMCID: PMC9713017 DOI: 10.3389/fncel.2022.994585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Voltage-gated sodium channels (Na V ) are the main contributors to action potential generation and essential players in establishing neuronal excitability. Na V channels have been widely studied in pain pathologies, including those that develop during diabetes. Diabetic sensory neuropathy (DSN) is one of the most common complications of the disease. DSN is the result of sensory nerve damage by the hyperglycemic state, resulting in a number of debilitating symptoms that have a significant negative impact in the quality of life of diabetic patients. Among those symptoms are tingling and numbness of hands and feet, as well as exacerbated pain responses to noxious and non-noxious stimuli. DSN is also a major contributor to the development of diabetic foot, which may lead to lower limb amputations in long-term diabetic patients. Unfortunately, current treatments fail to reverse or successfully manage DSN. In the current review we provide an updated report on Na V channels including structure/function and contribution to DSN. Furthermore, we summarize current research on the therapeutic potential of targeting Na V channels in pain pathologies, including DSN.
Collapse
Affiliation(s)
| | | | - Verónica A. Campanucci
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Mechanisms Underlining Inflammatory Pain Sensitivity in Mice Selected for High and Low Stress-Induced Analgesia-The Role of Endocannabinoids and Microglia. Int J Mol Sci 2022; 23:ijms231911686. [PMID: 36232988 PMCID: PMC9570076 DOI: 10.3390/ijms231911686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3–3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (Cnr1, Cnr2) and opioid receptor subtype (Oprm1, Oprd1, Oprk1) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher Cnr1 transcription. Downregulation of Oprd1 and Oprm1 mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced Aif1 and Il-1β mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.
Collapse
|
5
|
Rieger NS, Varela JA, Ng AJ, Granata L, Djerdjaj A, Brenhouse HC, Christianson JP. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior. Neuropsychopharmacology 2022; 47:1156-1168. [PMID: 35220413 PMCID: PMC9018766 DOI: 10.1038/s41386-022-01292-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 02/02/2023]
Abstract
Impairments in identifying and responding to the emotions of others manifest in a variety of psychopathologies. Therefore, elaborating the neurobiological mechanisms that underpin social responses to social emotions, or social affective behavior, is a translationally important goal. The insular cortex is consistently implicated in stress-related social and anxiety disorders, which are associated with diminished ability to make and use inferences about the emotions of others to guide behavior. We investigated how corticotropin-releasing factor (CRF), a neuromodulator evoked upon exposure to stressed conspecifics, influenced the insula. We hypothesized that social affective behavior requires CRF signaling in the insular cortex in order to detect stress in social interactions. In acute slices from male and female rats, CRF depolarized insular pyramidal neurons. In males, but not females, CRF suppressed presynaptic GABAergic inhibition leading to greater excitatory synaptic efficacy in a CRF receptor 1 (CRF1)- and cannabinoid receptor 1 (CB1)-dependent fashion. In males only, insular CRF increased social investigation, and CRF1 and CB1 antagonists interfered with social interactions with stressed conspecifics. To investigate the molecular and cellular basis for the effect of CRF we examined insular CRF1 and CB1 mRNAs and found greater total insula CRF1 mRNA in females but greater CRF1 and CB1 mRNA colocalization in male insular cortex glutamatergic neurons that suggest complex, sex-specific organization of CRF and endocannabinoid systems. Together these results reveal a new mechanism by which stress and affect contribute to social affective behavior.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Juan A Varela
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Lauren Granata
- Psychology Department, Northeastern University, 360 Huntington Avenue, 115 Richards Hall, Boston, MA, 02115, USA
| | - Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, 360 Huntington Avenue, 115 Richards Hall, Boston, MA, 02115, USA
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
6
|
van den Hoogen NJ, Harding EK, Davidson CED, Trang T. Cannabinoids in Chronic Pain: Therapeutic Potential Through Microglia Modulation. Front Neural Circuits 2022; 15:816747. [PMID: 35069129 PMCID: PMC8777271 DOI: 10.3389/fncir.2021.816747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complex sensory, cognitive, and emotional experience that imposes a great personal, psychological, and socioeconomic burden on patients. An estimated 1.5 billion people worldwide are afflicted with chronic pain, which is often difficult to treat and may be resistant to the potent pain-relieving effects of opioid analgesics. Attention has therefore focused on advancing new pain therapies directed at the cannabinoid system because of its key role in pain modulation. Endocannabinoids and exogenous cannabinoids exert their actions primarily through Gi/o-protein coupled cannabinoid CB1 and CB2 receptors expressed throughout the nervous system. CB1 receptors are found at key nodes along the pain pathway and their activity gates both the sensory and affective components of pain. CB2 receptors are typically expressed at low levels on microglia, astrocytes, and peripheral immune cells. In chronic pain states, there is a marked increase in CB2 expression which modulates the activity of these central and peripheral immune cells with important consequences for the surrounding pain circuitry. Growing evidence indicate that interventions targeting CB1 or CB2 receptors improve pain outcomes in a variety of preclinical pain models. In this mini-review, we will highlight recent advances in understanding how cannabinoids modulate microglia function and its implications for cannabinoid-mediated analgesia, focusing on microglia-neuron interactions within the spinal nociceptive circuitry.
Collapse
Affiliation(s)
- Nynke J. van den Hoogen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Erika K. Harding
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Chloé E. D. Davidson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Tuan Trang
| |
Collapse
|
7
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
8
|
Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model. Pharmacol Rep 2021; 73:820-827. [PMID: 33783763 DOI: 10.1007/s43440-021-00250-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The endocannabinoid system modulates a wide variety of pain conditions. Systemically administered AM404, an endocannabinoid reuptake inhibitor, exerts antinociceptive effects via activation of the endocannabinoid system. However, the mechanism and site of AM404 action are not fully understood. Here, we explored the effect of AM404 on neuropathic pain at the site of the spinal cord. METHODS Male Sprague-Dawley rats were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of intrathecal administration of AM404 on mechanical and cold hyperalgesia were examined using the electronic von Frey test and cold plate test, respectively. Motor coordination was assessed using the rotarod test. To understand the mechanisms underlying the action of AM404, we tested the effects of pretreatment with the cannabinoid type 1 (CB1) receptor antagonist AM251, CB2 receptor antagonist AM630, and transient receptor potential vanilloid type 1 (TRPV1) antagonist capsazepine. RESULTS AM404 attenuated mechanical and cold hyperalgesia with minimal effects on motor coordination. AM251 significantly inhibited the antihyperalgesic action of AM404, whereas capsazepine showed a potentiating effect. CONCLUSIONS These results indicate that AM404 exerts antihyperalgesic effects primarily via CB1, but not CB2, receptor activation at the site of the spinal cord. TRPV1 receptors appear to play a pronociceptive role in CCI rats. The endocannabinoid reuptake inhibitor may be a promising candidate treatment for neuropathic pain.
