1
|
Das A, Gauthier-Coles G, Bröer S, Rae CD. L-Proline Alters Energy Metabolism in Brain Cortical Tissue Slices. Neurochem Res 2024; 50:16. [PMID: 39556274 DOI: 10.1007/s11064-024-04262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024]
Abstract
L-Proline (L-Pro) is a non-essential amino acid which, in high concentrations, can cause neurological problems including seizures, although the causative mechanism for this is unclear. Here, we studied the impact of physiological levels of proline on brain energy metabolism and investigated the metabolism of L-Pro itself, using the cortical brain tissue slice and stable isotope labelling from [1-13 C]glucose and [1,2-13 C]acetate detected by NMR spectroscopy and LCMS. L-Pro was actively taken up by the slices and significantly reduced the total metabolic pools of all measured metabolites with glutamine the least affected, while reducing net flux of 13C into glycolytic byproducts (lactate and alanine). Conversely, net flux into Krebs cycle intermediates was increased, suggesting that L-Pro at lower concentrations was driving increased mitochondrial activity in both neurons and glia at the expense of glycolysis and metabolic pool sizes. As there was no evidence of metabolism of [1-13 C] L-Pro in slices under normo-glycemic conditions, the effect of proline on metabolism was not due to displacement of metabolites by added L-Pro. Comparison of the metabolic fingerprint generated by L-Pro in slices metabolizing [3-13 C]pyruvate with that generated by ligands active in the GABAergic system suggested that L-Pro may engender effects similar to that of the inhibitory neurotransmitter and metabolite γ-aminobutyric acid (GABA), in line with previous suggestions that L-Pro may be a GABA mimetic in addition to its role as a modulator of mitochondrial metabolism.
Collapse
Affiliation(s)
- Abhijit Das
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Gregory Gauthier-Coles
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Mancini V, Saleh MG, Delavari F, Bagautdinova J, Eliez S. Excitatory/Inhibitory Imbalance Underlies Hippocampal Atrophy in Individuals With 22q11.2 Deletion Syndrome With Psychotic Symptoms. Biol Psychiatry 2023; 94:569-579. [PMID: 37011759 DOI: 10.1016/j.biopsych.2023.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Abnormal neurotransmitter levels have been reported in individuals at high risk for schizophrenia, leading to a shift in the excitatory/inhibitory balance. However, it is unclear whether these alterations predate the onset of clinically relevant symptoms. Our aim was to explore in vivo measures of excitatory/inhibitory balance in 22q11.2 deletion carriers, a population at genetic risk for psychosis. METHODS Glx (glutamate+glutamine) and GABA+ (gamma-aminobutyric acid with macromolecules and homocarnosine) concentrations were estimated in the anterior cingulate cortex, superior temporal cortex, and hippocampus using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence and the Gannet toolbox in 52 deletion carriers and 42 control participants. T1-weighted images were acquired longitudinally and processed with FreeSurfer version 6 to extract hippocampal volume. Subgroup analyses were conducted in deletion carriers with psychotic symptoms. RESULTS While no differences were found in the anterior cingulate cortex, deletion carriers had higher levels of Glx in the hippocampus and superior temporal cortex and lower levels of GABA+ in the hippocampus than control participants. We additionally found a higher Glx concentration in the hippocampus of deletion carriers with psychotic symptoms. Finally, more pronounced hippocampal atrophy was significantly associated with increased Glx levels in deletion carriers. CONCLUSIONS We provide evidence for an excitatory/inhibitory imbalance in temporal brain structures of deletion carriers, with a further hippocampal Glx increase in individuals with psychotic symptoms that was associated with hippocampal atrophy. These results are in line with theories proposing abnormally enhanced glutamate levels as a mechanistic explanation for hippocampal atrophy via excitotoxicity. Our results highlight a central role of glutamate in the hippocampus of individuals at genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Joëlle Bagautdinova
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
3
|
van Hooijdonk CFM, Tse DHY, Roosenschoon J, Ceccarini J, Booij J, van Amelsvoort TAMJ, Vingerhoets C. The Relationships between Dopaminergic, Glutamatergic, and Cognitive Functioning in 22q11.2 Deletion Syndrome: A Cross-Sectional, Multimodal 1H-MRS and 18F-Fallypride PET Study. Genes (Basel) 2022; 13:1672. [PMID: 36140839 PMCID: PMC9498700 DOI: 10.3390/genes13091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Individuals with 22q11.2 deletion syndrome (22q11DS) are at increased risk of developing psychosis and cognitive impairments, which may be related to dopaminergic and glutamatergic abnormalities. Therefore, in this exploratory study, we examined the association between dopaminergic and glutamatergic functioning in 22q11DS. Additionally, the associations between glutamatergic functioning and brain volumes in 22q11DS and healthy controls (HC), as well as those between dopaminergic and cognitive functioning in 22q11DS, were also examined. METHODS In this cross-sectional, multimodal imaging study, glutamate, glutamine, and their combined concentration (Glx) were assessed in the anterior cingulate cortex (ACC) and striatum in 17 22q11DS patients and 20 HC using 7T proton magnetic resonance spectroscopy. Ten 22q11DS patients also underwent 18F-fallypride positron emission tomography to measure dopamine D2/3 receptor (D2/3R) availability in the ACC and striatum. Cognitive performance was assessed with the Cambridge Neuropsychological Test Automated Battery. RESULTS No significant associations were found between ACC or striatal (1) glutamate, glutamine, or Glx concentrations and (2) D2/3R availability. In HC but not in 22q11DS patients, we found a significant relationship between ACC volume and ACC glutamate, glutamine, and Glx concentration. In addition, some aspects of cognitive functioning were significantly associated with D2/3R availability in 22q11DS. However, none of the associations remained significant after Bonferroni correction. CONCLUSIONS Although our results did not reach statistical significance, our findings suggest an association between glutamatergic functioning and brain volume in HC but not in 22q11DS. Additionally, D2/3R availability seems to be related to cognitive functioning in 22q11DS. Studies in larger samples are needed to further elucidate our findings.
