1
|
Coutinho EA, Esparza LA, Hudson AD, Rizo N, Steffen P, Kauffman AS. Conditional Deletion of KOR (Oprk1) in Kisspeptin Cells Does Not Alter LH Pulses, Puberty, or Fertility in Mice. Endocrinology 2022; 163:6763672. [PMID: 36260530 DOI: 10.1210/endocr/bqac175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Classic pharmacological studies suggested that endogenous dynorphin-KOR signaling is important for reproductive neuroendocrine regulation. With the seminal discovery of an interconnected network of hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B, and dynorphin (KNDy neurons), the KNDy hypothesis was developed to explain how gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) pulses are generated. Key to this hypothesis is dynorphin released from KNDy neurons acting in a paracrine manner on other KNDy neurons via kappa opioid receptor (KOR) signaling to terminate neural "pulse" events. While in vitro evidence supports this aspect of the KNDy hypothesis, a direct in vivo test of the necessity of KOR signaling in kisspeptin neurons for proper LH secretion has been lacking. We therefore conditionally knocked out KOR selectively from kisspeptin neurons of male and female mice and tested numerous reproductive measures, including in vivo LH pulse secretion. Surprisingly, despite validating successful knockout of KOR in kisspeptin neurons, we found no significant effect of kisspeptin cell-specific deletion of KOR on any measure of puberty, LH pulse parameters, LH surges, follicle-stimulating hormone (FSH) levels, estrous cycles, or fertility. These outcomes suggest that the KNDy hypothesis, while sufficient normally, may not be the only neural mechanism for sculpting GnRH and LH pulses, supported by recent findings in humans and mice. Thus, besides normally acting via KOR in KNDy neurons, endogenous dynorphin and other opioids may, under some conditions, regulate LH and FSH secretion via KOR in non-kisspeptin cells or perhaps via non-KOR pathways. The current models for GnRH and LH pulse generation should be expanded to consider such alternate mechanisms.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexandra D Hudson
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael Rizo
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Paige Steffen
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Uenoyama Y, Tsuchida H, Nagae M, Inoue N, Tsukamura H. Opioidergic pathways and kisspeptin in the regulation of female reproduction in mammals. Front Neurosci 2022; 16:958377. [PMID: 36033602 PMCID: PMC9404872 DOI: 10.3389/fnins.2022.958377] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Endogenous opioid peptides have attracted attention as critical neuropeptides in the central mechanism regulating female reproduction ever since the discovery that arcuate dynorphin neurons that coexpress kisspeptin and neurokinin B (NKB), which are also known as kisspeptin/neurokinin B/dynorphin (KNDy) neurons, play a role as a master regulator of pulsatile gonadotropin-releasing hormone (GnRH) release in mammals. In this study, we first focus on the role of dynorphin released by KNDy neurons in the GnRH pulse generation. Second, we provide a historical overview of studies on endogenous opioid peptides. Third, we discuss how endogenous opioid peptides modulate tonic GnRH/gonadotropin release in female mammals as a mediator of inhibitory internal and external cues, such as ovarian steroids, nutritional status, or stress, on reproduction. Then, we discuss the role of endogenous opioid peptides in GnRH surge generation in female mammals.