Collapse
|
9
|
Morena M, Nastase AS, Santori A, Cravatt BF, Shansky RM, Hill MN. Sex-dependent effects of endocannabinoid modulation of conditioned fear extinction in rats. Br J Pharmacol 2021; 178:983-996. [PMID: 33314038 PMCID: PMC8311789 DOI: 10.1111/bph.15341] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 10/05/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Women are twice as likely as men to develop post-traumatic stress disorder (PTSD) making the search for biological mechanisms underlying these gender disparities especially crucial. One of the hallmark symptoms of PTSD is an alteration in the ability to extinguish fear responses to trauma-associated cues. In male rodents, the endocannabinoid system can modulate fear extinction and has been suggested as a therapeutic target for PTSD. However, whether and how the endocannabinoid system may modulate fear expression and extinction in females remains unknown. EXPERIMENTAL APPROACH To answer this question, we pharmacologically manipulated endocannabinoid signalling in male and female rats prior to extinction of auditory conditioned fear and measured both passive (freezing) and active (darting) conditioned responses. KEY RESULTS Surprisingly, we found that acute systemic inhibition of the endocannabinoid anandamide (AEA) or 2-arachidonoyl glycerol (2-AG) hydrolysis did not significantly alter fear expression or extinction in males. However, the same manipulations in females produced diverging effects. Increased AEA signalling at vanilloid TRPV1 receptors impaired fear memory extinction. In contrast, inhibition of 2-AG hydrolysis promoted active over passive fear responses acutely via activation of cannabinoid1 (CB1 ) receptors. Measurement of AEA and 2-AG levels after extinction training revealed sex- and brain region-specific changes. CONCLUSION AND IMPLICATIONS We provide the first evidence that AEA and 2-AG signalling affect fear expression and extinction in females in opposite directions. These findings are relevant to future research on sex differences in mechanisms of fear extinction and may help develop sex-specific therapeutics to treat trauma-related disorders.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Mathison Centre for Mental Health Research, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
| | - Andrei S. Nastase
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Mathison Centre for Mental Health Research, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Neuroscience Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
| | - Alessia Santori
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Rebecca M. Shansky
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Mathison Centre for Mental Health Research, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
| |
Collapse
|
10
|
Aitken P, Stanescu I, Playne R, Zhang J, Frampton CMA, Atkinson HC. An integrated safety analysis of combined acetaminophen and ibuprofen (Maxigesic ® /Combogesic ®) in adults. J Pain Res 2019; 12:621-634. [PMID: 30804681 PMCID: PMC6371943 DOI: 10.2147/jpr.s189605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Acetaminophen (APAP) and ibuprofen (IBP) are two analgesic compounds with a long history of use. Both are considered safe at recommended over-the-counter daily doses. Chronic use, high doses, or concomitant medication can produce safety risks for both drugs. APAP is associated with increased risk of hepatic injury, while IBP can produce gastric bleeding and thromboembolic events. Using a combination of APAP and IBP provides superior analgesia without transgressing daily dose limits of each individual drug. METHODS The present study aimed to determine if treatment with a fixed-dose combination (FDC) containing APAP and IBP results in any unexpected adverse events (AEs) and/or changes in the safety profiles of its two ingredients compared to monotherapy. The analysis will examine clinical safety data obtained from either single dose trials, multiple dose trials, a long-term exposure trial, and post-marketing surveillance data of APAP/IBP FDC tablets (Maxigesic®/Combogesic®, AFT Pharmaceuticals Ltd). The largest dataset was obtained by pooling the four randomized-controlled, multiple-dose clinical studies with either APAP 325 mg + IBP 97.5 mg (FDC 325/97.5, three tablets per dose) or APAP 500 mg + IBP 150 mg (FDC 500/150, two tablets per dose). At maximum doses, the two FDCs are bioequivalent, permitting the pooling of data for the analysis of safety. RESULTS A safety population of 922 patients who received full doses of either FDC, APAP alone, IBP alone, or placebo was compiled from the four studies. A total of 521 AEs were experienced with the incidence of FDC AEs similar to or below either monotherapy group or placebo. The FDC did not alter the incidence and percentage of the most common AEs, including gastrointestinal events and postoperative bleeding. CONCLUSION Overall, the FDC is well tolerated and has a strong safety profile at single and multiple doses with improved efficacy over monotherapy.
Collapse
Affiliation(s)
- Phillip Aitken
- Drug Development, AFT Pharmaceuticals Ltd, Auckland, New Zealand,
| | - Ioana Stanescu
- Drug Development, AFT Pharmaceuticals Ltd, Auckland, New Zealand,
| | - Rebecca Playne
- Drug Development, AFT Pharmaceuticals Ltd, Auckland, New Zealand,
| | - Jennifer Zhang
- Drug Development, AFT Pharmaceuticals Ltd, Auckland, New Zealand,
| | | | | |
Collapse
|
11
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
12
|
Stanslowsky N, Jahn K, Venneri A, Naujock M, Haase A, Martin U, Frieling H, Wegner F. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells. Addict Biol 2017; 22:1329-1342. [PMID: 27027565 DOI: 10.1111/adb.12394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 01/28/2023]
Abstract
Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ9 -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis.
Collapse
Affiliation(s)
| | - Kirsten Jahn
- Center for Addiction Research, Department of Psychiatry, Social Psychiatry and Psychotherapy; Hannover Medical School; Hannover Germany
| | - Anna Venneri
- Department of Neurology; Hannover Medical School; Hannover Germany
| | - Maximilian Naujock
- Department of Neurology; Hannover Medical School; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
- REBIRTH-Cluster of Excellence; Hannover Germany
| | - Helge Frieling
- Center for Addiction Research, Department of Psychiatry, Social Psychiatry and Psychotherapy; Hannover Medical School; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Florian Wegner
- Department of Neurology; Hannover Medical School; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| |
Collapse
|
13
|
Effect of synthetic cannabinoids on spontaneous neuronal activity: Evaluation using Ca 2+ spiking and multi-electrode arrays. Eur J Pharmacol 2016; 786:148-160. [DOI: 10.1016/j.ejphar.2016.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/18/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
|
14
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
15
|
Abstract
The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.
Collapse
|
16
|
Tahamtan A, Tavakoli-Yaraki M, Rygiel TP, Mokhtari-Azad T, Salimi V. Effects of cannabinoids and their receptors on viral infections. J Med Virol 2015; 88:1-12. [DOI: 10.1002/jmv.24292] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Tahamtan
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry; Faculty of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Tomasz P. Rygiel
- Department of Immunology; Medical University of Warsaw; Center of Biostructure Research; Warsaw Poland
| | - Talat Mokhtari-Azad
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Salimi
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
17
|
Safrany-Fark A, Petrovszki Z, Kekesi G, Liszli P, Benedek G, Keresztes C, Horvath G. In vivo potency of different ligands on voltage-gated sodium channels. Eur J Pharmacol 2015; 762:158-64. [PMID: 26033207 DOI: 10.1016/j.ejphar.2015.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022]
Abstract
The Ranvier nodes of thick myelinated nerve fibers contain almost exclusively voltage-gated sodium channels (Navs), while the unmyelinated fibers have several receptors (e.g., cannabinoid, transient receptor potential vanilloid receptor 1), too. Therefore, a nerve which contains only motor fibers can be an appropriate in vivo model for selective influence of Navs. The goals were to evaluate the potency of local anesthetic drugs on such a nerve in vivo; furthermore, to investigate the effects of ligands with different structures (arachidonic acid, anandamide, capsaicin and nisoxetine) that were proved to inhibit Navs in vitro with antinociceptive properties. The marginal mandibular branch of the facial nerve was explored in anesthetized Wistar rats; after its stimulation, the electrical activity of the vibrissae muscles was registered following the perineural injection of different drugs. Lidocaine, bupivacaine and ropivacaine evoked dose-dependent decrease in electromyographic activity, i.e., lidocaine had lower potency than bupivacaine or ropivacaine. QX-314 did not cause any effect by itself, but its co-application with lidocaine produced a prolonged inhibition. Nisoxetine had a very low potency. While anandamide and capsaicin in high doses caused about 50% decrease in the amplitude of action potential, arachidonic acid did not influence the responses. We proved that the classical local anesthetics have high potency on motor nerves, suggesting that this method might be a reliable model for selective targeting of Navs in vivo circumstances. It is proposed that the effects of these endogenous lipids and capsaicin on sensory fibers are not primarily mediated by Navs.