Collapse
Affiliation(s)
- Carmen F. M. van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
- Rivierduinen, Institute for Mental Health Care, 2333 ZZ Leiden, The Netherlands
| | - Desmond H. Y. Tse
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Julia Roosenschoon
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Therese A. M. J. van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| |
Collapse
|
4
|
Xu XJ, Cai XE, Meng FC, Song TJ, Wang XX, Wei YZ, Zhai FJ, Long B, Wang J, You X, Zhang R. Comparison of the Metabolic Profiles in the Plasma and Urine Samples Between Autistic and Typically Developing Boys: A Preliminary Study. Front Psychiatry 2021; 12:657105. [PMID: 34149478 PMCID: PMC8211775 DOI: 10.3389/fpsyt.2021.657105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is defined as a pervasive developmental disorder which is caused by genetic and environmental risk factors. Besides the core behavioral symptoms, accumulated results indicate children with ASD also share some metabolic abnormalities. Objectives: To analyze the comprehensive metabolic profiles in both of the first-morning urine and plasma samples collected from the same cohort of autistic boys. Methods: In this study, 30 autistic boys and 30 tightly matched healthy control (HC) boys (age range: 2.4~6.7 years) were recruited. First-morning urine and plasma samples were collected and the liquid chromatography-mass spectrometry (LC-MS) was applied to obtain the untargeted metabolic profiles. The acquired data were processed by multivariate analysis and the screened metabolites were grouped by metabolic pathway. Results: Different discriminating metabolites were found in plasma and urine samples. Notably, taurine and catechol levels were decreased in urine but increased in plasma in the same cohort of ASD children. Enriched pathway analysis revealed that perturbations in taurine and hypotaurine metabolism, phenylalanine metabolism, and arginine and proline metabolism could be found in both of the plasma and urine samples. Conclusion: These preliminary results suggest that a series of common metabolic perturbations exist in children with ASD, and confirmed the importance to have a comprehensive analysis of the metabolites in different biological samples to reveal the full picture of the complex metabolic patterns associated with ASD. Further targeted analyses are needed to validate these results in a larger cohort.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-E Cai
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Fan-Chao Meng
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Jia Song
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Beijing, China.,Peking University McGovern Institute, Peking University, Beijing, China
| | - Xiao-Xi Wang
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi-Zhen Wei
- Department of Education, Peking Union Medical College Hospital, Beijing, China
| | - Fu-Jun Zhai
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Long
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zhang
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Robison A, Thakkar K, Diwadkar VA. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol Psychiatry 2020; 87:204-214. [PMID: 31733788 PMCID: PMC6946864 DOI: 10.1016/j.biopsych.2019.09.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/29/2023]
Abstract
Schizophrenia has been studied from the perspective of cognitive or reward-related impairments, yet it cannot be wholly related to one or the other process and their corresponding neural circuits. We posit a comprehensive circuit-based model proposing that dysfunctional interactions between the brain's cognitive and reward circuits underlie schizophrenia. The model is underpinned by how the relationship between glutamatergic and dopaminergic dysfunction in schizophrenia drives interactions between cognition and reward circuits. We argue that this interaction is synergistic: that is, deficits of cognition and reward processing interact, and this interaction is a core feature of schizophrenia. In adopting this position, we undertake a focused review of animal physiology and human clinical data, and in proposing this synergistic model, we highlight dopaminergic afferents from the ventral tegmental area to nucleus accumbens (mesolimbic circuit) and frontal cortex (mesocortical circuit). We then expand on the role of glutamatergic inputs to these dopamine circuits and dopaminergic modulation of critical excitatory pathways with attention given to the role of glutamatergic hippocampal outputs onto nucleus accumbens. Finally, we present evidence for how in schizophrenia, dysfunction in the mesolimbic and mesocortical circuits and their corresponding glutamatergic inputs gives rise to clinical and cognitive phenotypes and is associated with positive and negative symptom dimensions. The synthesis attempted here provides an impetus for a conceptual shift that links cognitive and motivational aspects of schizophrenia and that can lead to treatment approaches that seek to harmonize network interactions between the brain's cognition and reward circuits with ameliorative effects in each behavioral domain.