Collapse
|
3
|
Liu Y, Li X, Shen X, Ivanova D, Lass G, He W, Chen Q, Yu S, Wang Y, Long H, Wang L, Lyu Q, Kuang Y, O’Byrne KT. Dynorphin and GABAA Receptor Signaling Contribute to Progesterone's Inhibition of the LH Surge in Female Mice. Endocrinology 2020; 161:5808894. [PMID: 32181477 PMCID: PMC7153819 DOI: 10.1210/endocr/bqaa036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
Progesterone can block estrogen-induced luteinising hormone (LH) surge secretion and can be used clinically to prevent premature LH surges. The blocking effect of progesterone on the LH surge is mediated through its receptor in the anteroventral periventricular nucleus (AVPV) of the hypothalamus. However, the underlying mechanisms are unclear. The preovulatory LH surge induced by estrogen is preceded by a significant reduction in hypothalamic dynorphin and gamma-aminobutyric acid (GABA) release. To test the detailed roles of dynorphin and GABA in an LH surge blockade by progesterone, ovariectomized and 17β-estradiol capsule-implanted (OVX/E2) mice received simultaneous injections of estradiol benzoate (EB) and progesterone (P) or vehicle for 2 consecutive days. The LH level was monitored from 2:30 pm to 8:30 pm at 30-minute intervals. Progesterone coadministration resulted in the LH surge blockade. A continuous microinfusion of the dynorphin receptor antagonist nor-BNI or GABAA receptor antagonist bicuculline into the AVPV from 3:00 pm to 7:00 pm reversed the progesterone-mediated blockade of the LH surge in 7 of 9 and 6 of 10 mice, respectively. In addition, these LH surges started much earlier than the surge induced by estrogen alone. However, 5 of 7 progesterone-treated mice did not show LH surge secretion after microinfusion with the GABAB receptor antagonist CGP-35348. Additionally, peripheral administration of kisspeptin-54 promotes LH surge-like release in progesterone treated mice. These results demonstrated that the progesterone-mediated suppression of the LH surge is mediated by an increase in dynorphin and GABAA receptor signaling acting though kisspeptin neurons in the AVPV of the hypothalamus in female mice.
Collapse
Affiliation(s)
- Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, China
| | - Xiaofeng Li
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Xi Shen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Geffen Lass
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Wen He
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Sha Yu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Yun Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Hui Long
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Li Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
- Correspondence: Kevin O’Byrne, PhD, 2.92W Hodgkin Building, Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, SE1 1UL. E-mail: ; or Yanping Kuang, Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China. E-mail:
| | - Kevin T O’Byrne
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
- Correspondence: Kevin O’Byrne, PhD, 2.92W Hodgkin Building, Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, SE1 1UL. E-mail: ; or Yanping Kuang, Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China. E-mail:
| |
Collapse
|
4
|
Weems PW, Lehman MN, Coolen LM, Goodman RL. The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. VITAMINS AND HORMONES 2018; 107:89-135. [PMID: 29544644 DOI: 10.1016/bs.vh.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Work over the last 15 years on the control of pulsatile LH secretion has focused largely on a set of neurons in the arcuate nucleus (ARC) that contains two stimulatory neuropeptides, critical for fertility in humans (kisspeptin and neurokinin B (NKB)) and the inhibitory endogenous opioid peptide (EOP), dynorphin, and are now known as KNDy (kisspeptin-NKB-dynorphin) neurons. In this review, we consider the role of each of the KNDy peptides in the generation of GnRH pulses and the negative feedback actions of ovarian steroids, with an emphasis on NKB and dynorphin. With regard to negative feedback, there appear to be important species differences. In sheep, progesterone inhibits GnRH pulse frequency by stimulating dynorphin release, and estradiol inhibits pulse amplitude by suppressing kisspeptin. In rodents, the role of KNDy neurons in estrogen negative feedback remains controversial, progesterone may inhibit GnRH via dynorphin, but the physiological significance of this action is unclear. In primates, an EOP, probably dynorphin, mediates progesterone negative feedback, and estrogen inhibits kisspeptin expression. In contrast, there is now compelling evidence from several species that kisspeptin is the output signal from KNDy neurons that drives GnRH release during a pulse and may also act within the KNDy network to affect pulse frequency. NKB is thought to act within this network to initiate each pulse, although there is some redundancy in tachykinin signaling in rodents. In ruminants, dynorphin terminates GnRH secretion at the end of pulse, most likely acting on both KNDy and GnRH neurons, but the data on the role of this EOP in rodents are conflicting.