Collapse
Affiliation(s)
- Arpad Safrany-Fark
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza L. krt. 64, H-6720 Szeged, Hungary.
| | - Zita Petrovszki
- Institute of Physical Education and Sport Science, Juhász Gyula Faculty of Education, University of Szeged, Hattyas sor 10, H-6725 Szeged, Hungary.
| | - Gabriella Kekesi
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Peter Liszli
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Gyorgy Benedek
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Csilla Keresztes
- Department of Medical Communication and Translation, Faculty of Medicine, University of Szeged, Szentháromság u. 5, H-6720 Szeged, Hungary.
| | - Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| |
Collapse
|
18
|
Moris D, Georgopoulos S, Felekouras E, Patsouris E, Theocharis S. The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe? Expert Opin Ther Targets 2015; 19:1261-1275. [PMID: 25936364 DOI: 10.1517/14728222.2015.1043268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, the endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the neuronal, liver, renal and cardiovascular system. The aim of the present review is to elucidate the effect of endocannabinoid system on ischemia reperfusion injury (IRI) in different organs and systems. AREAS COVERED The MEDLINE/PubMed database was searched for publications with the medical subject heading Cannabinoids* (CBs), CB receptors*, organ*, ischemia/reperfusion injury*, endocannabinoid* and system*. The initial relevant studies retrieved from the literature were 91 from PubMed. This number was initially limited to 35, after excluding the reviews and studies reporting data for receptors other than cannabinoid. EXPERT OPINION CB2 receptors may play an important compensatory role in controlling tissue inflammation and injury in cells of the neuronal, cardiovascular, liver and renal systems, as well as in infiltrating monocytes/macrophages and leukocytes during various pathological conditions of the systems (atherosclerosis, restenosis, stroke, myocardial infarction, heart, liver and renal failure). These receptors limit inflammation and associated tissue injury. On the basis of preclinical results, pharmacological modulation of CB2 receptors may hold a unique therapeutic potential in stroke, myocardial infarction, atherosclerosis, IRI and liver disease.
Collapse
Affiliation(s)
- Demetrios Moris
- National and Kapodistrian University of Athens , Anastasiou Gennadiou 56, 11474, Athens , Greece +30 210 6440590 ;
| | | | | | | | | |
Collapse
|
19
|
Al Kury LT, Voitychuk OI, Yang KHS, Thayyullathil FT, Doroshenko P, Ramez AM, Shuba YM, Galadari S, Howarth FC, Oz M. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. Br J Pharmacol 2015; 171:3485-98. [PMID: 24758718 DOI: 10.1111/bph.12734] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/17/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1-10 μM AEA, suppression of both Na(+) and L-type Ca(2+) channels was observed. Inhibition of Na(+) channels was voltage and Pertussis toxin (PTX) - independent. Radioligand-binding studies indicated that specific binding of [(3) H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd . Further studies on L-type Ca(2+) channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba(2+) currents. MetAEA also inhibited Na(+) and L-type Ca(2+) currents. Radioligand studies indicated that specific binding of [(3) H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd . CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na(+) and L-type Ca(2+) channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation.
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, UAE University, Al Ain, UAE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
21
|
Soni N, Satpathy S, Kohlmeier KA. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus. Eur J Neurosci 2014; 40:3635-52. [PMID: 25251035 DOI: 10.1111/ejn.12730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Abstract
Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating system, is involved in cortical activation and is important in the development of drug addiction-associated behaviours. Therefore, eCBs might exert behavioural effects by actions on the LDT; however, it is unknown whether eCBs have actions on neurons in this nucleus. Accordingly, whole-cell voltage- and current-clamp recordings were conducted from mouse brain slices, and responses of LDT neurons to the CB1R agonist WIN-2 were monitored. Our results showed that WIN-2 decreased the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs). Ongoing activity of endogenous eCBs was confirmed as AM251, a potent CB1R antagonist, elicited sIPSCs. WIN-2 reduced the firing frequency of LDT neurons. In addition, our RT-PCR studies confirmed the presence of CB1R transcript in the LDT. Taken together, we conclude that CB1Rs are functionally active in the LDT, and their activation changes the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular actions within the LDT induced by this addictive and behavioural state-altering drug.
Collapse
Affiliation(s)
- Neeraj Soni
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | |
Collapse
|
22
|
Okura D, Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Sata T. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. Anesth Analg 2014; 118:554-62. [PMID: 24557103 DOI: 10.1213/ane.0000000000000070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Anandamide is an endocannabinoid that regulates multiple physiological functions by pharmacological actions, in a manner similar to marijuana. Recently, much attention has been paid to the analgesic effect of endocannabinoids in terms of identifying new pharmacotherapies for refractory pain management, but the mechanisms of the analgesic effects of anandamide are still obscure. Voltage-gated sodium channels are believed to play important roles in inflammatory and neuropathic pain. We investigated the effects of anandamide on 4 neuronal sodium channel α subunits, Nav1.2, Nav1.6, Nav1.7, and Nav1.8, to explore the mechanisms underlying the antinociceptive effects of anandamide. METHODS We studied the effects of anandamide on Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits with β1 subunits by using whole-cell, 2-electrode, voltage-clamp techniques in Xenopus oocytes. RESULTS Anandamide inhibited sodium currents of all subunits at a holding potential causing half-maximal current (V1/2) in a concentration-dependent manner. The half-maximal inhibitory concentration values for Nav1.2, Nav1.6, Nav1.7, and Nav1.8 were 17, 12, 27, and 40 μmol/L, respectively, indicating an inhibitory effect on Nav1.6, which showed the highest potency. Anandamide raised the depolarizing shift of the activation curve as well as the hyperpolarizing shift of the inactivation curve in all α subunits, suggesting that sodium current inhibition was due to decreased activation and increased inactivation. Moreover, anandamide showed a use-dependent block in Nav1.2, Nav1.6, and Nav1.7 but not Nav1.8. CONCLUSION Anandamide inhibited the function of α subunits in neuronal sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8. These results help clarify the mechanisms of the analgesic effects of anandamide.