Collapse
Affiliation(s)
| | - Katharine Thakkar
- Dept. of Psychology, Michigan State University,Division of Psychiatry and Behavioral Medicine, Michigan State University
| | | |
Collapse
|
7
|
Glutamatergic function in a genetic high-risk group for psychosis: A proton magnetic resonance spectroscopy study in individuals with 22q11.2 deletion. Eur Neuropsychopharmacol 2019; 29:1333-1342. [PMID: 31648854 DOI: 10.1016/j.euroneuro.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/21/2022]
Abstract
Glutamatergic dysregulation is one of the leading theories regarding the pathoaetiolopy of schizophrenia. Meta-analysis of magnetic resonance spectroscopy studies in schizophrenia shows increased levels of glutamate and glutamine (Glx) in the medial frontal cortex and basal ganglia in clinical high-risk groups for psychosis and increased glutamine levels in the thalamus, but it is unclear if this is also the case in people at genetic high risk for psychosis. The aim of this study was to investigate glutamatergic function in the anterior cingulate cortex, striatum and thalamus in carriers of a genetic variant (22q11.2 deletion) associated with a high risk for psychosis. 53 volunteers (23 22q11.2 deletion carriers and 30 controls) underwent proton magnetic resonance spectroscopy imaging and neuropsychological assessments for prodromal psychotic symptoms, schizotypy, anxiety, depression and FSIQ. We did not find any difference between groups in Glx in the anterior cingulate cortex, striatum or thalamus (Glx: t(50)=-1.26, p = 0.21; U = 251, z = -0.7, p = 0.49; U = 316, z= -0.26, p = 0.79, respectively). No correlation was detected between Glx levels in any region and symptomatology or FSIQ. Our findings indicate that glutamatergic function is not altered in people at genetic high risk of psychosis due to the 22q11.2 deletion, which could suggest that this is not the mechanism underlying psychosis risk in 22q11.2 deletion carriers.
Collapse
|
8
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
9
|
Cappelletti P, Tallarita E, Rabattoni V, Campomenosi P, Sacchi S, Pollegioni L. Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 glioblastoma cell line. PLoS One 2018; 13:e0196283. [PMID: 29694413 PMCID: PMC5918996 DOI: 10.1371/journal.pone.0196283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degradation pathway. Alterations in proline metabolism have been described in various human diseases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, we report on the expression of wild-type and L441P variants of human PO in a U87 glioblastoma human cell line in an attempt to assess their effect on glutamate metabolism. The subcellular localization of the flavoenzyme is not altered in the L441P variant, for which specific activity is halved compared to the wild-type PO. While this decrease in activity is significantly less than that previously proposed, an effect of the substitution on the enzyme stability is also apparent in our studies. At 24 hours of growth from transient transfection, the intracellular level of proline, glutamate, and glutamine is decreased in cells expressing the PO variants as compared to control U87 cells, reaching a similar figure at 72 h. On the other hand, the extracellular levels of the three selected amino acids show a similar time course for all clones. Furthermore, PO overexpression does not modify to a significant extent the expression of GLAST and GLT-1 glutamate transporters. Altogether, these results demonstrate that the proline pathway links cellular proline levels with those of glutamate and glutamine. On this side, PO might play a regulatory role in glutamatergic neurotransmission by affecting the cellular concentration of glutamate.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
- * E-mail:
| | - Elena Tallarita
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| |
Collapse
|
10
|
Clelland CL, Drouet V, Rilett KC, Smeed JA, Nadrich RH, Rajparia A, Read LL, Clelland JD. Evidence that COMT genotype and proline interact on negative-symptom outcomes in schizophrenia and bipolar disorder. Transl Psychiatry 2016; 6:e891. [PMID: 27622935 PMCID: PMC5048199 DOI: 10.1038/tp.2016.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Elevated peripheral proline is associated with psychiatric disorders, and there is evidence that proline is a neuromodulator. The proline dehydrogenase (PRODH) gene, which encodes the enzyme that catalyzes proline catabolism, maps to human chromosome 22q11.2, a region conferring risk of schizophrenia. In the Prodh-null mouse, an interaction between elevated peripheral proline and another 22q11.2 gene, catechol-O-methyltransferase (COMT), on neurotransmission and behavior has been reported. We explored the relationship between fasting plasma proline levels and COMT Val(158)Met genotype on symptoms (positive, negative and total) in schizophrenia patients. In an exploratory study we also examined symptom change in patients with bipolar disorder. There was a significant interaction between peripheral proline and COMT on negative symptoms in schizophrenia (P<0.0001, n=95). In COMT Val/Val patients, high proline was associated with low Scale for the Assessment of Negative Symptom (SANS) scores. In contrast, high proline was associated with high SANS scores in patients carrying a Met allele. The relationship between proline and COMT also appears to modify negative symptoms across psychiatric illness. In bipolar disorder, a significant interaction was also observed on negative-symptom change (P=0.007, n=43). Negative symptoms are intractable and largely unaddressed by current medications. These data indicate a significant interaction between peripheral proline and COMT genotype, influencing negative symptoms in schizophrenia and bipolar disorder. That high proline has converse effects on symptoms by COMT genotype, may have implications for therapeutic decisions.