Collapse
Affiliation(s)
- Peyton W Weems
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael N Lehman
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- University of Mississippi Medical Center, Jackson, MS, United States
| | | |
Collapse
|
5
|
Fergani C, Routly JE, Jones DN, Pickavance LC, Smith RF, Dobson H. KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS. Reproduction 2017. [PMID: 28630099 DOI: 10.1530/rep-17-0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the ewe, steroid hormones act on the hypothalamic arcuate nucleus (ARC) to initiate the GnRH/LH surge. Within the ARC, steroid signal transduction may be mediated by estrogen receptive dopamine-, β-endorphin- or neuropeptide Y (NPY)-expressing cells, as well as those co-localising kisspeptin, neurokinin B (NKB) and dynorphin (termed KNDy). We investigated the time during the follicular phase when these cells become activated (i.e., co-localise c-Fos) relative to the timing of the LH surge onset and may therefore be involved in the surge generating mechanism. Furthermore, we aimed to elucidate whether these activation patterns are altered after lipopolysaccharide (LPS) administration, which is known to inhibit the LH surge. Follicular phases of ewes were synchronised by progesterone withdrawal and blood samples were collected every 2 h. Hypothalamic tissue was retrieved at various times during the follicular phase with or without the administration of LPS (100 ng/kg). The percentage of activated dopamine cells decreased before the onset of sexual behaviour, whereas activation of β-endorphin decreased and NPY activation tended to increase during the LH surge. These patterns were not disturbed by LPS administration. Maximal co-expression of c-Fos in dynorphin immunoreactive neurons was observed earlier during the follicular phase, compared to kisspeptin and NKB, which were maximally activated during the surge. This indicates a distinct role for ARC dynorphin in the LH surge generation mechanism. Acute LPS decreased the percentage of activated dynorphin and kisspeptin immunoreactive cells. Thus, in the ovary-intact ewe, KNDy neurones are activated prior to the LH surge onset and this pattern is inhibited by the administration of LPS.
Collapse
Affiliation(s)
- C Fergani
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J E Routly
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - D N Jones
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - L C Pickavance
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - R F Smith
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - H Dobson
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Weems PW, Witty CF, Amstalden M, Coolen LM, Goodman RL, Lehman MN. κ-Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain. Endocrinology 2016; 157:2367-79. [PMID: 27064940 PMCID: PMC4891780 DOI: 10.1210/en.2015-1763] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kisspeptin-neurokinin B-dynorphin (KNDy) cells of the hypothalamus are a key component in the neuroendocrine regulation of GnRH secretion. Evidence in sheep and other species suggests that dynorphin released by KNDy cells inhibits pulsatile GnRH secretion by acting upon κ-opioid receptors (KOR). However, the precise anatomical location and neurochemical phenotype of KOR-expressing cells in sheep remain unknown. To this end, we determined the distribution of KOR mRNA and protein in the brains of luteal phase ewes, using an ovine specific KOR mRNA probe for in situ hybridization and an antibody whose specificity we confirmed by Western blot analyses and blocking peptide controls. KOR cells were observed in a number of regions, including the preoptic area (POA); anterior hypothalamic area; supraoptic and paraventricular nuclei; ventromedial, dorsomedial, and lateral hypothalamus; and arcuate nucleus. Next, we determined whether KOR is colocalized in KNDy and/or GnRH cells. Dual-label immunofluorescence and confocal analysis of the KNDy population showed a high degree of colocalization, with greater than 90% of these neurons containing KOR. Surprisingly, GnRH cells also showed high levels of colocalization in sheep, ranging from 74.4% to 95.4% for GnRH cells in the POA and medial basal hypothalamus, respectively. Similarly, 97.4% of GnRH neurons in the POA of ovariectomized, steroid-primed female rats also contained immunoreactive KOR protein. These findings suggest that the inhibitory effects of dynorphin on pulsatile GnRH secretion may occur either indirectly by actions upon KOR within the KNDy population and/or directly via the activation of KOR on GnRH cells.
Collapse
Affiliation(s)
- Peyton W Weems
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Christine F Witty
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Marcel Amstalden
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Lique M Coolen
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Robert L Goodman
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Michael N Lehman
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| |
Collapse
|
7
|
Helena CV, Toporikova N, Kalil B, Stathopoulos AM, Pogrebna VV, Carolino RO, Anselmo-Franci JA, Bertram R. KNDy Neurons Modulate the Magnitude of the Steroid-Induced Luteinizing Hormone Surges in Ovariectomized Rats. Endocrinology 2015; 156:4200-13. [PMID: 26302111 PMCID: PMC4606747 DOI: 10.1210/en.2015-1070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.