Collapse
Affiliation(s)
- Dan Okura
- From the *Department of Anesthesiology, School of Medicine; †Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, ‡Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Fukuoka; §Department of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo university of Science, Chiba; and ‖Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Al Kury LT, Voitychuk OI, Ali RM, Galadari S, Yang KHS, Howarth FC, Shuba YM, Oz M. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes. Cell Calcium 2014; 55:104-18. [PMID: 24472666 DOI: 10.1016/j.ceca.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/25/2013] [Accepted: 12/26/2013] [Indexed: 02/08/2023]
Abstract
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+ -uptake and Ca2+ -ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Arachidonic Acids/pharmacology
- Caffeine/pharmacology
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/drug effects
- Endocannabinoids/pharmacology
- Fura-2/chemistry
- Heart Ventricles/cytology
- In Vitro Techniques
- Indoles/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Pertussis Toxin/toxicity
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Sarcoplasmic Reticulum/metabolism
- Transport Vesicles/drug effects
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Oleg I Voitychuk
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Ramiz M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Shabani M, Mahnam A, Sheibani V, Janahmadi M. Alterations in the Intrinsic Burst Activity of Purkinje Neurons in Offspring Maternally Exposed to the CB1 Cannabinoid Agonist WIN 55212-2. J Membr Biol 2013; 247:63-72. [DOI: 10.1007/s00232-013-9612-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
|
25
|
Dhopeshwarkar AS, Nicholson RA. Benzophenanthridine alkaloid, piperonyl butoxide and (S)-methoprene action at the cannabinoid-1 receptor (CB1-receptor) pathway of mouse brain: Interference with [(3)H]CP55940 and [(3)H]SR141716A binding and modification of WIN55212-2-dependent inhibition of synaptosomal l-glutamate release. Eur J Pharmacol 2013; 723:431-41. [PMID: 24211785 DOI: 10.1016/j.ejphar.2013.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/21/2013] [Accepted: 10/31/2013] [Indexed: 11/24/2022]
Abstract
Benzophenanthridine alkaloids (chelerythrine and sanguinarine) inhibited binding of [(3)H]SR141716A to mouse brain membranes (IC50s: <1µM). Piperonyl butoxide and (S)-methoprene were less potent (IC50s: 21 and 63µM respectively). Benzophenanthridines and piperonyl butoxide were more selective towards brain CB1 receptors versus spleen CB2 receptors. All compounds reduced Bmax of [(3)H]SR141716A binding to CB1 receptors, but only methoprene and piperonyl butoxide increased Kd (3-5-fold). Benzophenanthridines increased the Kd of [(3)H]CP55940 binding (6-fold), but did not alter Bmax. (S)-methoprene increased the Kd of [(3)H]CP55940 binding (by almost 4-fold) and reduced Bmax by 60%. Piperonyl butoxide lowered the Bmax of [(3)H]CP55940 binding by 50%, but did not influence Kd. All compounds reduced [(3)H]SR141716A and [(3)H]CP55940 association with CB1 receptors. Combined with a saturating concentration of SR141716A, only piperonyl butoxide and (S)-methoprene increased dissociation of [(3)H]SR141716A above that of SR141716A alone. Only piperonyl butoxide increased dissociation of [(3)H]CP55940 to a level greater than CP55940 alone. Binding results indicate predominantly allosteric components to the study compounds action. 4-Aminopyridine-(4-AP-) evoked release of l-glutamate from synaptosomes was partially inhibited by WIN55212-2, an effect completely neutralized by AM251, (S)-methoprene and piperonyl butoxide. With WIN55212-2 present, benzophenanthridines enhanced 4-AP-evoked l-glutamate release above 4-AP alone. Modulatory patterns of l-glutamate release (with WIN-55212-2 present) align with previous antagonist/inverse agonist profiling based on [(35)S]GTPγS binding. Although these compounds exhibit lower potencies compared to many classical CB1 receptor inhibitors, they may have potential to modify CB1-receptor-dependent behavioral/physiological outcomes in the whole animal.
Collapse
Affiliation(s)
- Amey Sadashiv Dhopeshwarkar
- Simon Fraser University, Department of Biological Sciences, 8888 University drive, Burnaby, BC, Canada V5A 1S6.
| | - Russell Alfred Nicholson
- Simon Fraser University, Department of Biological Sciences, 8888 University drive, Burnaby, BC, Canada V5A 1S6.
| |
Collapse
|
26
|
Thr136Ile polymorphism of human vesicular monoamine transporter-1 (SLC18A1 gene) influences its transport activity in vitro. Neural Plast 2013; 2012:945373. [PMID: 23213575 PMCID: PMC3504448 DOI: 10.1155/2012/945373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/22/2012] [Accepted: 09/23/2012] [Indexed: 12/23/2022] Open
Abstract
The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca2+ and Ca2+-activated kinases control cellular processes of most forms of hippocampal synapse plasticity. In this paper, I aim to integrate our current understanding of Ca2+-mediated synaptic plasticity and metaplasticity in motivational and reward-related learning in the hippocampus. I will introduce two representative neuromodulators that are widely studied in reward-related learning (e.g., ghrelin and endocannabinoids) and show how they might contribute to hippocampal neuron activities and Ca2+-mediated signaling processes in synaptic plasticity. Additionally, I will discuss functional significance of these two systems and their signaling pathways for its relevance to maladaptive reward learning leading to addiction.
Collapse
|
27
|
Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012; 287:34660-82. [PMID: 22879589 DOI: 10.1074/jbc.m112.373241] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
28
|
Kaczocha M, Vivieca S, Sun J, Glaser ST, Deutsch DG. Fatty acid-binding proteins transport N-acylethanolamines to nuclear receptors and are targets of endocannabinoid transport inhibitors. J Biol Chem 2011; 287:3415-24. [PMID: 22170058 DOI: 10.1074/jbc.m111.304907] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-acylethanolamines (NAEs) are bioactive lipids that engage diverse receptor systems. Recently, we identified fatty acid-binding proteins (FABPs) as intracellular NAE carriers. Here, we provide two new functions for FABPs in NAE signaling. We demonstrate that FABPs mediate the nuclear translocation of the NAE oleoylethanolamide, an agonist of nuclear peroxisome proliferator-activated receptor α (PPARα). Antagonism of FABP function through chemical inhibition, dominant-negative approaches, or shRNA-mediated knockdown reduced PPARα activation, confirming a requisite role for FABPs in this process. In addition, we show that NAE analogs, traditionally employed as inhibitors of the putative endocannabinoid transmembrane transporter, target FABPs. Support for the existence of the putative membrane transporter stems primarily from pharmacological inhibition of endocannabinoid uptake by such transport inhibitors, which are widely employed in endocannabinoid research despite lacking a known cellular target(s). Our approach adapted FABP-mediated PPARα signaling and employed in vitro binding, arachidonoyl-[1-(14)C]ethanolamide ([(14)C]AEA) uptake, and FABP knockdown to demonstrate that transport inhibitors exert their effects through inhibition of FABPs, thereby providing a molecular rationale for the underlying physiological effects of these compounds. Identification of FABPs as targets of transport inhibitors undermines the central pharmacological support for the existence of an endocannabinoid transmembrane transporter.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA.
| | | | | | | | | |
Collapse
|
29
|
Gowran A, Noonan J, Campbell VA. The multiplicity of action of cannabinoids: implications for treating neurodegeneration. CNS Neurosci Ther 2011; 17:637-44. [PMID: 20875047 PMCID: PMC6493861 DOI: 10.1111/j.1755-5949.2010.00195.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cannabinoid (CB) system is widespread in the central nervous system and is crucial for controlling a range of neurophysiological processes such as pain, appetite, and cognition. The endogenous CB molecules, anandamide, and 2-arachidonoyl glycerol, interact with the G-protein coupled CB receptors, CB(1) and CB(2). These receptors are also targets for the phytocannabinoids isolated from the cannabis plant and synthetic CB receptor ligands. The CB system is emerging as a key regulator of neuronal cell fate and is capable of conferring neuroprotection by the direct engagement of prosurvival pathways and the control of neurogenesis. Many neurological conditions feature a neurodegenerative component that is associated with excitotoxicity, oxidative stress, and neuroinflammation, and certain CB molecules have been demonstrated to inhibit these events to halt the progression of neurodegeneration. Such properties are attractive in the development of new strategies to treat neurodegenerative conditions of diverse etiology, such as Alzheimer's disease, multiple sclerosis, and cerebral ischemia. This article will discuss the experimental and clinical evidence supporting a potential role for CB-based therapies in the treatment of certain neurological diseases that feature a neurodegenerative component.