Collapse
Affiliation(s)
- C L Clelland
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - V Drouet
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - K C Rilett
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - J A Smeed
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - R H Nadrich
- Bellevue Hospital Center, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - A Rajparia
- Bellevue Hospital Center, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - L L Read
- Movement Disorders and Molecular Psychiatry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - J D Clelland
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Movement Disorders and Molecular Psychiatry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
11
|
Shivakumar V, Kalmady SV, Amaresha AC, Jose D, Narayanaswamy JC, Agarwal SM, Joseph B, Venkatasubramanian G, Ravi V, Keshavan MS, Gangadhar BN. Serum vitamin D and hippocampal gray matter volume in schizophrenia. Psychiatry Res 2015; 233:175-9. [PMID: 26163386 DOI: 10.1016/j.pscychresns.2015.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
Abstract
Disparate lines of evidence including epidemiological and case-control studies have increasingly implicated vitamin D in the pathogenesis of schizophrenia. Vitamin D deficiency can lead to dysfunction of the hippocampus--a brain region hypothesized to be critically involved in schizophrenia. In this study, we examined for potential association between serum vitamin D level and hippocampal gray matter volume in antipsychotic-naïve or antipsychotic-free schizophrenia patients (n = 35). Serum vitamin D level was estimated using 25-OH vitamin D immunoassay. Optimized voxel-based morphometry was used to analyze 3-Tesla magnetic resonance imaging (MRI) (1-mm slice thickness). Ninety-seven percent of the schizophrenia patients (n = 34) had sub-optimal levels of serum vitamin D (83%, deficiency; 14%, insufficiency). A significant positive correlation was seen between vitamin D and regional gray matter volume in the right hippocampus after controlling for age, years of education and total intracranial volume (Montreal Neurological Institute (MNI) coordinates: x = 35, y = -18, z = -8; t = 4.34 pFWE(Corrected) = 0.018). These observations support a potential role of vitamin D deficiency in mediating hippocampal volume deficits, possibly through neurotrophic, neuroimmunomodulatory and glutamatergic effects.
Collapse
Affiliation(s)
- Venkataram Shivakumar
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India; Department of Clinical Neurosciences, NIMHANS, Bangalore, India
| | - Sunil V Kalmady
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Anekal C Amaresha
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Dania Jose
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Sri Mahavir Agarwal
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Boban Joseph
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Ganesan Venkatasubramanian
- Schizophrenia Clinic, Department of Psychiatry, NIMHANS, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India.
| | | | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Clelland JD, Read LL, Drouet V, Kaon A, Kelly A, Duff KE, Nadrich RH, Rajparia A, Clelland CL. Vitamin D insufficiency and schizophrenia risk: evaluation of hyperprolinemia as a mediator of association. Schizophr Res 2014; 156:15-22. [PMID: 24787057 PMCID: PMC4044915 DOI: 10.1016/j.schres.2014.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 03/13/2014] [Accepted: 03/19/2014] [Indexed: 12/25/2022]
Abstract
25-Hydroxyvitamin D (25(OH)D) deficits have been associated with schizophrenia susceptibility and supplementation has been recommended for those at-risk. Although the mechanism by which a deficit confers risk is unknown, vitamin D is a potent transcriptional modulator and can regulate proline dehydrogenase (PRODH) expression. PRODH maps to chromosome 22q11, a region conferring the highest known genetic risk of schizophrenia, and encodes proline oxidase, which catalyzes proline catabolism. l-Proline is a neuromodulator at glutamatergic synapses, and peripheral hyperprolinemia has been associated with decreased IQ, cognitive impairment, schizoaffective disorder, and schizophrenia. We investigated the relationship between 25(OH)D and schizophrenia, comparing fasting plasma 25(OH)D in 64 patients and 90 matched controls. We then tested for a mediating effect of hyperprolinemia on the association between 25(OH)D and schizophrenia. 25(OH)D levels were significantly lower in patients, and 25(OH)D insufficiency associated with schizophrenia (OR 2.1, adjusted p=0.044, 95% CI: 1.02-4.46). Moreover, 25(OH)D insufficient subjects had three times greater odds of hyperprolinemia than those with optimal levels (p=0.035, 95% CI: 1.08-8.91), and formal testing established that hyperprolinemia is a significantly mediating phenotype that may explain over a third of the effect of 25(OH)D insufficiency on schizophrenia risk. This study presents a mechanism by which 25(OH)D insufficiency confers risk of schizophrenia; via proline elevation due to reduced PRODH expression, and a concomitant dysregulation of neurotransmission. Although definitive causality cannot be confirmed, these findings strongly support vitamin D supplementation in patients, particularly for those with elevated proline, who may represent a large subgroup of the schizophrenia population.
Collapse
Affiliation(s)
- James D. Clelland
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY,Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY
| | - Laura L. Read
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY,Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY
| | - Valérie Drouet
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain. Columbia University Medical Center. 630 West 168th Street. New York
| | - Angela Kaon
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| | - Alexandra Kelly
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain. Columbia University Medical Center. 630 West 168th Street. New York
| | - Karen E. Duff
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain. Columbia University Medical Center. 630 West 168th Street. New York,New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY
| | - Robert H Nadrich
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY,Bellevue Hospital Center, 462 First Avenue, New York, NY
| | - Amit Rajparia
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY,Bellevue Hospital Center, 462 First Avenue, New York, NY
| | - Catherine L. Clelland
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain. Columbia University Medical Center. 630 West 168th Street. New York
| |
Collapse
|
13
|
Pinto MCX, de Paiva MJN, Oliveira-Lima OC, Menezes HC, Cardeal ZDL, Gomez MV, Resende RR, Gomez RS. Neurochemical study of amino acids in rodent brain structures using an improved gas chromatography-mass spectrometry method. J Chem Neuroanat 2013; 55:24-37. [PMID: 24321291 DOI: 10.1016/j.jchemneu.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/22/2023]
Abstract
The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis. The amino acid concentration varied across brain regions for 14 of the 16 analyzed molecules, with detection limits ranging from 0.02±0.005μmolL(-1) to 7.07±0.05μmolL(-1). In rats, the concentrations of alanine, glycine, methionine, serine and threonine were higher in prefrontal cortex than in other areas, whereas in mice, the concentrations of glutamic acid, leucine and proline were highest in the hippocampus. In conclusion, this study provides a cerebral profile of amino acids in brain regions and the serum of rats and mice.
Collapse
Affiliation(s)
- Mauro Cunha Xavier Pinto
- Laboratório de Neurociências, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, 30130-100 Belo Horizonte, MG, Brazil; Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, 30130-100 Belo Horizonte, MG, Brazil
| | - Maria José Nunes de Paiva
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Onésia Cristina Oliveira-Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Helvécio Costa Menezes
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Zenilda de Lourdes Cardeal
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Gomez
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, R. Domingos Vieira, 590, Belo Horizonte, MG, Brazil
| | - Rodrigo Ribeiro Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, 30130-100 Belo Horizonte, MG, Brazil.
| |
Collapse
|
14
|
Schreiner MJ, Lazaro MT, Jalbrzikowski M, Bearden CE. Converging levels of analysis on a genomic hotspot for psychosis: insights from 22q11.2 deletion syndrome. Neuropharmacology 2013; 68:157-73. [PMID: 23098994 PMCID: PMC3677073 DOI: 10.1016/j.neuropharm.2012.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still poses a considerable challenge to attempts to unravel its heterogeneity, and the complex biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology, accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome (22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with 22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1-2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode for proteins and enzymes involved in regulating neurotransmission, neuronal development, myelination, microRNA processing, and post-translational protein modifications. As a consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders, we provide here an overview of the cellular, network, and systems-level anomalies found in 22qDS, and review the intriguing evidence for this disorder's association with schizophrenia. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Matthew J. Schreiner
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | - Maria T. Lazaro
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | | | - Carrie E. Bearden
- Department of Psychology, University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| |
Collapse
|
15
|
Squarcione C, Torti MC, Di Fabio F, Biondi M. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis. Neuropsychiatr Dis Treat 2013; 9:1873-84. [PMID: 24353423 PMCID: PMC3862513 DOI: 10.2147/ndt.s52188] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%-2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome.