Collapse
Affiliation(s)
- Cleyde V Helena
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Natalia Toporikova
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Bruna Kalil
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Andrea M Stathopoulos
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Veronika V Pogrebna
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Ruither O Carolino
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Janete A Anselmo-Franci
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Richard Bertram
- Program in Neuroscience and Department of Mathematics (C.V.H., R.B.) and Program in Neuroscience and Department of Biology (A.M.S.), Florida State University, Tallahassee, Florida 32306; Department of Biology (N.T., V.V.P.), Washington and Lee University, Lexington, Virginia 24450; and Department of Physiology (B.K.), Medical School, and Department of Morphology, Stomatology, and Physiology (R.O.C., J.A.A.-F.), School of Dentistry, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| |
Collapse
|
8
|
Abstract
Human menopause is characterised by ovarian failure, gonadotrophin hypersecretion and hypertrophy of neurones expressing neurokinin B (NKB), kisspeptin (KiSS)-1 and oestrogen receptor (ER) alpha gene transcripts within the hypothalamic infundibular (arcuate) nucleus. In the arcuate nucleus of experimental animals, dynorphin, an opioid peptide, is colocalised with NKB, kisspeptin, ER alpha and progesterone receptors. Moreover, ovariectomy decreases the expression of prodynorphin gene transcripts in the arcuate nucleus of the ewe. Therefore, we hypothesised that the hypertrophied neurones in the infundibular nucleus of postmenopausal women would express prodynorphin mRNA and that menopause would be accompanied by changes in prodynorphin gene transcripts. In the present study, in situ hybridisation was performed on hypothalamic sections from premenopausal and postmenopausal women using a radiolabelled cDNA probe targeted to prodynorphin mRNA. Autoradiography and computer-assisted microscopy were used to map and count labelled neurones, measure neurone size and compare prodynorphin gene expression between premenopausal and postmenopausal groups. Neurones expressing dynorphin mRNA in the infundibular nucleus of the postmenopausal women were larger and exhibited hypertrophied morphological features. Moreover, there were fewer neurones labelled with the prodynorphin probe in the infundibular nucleus of the postmenopausal group compared to the premenopausal group. The number of dynorphin mRNA-expressing neurones was also reduced in the medial preoptic/anterior hypothalamic area of postmenopausal women without changes in cell size. No differences in cell number or size of dynorphin mRNA-expressing neurones were observed in any other hypothalamic region. Previous studies using animal models provide strong evidence that the changes in prodynorphin neuronal size and gene expression in postmenopausal women are secondary to the ovarian failure of menopause. Given the inhibitory effect of dynorphin on the reproductive axis, decreased dynorphin gene expression could play a role in the elevation in luteinising hormone secretion that occurs in postmenopausal women.
Collapse
Affiliation(s)
- A M Rometo
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | |
Collapse
|
9
|
Dynorphin in pro-opiomelanocortin neurons of the hypothalamic arcuate nucleus. Neuroscience 2008; 154:1121-31. [PMID: 18479830 DOI: 10.1016/j.neuroscience.2008.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/14/2008] [Accepted: 04/09/2008] [Indexed: 11/22/2022]
|
10
|
Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: Morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol 2006; 498:712-26. [PMID: 16917850 DOI: 10.1002/cne.21086] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Considerable evidence suggests that dynorphin and neurokinin B (NKB) neurons in the hypothalamic arcuate nucleus participate in the sex-steroid regulation of reproduction. In the present study, we used dual-label immunofluorescence to explore the distribution of prodynorphin and proNKB immunoreactivity in the rat hypothalamus. Additionally, we investigated whether arcuate prodynorphin-ir (immunoreactive) neurons expressed the neurokinin 3 receptor (NK3R) or nuclear estrogen receptor-alpha (ERalpha). We found that the majority of prodynorphin-ir neurons in the rat arcuate nucleus expressed proNKB, whereas nearly all (99%) of the proNKB neurons were immunoreactive for prodynorphin. The arcuate nucleus was the only site in the hypothalamus where neuronal somata coexpressing prodynorphin and proNKB-immunoreactivity were identified. A dense plexus of double-labeled prodynorphin/proNKB-ir fibers was found within the arcuate nucleus extending to the median eminence and throughout the periventricular zone of the hypothalamus. Prodynorphin/proNKB fibers were also identified in the paraventricular nucleus, anterior hypothalamic area, medial preoptic area, median preoptic nucleus, anteroventral periventricular nucleus, and bed nucleus of the stria terminalis in a distribution consistent with previously described arcuate nucleus projections. Interestingly, the majority of prodynorphin-ir neurons in the arcuate nucleus expressed NK3R, and nearly 100% of the prodynorphin-ir neurons contained nuclear ERalpha. Our results suggest that there is a close functional relationship between dynorphin and NKB peptides within the arcuate nucleus of the rat, which may include an autofeedback loop mediated through NK3R. The diverse hypothalamic projections of fibers expressing both prodynorphin and proNKB provide evidence that these neurons may participate in a variety of homeostatic and neuroendocrine processes.