Collapse
MESH Headings
- Aged
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Alzheimer Disease/psychology
- Brain Ischemia/drug therapy
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Humans
- Huntington Disease/drug therapy
- Multiple Sclerosis/drug therapy
- Neurodegenerative Diseases/drug therapy
- Parkinson Disease/drug therapy
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/physiology
Collapse
Affiliation(s)
- Aoife Gowran
- Department of Physiology, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
30
|
Andó RD, Bíró J, Csölle C, Ledent C, Sperlágh B. The inhibitory action of exo- and endocannabinoids on [³H]GABA release are mediated by both CB₁and CB₂receptors in the mouse hippocampus. Neurochem Int 2011; 60:145-52. [PMID: 22133429 DOI: 10.1016/j.neuint.2011.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/19/2011] [Accepted: 11/15/2011] [Indexed: 11/15/2022]
Abstract
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/pharmacology
- Endocannabinoids
- Hippocampus/metabolism
- Hippocampus/physiology
- Male
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Neural Inhibition/genetics
- Neural Inhibition/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/physiology
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Tritium
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Rómeó D Andó
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
31
|
Theile JW, Cummins TR. Inhibition of Navβ4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Mol Pharmacol 2011; 80:724-34. [PMID: 21788423 PMCID: PMC3187525 DOI: 10.1124/mol.111.072751] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022] Open
Abstract
Paroxysmal extreme pain disorder (PEPD) and inherited erythromelalgia (IEM) are inherited pain syndromes arising from different sets of gain-of-function mutations in the sensory neuronal sodium channel isoform Nav1.7. Mutations associated with PEPD, but not IEM, result in destabilized inactivation of Nav1.7 and enhanced resurgent sodium currents. Resurgent currents arise after relief of ultra-fast open-channel block mediated by an endogenous blocking particle and are thought to influence neuronal excitability. As such, enhancement of resurgent currents may constitute a pathological mechanism contributing to sensory neuron hyperexcitability and pain hypersensitivity associated with PEPD. Furthermore, pain associated with PEPD, but not IEM, is alleviated by the sodium channel inhibitor carbamazepine. We speculated that selective attenuation of PEPD-enhanced resurgent currents might contribute to this therapeutic effect. Here we examined whether carbamazepine and two other sodium channel inhibitors, riluzole and anandamide, exhibit differential inhibition of resurgent currents. To gain further insight into the potential mechanism(s) of resurgent currents, we examined whether these inhibitors produced correlative changes in other properties of sodium channel inactivation. Using stably transfected human embryonic kidney 293 cells expressing wild-type Nav1.7 and the PEPD mutants T1464I and M1627K, we examined the effects of the three drugs on Navβ4 peptide-mediated resurgent currents. We observed a correlation between resurgent current inhibition and a drug-mediated increase in the rate of inactivation and inhibition of persistent sodium currents. Furthermore, although carbamazepine did not selectively target resurgent currents, anandamide strongly inhibited resurgent currents with minimal effects on the peak transient current amplitude, demonstrating that resurgent currents can be selectively targeted.
Collapse
Affiliation(s)
- Jonathan W Theile
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
32
|
Rawls SM, Benamar K. Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci (Schol Ed) 2011; 3:822-45. [PMID: 21622235 DOI: 10.2741/190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
33
|
Rawls SM, Benamar K. Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci (Schol Ed) 2011. [PMID: 21622235 DOI: 10.2741/s190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
34
|
Cuellar JN, Isokawa M. Ghrelin-induced activation of cAMP signal transduction and its negative regulation by endocannabinoids in the hippocampus. Neuropharmacology 2011; 60:842-51. [PMID: 21187104 PMCID: PMC3051029 DOI: 10.1016/j.neuropharm.2010.12.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/18/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Increasing evidence indicates that the gut peptide ghrelin facilitates learning behavior and memory tasks. The present study demonstrates a cellular signaling mechanism of ghrelin in the hippocampus. Ghrelin stimulated CREB (cAMP response-element binding protein) through the activation of cAMP, protein kinase A (PKA), and PKA-dependent phosphorylation of NR1 subunit of the NMDA receptor. Ghrelin increased phalloidin-binding to F-actin suggesting CREB-induced gene expression might include reorganization of cytoskeletal proteins. The effect was blocked by the antagonist of the ghrelin receptor in spite of the receptor's primary coupling to Gq proteins. We also discovered inhibitory effect of endocannabinoids on ghrelin-induced NR1 phosphorylation and CREB activity. 2-arachidonoylglycerol (2-AG) exerted its inhibitory effect in the Type 1 cannabinoid receptor (CB1R)-dependent manner, while anandamide's inhibitory effect persisted in the presence of antagonists of CB1R and the vanilloid receptor, suggesting that anandamide might directly inhibit NMDA receptor/channels. Our findings may explain how ghrelin and endocannabinoids regulate hippocampal appetitive learning and plasticity.
Collapse
Affiliation(s)
- Jacquelynn N Cuellar
- Department of Biological Sciences, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520, USA
| | | |
Collapse
|
35
|
Mannucci C, Navarra M, Pieratti A, Russo GA, Caputi AP, Calapai G. Interactions between endocannabinoid and serotonergic systems in mood disorders caused by nicotine withdrawal. Nicotine Tob Res 2011; 13:239-47. [PMID: 21324836 DOI: 10.1093/ntr/ntq242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Endocannabinoid and serotonin systems are implicated in mechanisms underlying depression-like symptoms. Involvement of serotonin in mood disorders occurring after smoking cessation has been observed. We studied the interactions between endocannabinoid and serotonergic systems in mood and behavioral disorders caused by nicotine cessation. The effects of the endocannabinoid transport inhibitor AM404 and the cannabinoid receptor 1 antagonist AM251 in a nicotine-dependent rodent model were investigated. METHODS Dependence was induced by subcutaneous injections of nicotine (2 mg/kg, 4 injections daily) for 15 consecutive days in mice. Animals treated with AM404 or AM251 were tested for locomotor activity and abstinence signs 24 hr after nicotine withdrawal and in forced swimming test (FST) at different times: immediately after last nicotine injection (t = 0) and 15 and 30 days after nicotine withdrawal. In nicotine-dependent mice treated with AM404 or AM251, expression of diencephalic serotonin receptor 1(A) (5-HT1(A)) was also measured. Effects of AM404, AM251, and WAY 100635 (5-HT(1A) receptor antagonist) in mice subjected to FST were evaluated. RESULTS A decrease in diencephalic 5-HT(1A) levels was observed in mice previously injected with nicotine. In the same animals, AM251 caused (0.5-2 mg/kg) a significant decrease of abstinence signs and AM404 (0.5-2 mg/kg) provoked a significant dose-dependent reduction in immobility time in the FST. Either AM251 or WAY 100635 antagonized anti-immobility effects of AM404. CONCLUSIONS Data indicate the existence of a link between serotonergic and endocannabinoid systems in the mechanisms underlying mood disorders caused by nicotine abstinence and suggest that these interactions are potential targets for pharmacological aid in smoking cessation.