Collapse
Affiliation(s)
- Chiara Squarcione
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Torti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Fabio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Massimo Biondi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Blakely RD, Edwards RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol 2012; 4:a005595. [PMID: 22199021 PMCID: PMC3281572 DOI: 10.1101/cshperspect.a005595] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.
Collapse
Affiliation(s)
- Randy D Blakely
- Department of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | |
Collapse
|
17
|
Magnée MJCM, Lamme VAF, de Sain-van der Velden MGM, Vorstman JAS, Kemner C. Proline and COMT status affect visual connectivity in children with 22q11.2 deletion syndrome. PLoS One 2011; 6:e25882. [PMID: 21998713 PMCID: PMC3187802 DOI: 10.1371/journal.pone.0025882] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/12/2011] [Indexed: 11/17/2022] Open
Abstract
Background Individuals with the 22q11.2 deletion syndrome (22q11DS) are at increased risk for schizophrenia and Autism Spectrum Disorders (ASDs). Given the prevalence of visual processing deficits in these three disorders, a causal relationship between genes in the deleted region of chromosome 22 and visual processing is likely. Therefore, 22q11DS may represent a unique model to understand the neurobiology of visual processing deficits related with ASD and psychosis. Methodology We measured Event-Related Potentials (ERPs) during a texture segregation task in 58 children with 22q11DS and 100 age-matched controls. The C1 component was used to index afferent activity of visual cortex area V1; the texture negativity wave provided a measure for the integrity of recurrent connections in the visual cortical system. COMT genotype and plasma proline levels were assessed in 22q11DS individuals. Principal Findings Children with 22q11DS showed enhanced feedforward activity starting from 70 ms after visual presentation. ERP activity related to visual feedback activity was reduced in the 22q11DS group, which was seen as less texture negativity around 150 ms post presentation. Within the 22q11DS group we further demonstrated an association between high plasma proline levels and aberrant feedback/feedforward ratios, which was moderated by the COMT158 genotype. Conclusions These findings confirm the presence of early visual processing deficits in 22q11DS. We discuss these in terms of dysfunctional synaptic plasticity in early visual processing areas, possibly associated with deviant dopaminergic and glutamatergic transmission. As such, our findings may serve as a promising biomarker related to the development of schizophrenia among 22q11DS individuals.
Collapse
Affiliation(s)
- Maurice J C M Magnée
- Rudolf Magnus Institute of Neuroscience, Department of Child and Adolescent Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Clelland CL, Read LL, Baraldi AN, Bart CP, Pappas CA, Panek LJ, Nadrich RH, Clelland JD. Evidence for association of hyperprolinemia with schizophrenia and a measure of clinical outcome. Schizophr Res 2011; 131:139-45. [PMID: 21645996 PMCID: PMC3161723 DOI: 10.1016/j.schres.2011.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
There are multiple genetic links between schizophrenia and a deficit of proline dehydrogenase (PRODH) enzyme activity. However, reports testing for an association of schizophrenia with the resulting proline elevation have been conflicting. The objectives of this study were to investigate whether hyperprolinemia is associated with schizophrenia, and to measure the relationship between plasma proline, and clinical features and symptoms of schizophrenia. We performed a cross-sectional case-control study, comparing fasting plasma proline in 90 control subjects and 64 schizophrenic patients and testing for association of mild to moderate hyperprolinemia with schizophrenia. As secondary analyses, the relationship between hyperprolinemia and five measures of clinical onset, symptoms and outcome were investigated. Patients had significantly higher plasma proline than matched controls (p<0.0001), and categorical analysis of gender adjusted hyperprolinemia showed a significant association with schizophrenia (OR 6.15, p=0.0003). Hyperprolinemic patients were significantly older at their first hospitalization (p=0.015 following correction for multiple testing). While plasma proline level was not related to total, positive or negative symptoms, hyperprolinemic status had a significant effect on length of hospital stay (p=0.005), following adjustment for race, BPRS score, and cross-sectional time from admission to proline measurement. Mild to moderate hyperprolinemia is a significant risk factor for schizophrenia, and may represent an intermediate phenotype in the disease. Hyperprolinemic patients have a significantly later age of first psychiatric hospitalization, suggestive of later onset, and hospital stays 46% longer than non-hyperprolinemic subjects. These findings have implications in the etiology of schizophrenia, and for the clinical management of these patients.