Collapse
Affiliation(s)
- Michelle C Burke
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
11
|
Zhang Q, Gallo RV. Presence of kappa-opioid tone at the onset of the ovulatory luteinizing hormone surge in the proestrous rat. Brain Res 2003; 980:135-9. [PMID: 12865168 DOI: 10.1016/s0006-8993(03)02965-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A decrease in endogenous opioid peptide inhibitory tone on the afternoon of proestrus is one event underlying generation of the ovulatory luteinizing hormone (LH) surge. Whether this disinhibition involves a complete loss of opioid suppression at the time of the LH surge is controversial. The objective of the present study was to determine whether a total loss specifically of the kappa-opioid inhibitory component suppressing LH secretion occurs on proestrus at the onset of the LH surge. Proestrous rats were infused intraventricularly with either artificial cerebrospinal fluid (aCSF) or aCSF containing nor-binaltorphimine (nor-BNI), a selective kappa-opioid receptor antagonist, from 15:30 or 16:30 h (the approximate onset time of the spontaneous LH surge) to 18:50 h. The LH surge in rats treated with nor-BNI beginning at 15:30 h started 0.5 h earlier than the spontaneous surge in aCSF controls, and had significantly higher plasma LH levels from 16:30 to 17:30 h. Nor-BNI administration begun at 16:30 h also produced an LH surge with more elevated plasma LH levels at 17:30 and 18:00 h than in aCSF-treated controls. These results demonstrate that significant amounts of kappa-opioid tone are still present during the hours when the LH surge is initiated. Thus, a complete loss of kappa-opioid inhibition is not required for the onset of the LH surge on proestrus.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Physiology and Neurobiology, The University of Connecticut, 3107 Horsebarn Hill Rd., Box U-156, Storrs, CT 06269-4156, USA
| | | |
Collapse
|
12
|
Zhang Q, Gallo RV. Effect of prodynorphin-derived opioid peptides on the ovulatory luteinizing hormone surge in the proestrous rat. Endocrine 2002; 18:27-32. [PMID: 12166621 DOI: 10.1385/endo:18:1:27] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 04/01/2002] [Accepted: 04/12/2002] [Indexed: 12/15/2022]
Abstract
The objective of this study was to determine whether prodynorphin-derived opioid peptides could block the spontaneous luteinizing hormone (LH) surge and ovulation, and if so, whether this inhibitory action was mediated through kappa-opioid receptors. Various doses of dynorphin peptides (dynorphin A(1-17), dynorphin A(1-8), dynorphin B, alpha- and beta-neoendorphin) were infused into the brain through third-ventricle cannulae in rats between 1330-1800 h on proestrus. Each dynorphin peptide blocked the LH surge and ovulation in a dose-dependent manner. Dynorphin A(1-17) and A(1-8) were equally effective in producing these actions, and more potent than either dynorphin B or alpha- or beta-neoendorphin. U50,488H, a specific kappa-opioid receptor agonist, also blocked the LH surge and ovulation. When a mixture of five dynorphin peptides was infused intraventricularly, each at a dose that inhibited the LH surge, both the surge and ovulation were blocked. However, when norbinaltorphimine, a specific kappa-opioid receptor antagonist, was coinfused with the mixture of dynorphin peptides, the LH surge and ovulation were fully restored. These results demonstrate that prodynorphin-derived opioid peptides, acting through kappa-opioid receptors, can block the LH surge and ovulation. Dynorphin A(1-17) and A(1-8) are the most potent in this regard.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269-4156, USA
| | | |
Collapse
|