Collapse
Affiliation(s)
- Carmen Mannucci
- Department of Clinical and Experimental Medicine and Pharmacology, Section of Pharmacology, School of Medicine, University of Messina, Via Consolare Valeria 5, Messina, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2010; 62:588-631. [PMID: 21079038 PMCID: PMC2993256 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1235] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Antagonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoids/metabolism
- Humans
- Ligands
- Phylogeny
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/metabolism
- Terminology as Topic
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effects of N-stearoyl- and N-oleoylethanolamine on cardiac voltage-dependent sodium channels. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Smith TH, Sim-Selley LJ, Selley DE. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol 2010; 160:454-66. [PMID: 20590557 DOI: 10.1111/j.1476-5381.2010.00777.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The main pharmacological effects of marijuana, as well as synthetic and endogenous cannabinoids, are mediated through G-protein-coupled receptors (GPCRs), including CB(1) and CB(2) receptors. The CB(1) receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain, spasticity, neurodegenerative diseases and mood and substance abuse disorders. Evidence has accumulated to suggest that CB(1) receptors, like other GPCRs, interact with and are regulated by several other proteins beyond the established role of heterotrimeric G-proteins. These proteins, which include the GPCR kinases, beta-arrestins, GPCR-associated sorting proteins, factor associated with neutral sphingomyelinase, other GPCRs (heterodimerization) and the novel cannabinoid receptor-interacting proteins: CRIP(1a/b), are thought to play important roles in the regulation of intracellular trafficking, desensitization, down-regulation, signal transduction and constitutive activity of CB(1) receptors. This review examines CB(1) receptor-interacting proteins, including heterotrimeric G-proteins, but with particular emphasis on non-G-protein entities, that might comprise the CB(1) receptosomal complex. The evidence for direct interaction with CB(1) receptors and potential functional roles of these interacting proteins is discussed, as are future directions and challenges in this field with an emphasis on the possibility of eventually targeting these proteins for drug discovery.
Collapse
Affiliation(s)
- Tricia H Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, MCV Campus, Richmond, VA 23298-0524, USA
| | | | | |
Collapse
|
39
|
Nicholson RA, David LS, Pan RL, Liu XM. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes. Fitoterapia 2010; 81:826-9. [PMID: 20472040 DOI: 10.1016/j.fitote.2010.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/30/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels.
Collapse
Affiliation(s)
- Russell A Nicholson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.
| | | | | | | |
Collapse
|
40
|
Alptekin A, Galadari S, Shuba Y, Petroianu G, Oz M. The effects of anandamide transport inhibitor AM404 on voltage-dependent calcium channels. Eur J Pharmacol 2010; 634:10-5. [PMID: 20171208 DOI: 10.1016/j.ejphar.2010.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/30/2010] [Accepted: 02/09/2010] [Indexed: 11/27/2022]
Abstract
The effects of anandamide transport inhibitor AM404 were investigated on depolarization-induced 45Ca2+ fluxes in transverse tubule membrane vesicles from rabbit skeletal muscle and on Ba2+ currents through L-type voltage-dependent Ca2+ channels in rat myotubes. AM404, at the concentration of 3 microM and higher, caused a significant inhibition of 45Ca2+ fluxes. Radioligand binding studies indicated that the specific binding of [3H]Isradipine to transverse tubule membranes was also inhibited significantly by AM404. In controls and in presence of 10 microM AM404, B(max) values were 51+/-6 and 27+/-5 pM/mg, and KD values were 236+/-43 and 220+/-37 pM, respectively. Inhibitory effects of AEA and arachidonic acid on 45Ca2+ flux and [3H]Isradipine binding reported in earlier studies, were also enhanced significantly in the presence of AM404. In the presence of VDM11 (1 microM), another anandamide transport inhibitor, AM404 continued to inhibit 45Ca2+ fluxes and [3H]Isradipine binding. In rat myotubes, Ca2+ currents through L-type Ca2+ channels recorded in whole-cell configuration of patch clamp technique were inhibited by AM404 in a concentration-dependent manner with an IC50 value of 3.2 microM. In conclusion, results indicate that AM404 inhibits directly the function of L-type voltage-dependent Ca2+ channels in mammalian skeletal muscles.
Collapse
Affiliation(s)
- Alp Alptekin
- Department of Anesthesiology, Yildirim Beyazit Training and Research Hospital, Ankara, 06270, Turkey
| | | | | | | | | |
Collapse
|
41
|
Oz M, Jaligam V, Galadari S, Petroianu G, Shuba YM, Shippenberg TS. The endogenous cannabinoid, anandamide, inhibits dopamine transporter function by a receptor-independent mechanism. J Neurochem 2009; 112:1454-64. [PMID: 20050977 DOI: 10.1111/j.1471-4159.2009.06557.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endocannabinoid, anandamide (AEA), modulates the activity of the dopamine transporter (DAT) in heterologous cells and synaptosomal preparations. The cellular mechanisms mediating this effect are unknown. The present studies employed live cell imaging techniques and the fluorescent, high affinity DAT substrate, 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP(+)), to address this issue. AEA addition to EM4 cells expressing yellow fluorescent protein-tagged human DAT (hDAT) produced a concentration-dependent inhibition of ASP(+) accumulation (IC(50): 3.2 +/- 0.8 microM). This effect occurred within 1 min after AEA addition and persisted for 10 min thereafter. Pertussis toxin did not attenuate the effects of AEA suggesting a mechanism independent of G(i)/G(o) coupled receptors. The amidohydrolase inhibitor, phenylmethylsulfonyl fluoride (0.2 mM), failed to alter the AEA-evoked inhibition of ASP(+) accumulation. Methanandamide (10 microM), a metabolically stable analogue of AEA inhibited accumulation but arachidonic acid (10 microM) was without effect suggesting that the effects of AEA are not mediated by its metabolic products. The extent of AEA inhibition of ASP(+) accumulation was not altered in cells pre-treated with 1 microM URB597, a specific and potent fatty acid amide hydrolase inhibitor, and the cyclooxygenase inhibitor, indomethacin (5 microM) Live cell imaging revealed a significant redistribution of hDAT from the membrane to the cytosol in response to AEA treatment (10 microM; 10 min). Similarly biotinylation experiments revealed that the decrease in DAT function was associated with a reduction in hDAT cell surface expression. These results demonstrate that AEA modulates DAT function via a cannabinoid receptor-independent mechanism and suggest that AEA may produces this effect, in part, by modulating DAT trafficking.
Collapse
Affiliation(s)
- Murat Oz
- Integrative Neuroscience Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rasmussen BA, Unterwald EM, Kim JK, Rawls SM. Methanandamide blocks amphetamine-induced behavioral sensitization in rats. Eur J Pharmacol 2009; 627:150-5. [PMID: 19879869 DOI: 10.1016/j.ejphar.2009.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 10/05/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Methanandamide acts at targets which modulate amphetamine-induced behaviors. Therefore, we investigated methanandamide effects on the acute hyperactivity produced by a single injection of amphetamine and behavioral sensitization induced by repeated amphetamine exposure in rats. Methanandamide (5mg/kg, i.p.) did not affect basal locomotor or stereotypical activity. Methanandamide (5mg/kg, i.p.) pretreatment did not alter the acute increase in locomotor or stereotypical activities produced by acute amphetamine (2mg/kg, i.p.). For chronic studies, rats injected with amphetamine (2mg/kg, i.p.) once daily for 3 consecutive days were then challenged with amphetamine (2mg/kg, i.p.) 5 days later. Expression of locomotor sensitization was blocked when methanandamide (5mg/kg, i.p.) was given once, just prior to amphetamine (2mg/kg, i.p.) challenge. In rats co-exposed to methanandamide (5mg/kg, i.p.) and amphetamine (2mg/kg, i.p.) on days 1-3 and then challenged with amphetamine (2mg/kg, i.p.) following 5 days of drug absence, the development of both locomotor and stereotypical sensitization was blocked. The ability of methanandamide to block amphetamine-sensitized behaviors suggests that this pharmacologically diverse lipid regulates signaling events impacted by repeated psychostimulant exposure.