Collapse
Affiliation(s)
- Catherine L. Clelland
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain. Columbia University Medical Center. 630 West 168 Street. New York
| | - Laura L. Read
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| | - Amanda N. Baraldi
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| | - Corinne P. Bart
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| | - Carrie A. Pappas
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| | - Laura J. Panek
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| | - Robert H. Nadrich
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY
- Bellevue Hospital Center, 462 First Avenue, New York, NY
| | - James D. Clelland
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue. New York, NY
- Movement Disorders and Molecular Psychiatry. The Nathan Kline Institute for Psychiatric Research. 140 Old Orangeburg Road. Orangeburg. NY
| |
Collapse
|
19
|
da Silva Alves F, Boot E, Schmitz N, Nederveen A, Vorstman J, Lavini C, Pouwels PJ, de Haan L, Linszen D, van Amelsvoort T. Proton magnetic resonance spectroscopy in 22q11 deletion syndrome. PLoS One 2011; 6:e21685. [PMID: 21738766 PMCID: PMC3128078 DOI: 10.1371/journal.pone.0021685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/07/2011] [Indexed: 01/02/2023] Open
Abstract
Objective People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS) have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. Method We employed proton magnetic resonance spectroscopy (1H-MRS) to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+) and without (22q11DS SCZ−) schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. Results We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ−. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ−. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. Conclusion This is the first in vivo1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.
Collapse
Affiliation(s)
- Fabiana da Silva Alves
- Department of Psychiatry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yoneyama D, Shinozaki Y, Lu WL, Tomi M, Tachikawa M, Hosoya KI. Involvement of system A in the retina-to-blood transport of l-proline across the inner blood–retinal barrier. Exp Eye Res 2010; 90:507-13. [DOI: 10.1016/j.exer.2010.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
|
21
|
Vorstman JAS, Turetsky BI, Sijmens-Morcus MEJ, de Sain MG, Dorland B, Sprong M, Rappaport EF, Beemer FA, Emanuel BS, Kahn RS, van Engeland H, Kemner C. Proline affects brain function in 22q11DS children with the low activity COMT 158 allele. Neuropsychopharmacology 2009; 34:739-46. [PMID: 18769474 PMCID: PMC2817942 DOI: 10.1038/npp.2008.132] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The association between the 22q11.2 deletion syndrome (22q11DS) and psychiatric disorders, particularly psychosis, suggests a causal relationship between 22q11DS genes and abnormal brain function. The genes catechol-O-methyl-transferase (COMT) and proline dehydrogenase both reside within the commonly deleted region of 22q11.2. COMT activity and proline levels may therefore be altered in 22q11DS individuals. Associations of both COMT(158) genotype and elevated serum proline levels with abnormal brain function have been reported. Fifty-six 22q11DS children and 75 healthy controls were assessed on physiological measures of brain function, including prepulse inhibition (PPI) of startle, P50 auditory sensory gating and smooth pursuit eye movements (SPEM). COMT(158) genotype and plasma proline levels were determined in the 22q11DS children. We hypothesized an interaction between the COMT(158) genotype and proline, predicting the strongest negative effect of high proline on brain function to occur in 22q11DS children who are carriers of the COMT(met) allele. Of the three physiological measures, only SPEM and PPI were abnormal in the patient sample. With regard to the SPEM performance, there was a significant interaction between the COMT(158) genotype and proline level with significantly decreased SPEM performance in children with high plasma proline levels and the low activity COMT(met) allele. A similar interaction effect was not observed with regard to PPI. These findings are consistent with a model in which elevated proline negatively affects brain function by an increase in dopamine in the prefrontal cortex. 22q11DS patients with low dopamine catabolic capacity are therefore especially vulnerable to this functional disruption.
Collapse
Affiliation(s)
- Jacob A S Vorstman
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu XC, Zhang W, Oldham A, Buxton E, Patel S, Nghi N, Tran D, Lanthorn TH, Bomont C, Shi ZC, Liu Q. Discovery and characterization of potent small molecule inhibitors of the high affinity proline transporter. Neurosci Lett 2009; 451:212-6. [DOI: 10.1016/j.neulet.2009.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/25/2022]
|
23
|
Bröer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 2006; 48:559-67. [PMID: 16540203 DOI: 10.1016/j.neuint.2005.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022]
Abstract
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry & Molecular Biology, Building 41, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
24
|
Abstract
OBJECTIVE The 22q11 deletion syndrome is associated with a range of possible physical anomalies, probable ongoing learning disabilities, and a specific constellation of neuropsychological deficits, including impairments in selective and executive visual attention, working memory, and sensorimotor functioning. It has been estimated that 25% of the children with 22q11 deletion syndrome go on to develop schizophrenia in late adolescence or adulthood. This is of urgent concern. Specification of early brain network vulnerabilities may provide a basis for early intervention while indicating critical links between genes and severe psychiatric illness. Neuropsychological studies of children with 22q11 deletion syndrome have implicated an array of potentially aberrant brain pathways. This study was conducted to determine whether preattentive processing ("sensorimotor gating") deficits are present in this population. METHOD The authors administered a test of prepulse inhibition to 25 children with 22q11 deletion syndrome and their 23 sibling comparison subjects, ages 6-13. It was predicted that the children with 22q11 deletion syndrome would have lower prepulse inhibition than the comparison subjects. RESULTS Prepulse inhibition in the children with 22q11 deletion syndrome (26.06%) was significantly less than that of the sibling comparison subjects (46.41%). Secondary analyses suggested that this decrement did not reflect developmental delay, and lower prepulse inhibition was associated with particular subsyndromal symptoms in some children. CONCLUSIONS Sensorimotor gating is lower in children with 22q11 deletion syndrome. These findings may indicate specific brain circuits that are anomalous in 22q11 deletion syndrome.