Collapse
Affiliation(s)
- Bruce A Rasmussen
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
43
|
Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:403-21. [PMID: 19839937 DOI: 10.2174/187152709789824660] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/24/2009] [Indexed: 12/29/2022]
Abstract
The therapeutic potential of cannabinoids has been the topic of extensive investigation following the discovery of cannabinoid receptors and their endogenous ligands. Cannabinoid receptors and their endogenous ligands are present at supraspinal, spinal and peripheral levels. Cannabinoids suppress behavioral responses to noxious stimulation and suppress nociceptive processing through activation of cannabinoid CB(1) and CB(2) receptor subtypes. Endocannabinoids, the brain's own cannabis-like substances, share the same molecular target as Delta(9)-tetrahydrocannabinol, the main psychoactive component in cannabis. Endocannabinoids serve as synaptic circuit breakers and regulate multiple physiological and pathological conditions, e.g. regulation of food intake, immunomodulation, inflammation, analgesia, cancer, addictive behavior, epilepsy and others. This review will focus on uncovering the roles of anandamide and 2-arachidonoylglycerol, the two best characterized endocannabinoids identified to date, in controlling nociceptive responding. The roles of anandamide and 2-arachidonoylglycerol, released under physiological conditions, in modulating nociceptive responding at different levels of the neuraxis will be emphasized in this review. Effects of modulation of endocannabinoid levels through inhibition of endocannabinoid hydrolysis and uptake is also compared with effects of exogenous administration of synthetic endocannabinoids in acute, inflammatory and neuropathic pain models. Finally, the therapeutic potential of the endocannabinoid signaling system is discussed in the context of identifying novel pharmacotherapies for the treatment of pain.
Collapse
Affiliation(s)
- Josée Guindon
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA 30602-3013, USA
| | | |
Collapse
|
44
|
Mendiguren A, Pineda J. Effect of the CB(1) receptor antagonists rimonabant and AM251 on the firing rate of dorsal raphe nucleus neurons in rat brain slices. Br J Pharmacol 2009; 158:1579-87. [PMID: 19845674 DOI: 10.1111/j.1476-5381.2009.00434.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have suggested a regulation of 5-hydroxytryptamine (5-HT) neurons by the endocannabinoid system. The aim of our work was to examine the effect of two CB(1) receptor antagonists, SR141716A (rimonabant, Sanofi-Synthélabo Recherche, Montpellier, France) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, Tocris Cookson, Bristol, UK), on the firing rate of dorsal raphe nucleus (DRN) neurons. EXPERIMENTAL APPROACH Single-unit extracellular recordings were performed to study the effect of CB(1) receptor antagonists in slices of the DRN from rat brain. KEY RESULTS Rimonabant (1 microM) and AM251 (1 microM) decreased the firing rate of about 50% of all the recorded DRN 5-HT cells. The GABA(A)receptor antagonist picrotoxin (20 microM) (Sigma) prevented and also reversed the inhibitory effect of rimonabant (1 microM) and AM251 (1 microM), suggesting that CB(1) receptors regulate 5-HT neurons through the GABAergic system. However, the CB(1)/CB(2) receptor agonist R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)-methyl]pyrrolol[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (10 microM) (WIN55212-2, Sigma, St. Louis, MO, USA) failed to change the firing activity of non-5-HT (presumably GABAergic) neurons in the DRN. The endocannabinoid N-(2-hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (anandamide, Tocris Cookson) (10 microM) also inhibited the firing activity of a number of 5-HT neurons, but this inhibition was not blocked by rimonabant (1 microM) or AM251 (1 microM), and the stable analogue R-(+) N-(2-hydroxy-1methylethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (methanandamide, Tocris Cookson) (10 microM) did not mimic this effect. The selective CB(1) receptor agonist arachidonoyl-2-chloroethylamide (ACEA) (1 microM) only slightly increased the firing rate of DRN 5-HT cells. CONCLUSIONS AND IMPLICATIONS These results suggest a tonic/constitutive regulation of DRN 5-HT neurons by the endocannabinoid system, which may occur through a CB(1) receptor-mediated inhibition of the GABAergic system. The inhibitory effect of anandamide may be mediated through a CB(1) receptor-independent mechanism.
Collapse
Affiliation(s)
- Aitziber Mendiguren
- Department of Pharmacology, University of the Basque Country, Leioa, Bizkaia, Spain
| | | |
Collapse
|
45
|
Trezza V, Vanderschuren LJMJ. Divergent effects of anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. J Pharmacol Exp Ther 2009; 328:343-50. [PMID: 18948500 PMCID: PMC2605777 DOI: 10.1124/jpet.108.141069] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/22/2008] [Indexed: 11/22/2022] Open
Abstract
The endocannabinoid system plays an important role in the modulation of affect, motivation, and emotion. Social play behavior is a natural reinforcer in adolescent rats, and we have recently shown that interacting endocannabinoid, opioid, and dopamine systems modulate social play. In the present study, we tested the hypothesis that, in contrast to administration of exogenous cannabinoid agonists, increasing local endocannabinoid signaling through anandamide transporter inhibition enhances social play. To this aim, we tested the effects of two anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. Interestingly, we found that the prototypical anandamide transporter inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) reduced social play, whereas its more selective analog N-arachidonoyl-(2-methyl-4-hydroxyphenyl)amine (VDM11) enhanced it. The effects of AM404 were not mediated through its known pharmacological targets, since they were not blocked by the CB(1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the CB(2) cannabinoid receptor antagonist N-(1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), or by the transient receptor potential vanilloid 1 receptor antagonist capsazepine. In contrast, the increase in social play induced by VDM11 was dependent on cannabinoid, opioid, and dopaminergic neurotransmission, since it was blocked by the CB(1) cannabinoid receptor antagonist SR141716A, the opioid receptor antagonist naloxone, and the dopamine receptor antagonist alpha-flupenthixol. These findings support the notion that anandamide plays an important role in the modulation of social interaction in adolescent rats, and they suggest that selective anandamide transporter inhibitors might be useful for the treatment of social dysfunctions. Furthermore, these results suggest that off-target effects may be responsible for some of the conflicting effects of anandamide transporter inhibitors on behavior.
Collapse
Affiliation(s)
- Viviana Trezza
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
46
|
|
47
|
Duan Y, Liao C, Jain S, Nicholson RA. The cannabinoid receptor agonist CP-55,940 and ethyl arachidonate interfere with [(3)H]batrachotoxinin A 20 alpha-benzoate binding to sodium channels and inhibit sodium channel function. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:244-9. [PMID: 18599378 DOI: 10.1016/j.cbpc.2008.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Recent investigations in our laboratory showed that voltage-gated sodium channels (VGSCs) in brain are sensitive to inhibition by various synthetic cannabinoids and endocannabinoids. The present experiments examined the effects of the cannabinoid-1 (CB1) receptor agonist CP-55,940 and ethyl arachidonate on [(3)H]batrachotoxinin A 20 alpha-benzoate ([(3)H]BTX-B]) binding and VGSC-dependent depolarization of the nerve membrane in synaptoneurosomes isolated from mouse whole brain. CP-55,940 acted as a full inhibitor of [(3)H]BTX-B binding and its IC(50) was established at 22.3 microM. At its maximum effect concentration, ethyl arachidonate achieved partial (approximately 70%) inhibition and was less effective than CP-55,940 as an inhibitor of binding (IC(50)=262.7 microM). The potent CB1 receptor antagonist AM251 (2 microM) had no significant effect on the displacement of [(3)H]BTX-B by either compound (P>0.05). Scatchard analyses showed that CP-55,940 and ethyl arachidonate reduce the binding of [(3)H]BTX-B by lowering its B(max) but ethyl arachidonate also increased the K(d) of radioligand binding. In kinetic experiments, CP-55,940 and ethyl arachidonate were found to boost the dissociation of [(3)H]BTX-B from VGSCs to rates that exceed the maximum velocity achievable by veratridine, indicating they operate as allosteric inhibitors of [(3)H]BTX-B binding. Neither compound was effective at changing the initial rate of association of [(3)H]BTX-B with sodium channels. CP-55,940 and ethyl arachidonate inhibited veratridine-dependent (TTX-suppressible) depolarization of the plasma membrane of synaptoneurosomes with IC(50)s of 3.2 and 50.1 microM respectively. These inhibitory effects were again not influenced by 2 microM AM251. Our data demonstrate that the potent cannabinoid receptor agonist CP-55,940 and the ethyl ester of arachidonic acid have the ability to associate with VGSCs and inhibit their function independently of effects on CB1 receptors. Binding data comparisons using mouse brain preparations indicate CP-55,940 is approximately 10,000 times more potent as a CB1 receptor ligand than a sodium channel ligand while ethyl arachidonate shows a much smaller differential. Ethyl arachidonate has been shown previously to be the principal metabolite of ethanol in the brains of intoxicated individuals and effects of this ester on VGSCs and CB1 receptors may contribute to the depressant effects of alcohol.
Collapse
Affiliation(s)
- Yin Duan
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | |
Collapse
|
48
|
Clapper JR, Mangieri RA, Piomelli D. The endocannabinoid system as a target for the treatment of cannabis dependence. Neuropharmacology 2008; 56 Suppl 1:235-43. [PMID: 18691603 PMCID: PMC2647947 DOI: 10.1016/j.neuropharm.2008.07.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/02/2008] [Accepted: 07/07/2008] [Indexed: 02/07/2023]
Abstract
The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.
Collapse
Affiliation(s)
- Jason R. Clapper
- Departments of Pharmacology and Biological Chemistry, The University of California, Irvine, California 92697 USA
| | - Regina A. Mangieri
- Departments of Pharmacology and Biological Chemistry, The University of California, Irvine, California 92697 USA
| | - Daniele Piomelli
- Departments of Pharmacology and Biological Chemistry, The University of California, Irvine, California 92697 USA
- Unit of Drug Discovery and Development, Italian Institute of Technology, Genoa, 16136, Italy
| |
Collapse
|
49
|
Duan Y, Nicholson RA. 20(S)-protopanaxadiol and the ginsenoside Rh2 inhibit Na+ channel-activated depolarization and Na+ channel-dependent amino acid neurotransmitter release in synaptic fractions isolated from mammalian brain. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:351-6. [PMID: 18262850 DOI: 10.1016/j.cbpc.2008.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/17/2007] [Accepted: 01/03/2008] [Indexed: 11/29/2022]
Abstract
The ginsenoside Rh(2) and its aglycone 20(S)-protopanaxadiol are known to inhibit the binding of [(3)H]batrachotoxinin 20alpha-benzoate to site 2 on voltage-gated sodium channels and electrophysiological investigations conducted by others have shown that ginsenosides cause voltage-dependent inhibition of reconstituted forms of the sodium channel. Here we describe the actions of Rh(2) and 20(S)-protopanaxadiol on sodium channel function and release of neurotransmitters resulting from activation of native sodium channels in synaptic preparations isolated from whole mouse brain. Rh(2) and 20(S)-protopanaxadiol inhibited veratridine-dependent (tetrodotoxin-suppressible) depolarization of synaptoneurosomes as determined using the rhodamine 6G method although 20(S)-protopanaxadiol was more potent as an inhibitor than Rh(2). Veratridine- (sodium channel-) dependent release of the neurotransmitters L-glutamate and GABA was almost fully inhibited by 20(S)-protopanaxadiol, however, less complete inhibition was observed with Rh(2). At its maximum inhibitory concentration, Rh(2) also produced release of l-glutamate and GABA from synaptosomes, in contrast to 20(S)-protopanaxadiol. We conclude that low to moderate micromolar concentrations of Rh(2) and 20(S)-protopanaxadiol inhibit sodium channel function and sodium channel-activated release of neurotransmitters. Apparently the ginsenoside Rh(2) cannot achieve complete inhibition of sodium channel-activated transmitter release because at high concentrations it also stimulates release.
Collapse
Affiliation(s)
- Yin Duan
- Department of Biological Sciences, Simon Fraser University, 8888, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | |
Collapse
|
50
|
Jackson SN, Sachin SK, Woods AS, Morales M, Shippenberg T, Zhang L, Oz M. Volatile anesthetics and endogenous cannabinoid anandamide have additive and independent inhibitory effects on alpha(7)-nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. Eur J Pharmacol 2008; 582:42-51. [PMID: 18242598 PMCID: PMC2346594 DOI: 10.1016/j.ejphar.2007.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 12/12/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
In earlier studies, the volatile anesthetics and the endogenous cannabinoid anandamide have been shown to inhibit the function of alpha(7)-nicotinic acetylcholine receptors. In the present study, interactions between the effects of volatile anesthetics and anandamide on the function of alpha(7)-nicotinic acetylcholine receptors expressed in Xenopus oocytes were investigated using the two-electrode voltage-clamp technique. Anandamide and volatile anesthetics isoflurane and halothane inhibited currents evoked with acetylcholine (100 microM) in a reversible and concentration-dependent manner. Coapplication of anandamide and volatile anesthetics caused a significantly greater inhibition of alpha(7)-nicotinic acetylcholine receptor function than anandamide or volatile anesthetics alone. Analyses of oocytes by matrix-assisted laser desorption/ionization mass spectroscopy indicated that volatile anesthetics did not alter the lipid profile of oocytes. Results of studies with chimeric alpha(7)-nicotinic acetylcholine-5-HT(3) receptors comprised of the N-terminal domain of the alpha(7)-nicotinic acetylcholine receptor and the transmembrane and carboxyl-terminal domains of 5-HT(3) receptors suggest that while isoflurane inhibition of the alpha(7)-nicotinic acetylcholine receptor is likely to involve the N-terminal region of the receptor, the site of action for anandamide involves transmembrane and carboxyl-terminal domains of the receptors. These data indicate that endocannabinoids and isoflurane have additive inhibitory effects on alpha(7)-nicotinic acetylcholine receptor function through allosteric binding sites located on the distinct regions of the receptor.
Collapse
Affiliation(s)
- Shelley N. Jackson
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Singhal K. Sachin
- National Institute on Alcohol Abuse & Alcoholism, NIH/DHHS, Laboratory for Integrative Neuroscience, 5625 Fishers Lane, Rockville, MD, 20852, U.S.A
| | - Amina S. Woods
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Marisela Morales
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Toni Shippenberg
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Integrative Neuroscience Section, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Li Zhang
- National Institute on Alcohol Abuse & Alcoholism, NIH/DHHS, Laboratory for Integrative Neuroscience, 5625 Fishers Lane, Rockville, MD, 20852, U.S.A
| | - Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Integrative Neuroscience Section, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| |
Collapse
|