Collapse
Affiliation(s)
- Christina Sobin
- Laboratory of Human Neurogenetics, Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
25
|
Delwing D, Chiarani F, Bavaresco CS, Wannmacher CMD, Wajner M, Dutra-Filho CS, Wyse ATS. Protective effect of antioxidants on brain oxidative damage caused by proline administration. Neurosci Res 2005; 52:69-74. [PMID: 15811554 DOI: 10.1016/j.neures.2005.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 01/06/2005] [Accepted: 01/27/2005] [Indexed: 01/22/2023]
Abstract
We have previously demonstrated that acute and chronic hyperprolinemia induce oxidative stress in cerebral cortex of rats. In the present study, we investigated the action of Vitamins E and C on the oxidative damage elicited by acute and chronic administration of proline (Pro) in rat cerebral cortex. Results showed that treatment with Vitamins E and C prevented the alterations caused by acute and chronic administration of proline on chemiluminescence, total radical-trapping antioxidant potential (TRAP) and on the activities of catalase and glutathione peroxidase. If these effects also occur in the human condition, it is possible that antioxidant administration might serve as a potential adjuvant therapy to avoid the progression of the neuropsychiatric dysfunction observed in hyperprolinemic patients.
Collapse
Affiliation(s)
- Daniela Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Certain excitatory pathways in the rat hippocampus can release aspartate along with glutamate. This study utilized rat hippocampal synaptosomes to characterize the mechanism of aspartate release and to compare it with glutamate release. Releases of aspartate and glutamate from the same tissue samples were quantitated simultaneously. Both amino acids were released by 25 mM K(+), 300 microM 4-aminopyridine (4-AP) and 0.5 and 1 microM ionomycin in a predominantly Ca(2+)-dependent manner. For a roughly equivalent quantity of glutamate released, aspartate release was significantly greater during exposure to elevated [K(+)] than to 4-AP and during exposure to 0.5 than to 1 microM ionomycin. Aspartate release was inefficiently coupled to P/Q-type voltage-dependent Ca(2+) channels and was reduced by KB-R7943, an inhibitor of reversed Na(+)/Ca(2+) exchange. In contrast, glutamate release depended primarily on Ca(2+) influx through P/Q-type channels and was not significantly affected by KB-R7943. Pretreatment of the synaptosomes with tetanus toxin and botulinum neurotoxins C and F reduced glutamate release, but not aspartate release. Aspartate release was also resistant to bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase, whereas glutamate release was markedly reduced. (+/-) -Threo-3-methylglutamate, a non-transportable competitive inhibitor of excitatory amino acid transport, did not reduce aspartate release. Niflumic acid, a blocker of Ca(2+)-dependent anion channels, did not alter the release of either amino acid. Exogenous aspartate and aspartate recently synthesized from glutamate accessed the releasable pool of aspartate as readily as exogenous glutamate and glutamate recently synthesized from aspartate accessed the releasable glutamate pool. These results are compatible with release of aspartate from either a vesicular pool by a "non-classical" form of exocytosis or directly from the cytoplasm by an as-yet-undescribed Ca(2+)-dependent mechanism. In either case, they suggest aspartate is released mainly outside the presynaptic active zones and may therefore serve as the predominant agonist for extrasynaptic N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- S E Bradford
- Department of Pharmacology and Cancer Biology, Box 3813, 100B Research Park 2, Research Drive, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
27
|
Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10:40-68; image 5. [PMID: 15263907 DOI: 10.1038/sj.mp.4001558] [Citation(s) in RCA: 1426] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence. The morphological correlates of schizophrenia are subtle, and range from a slight reduction in brain size to localized alterations in the morphology and molecular composition of specific neuronal, synaptic, and glial populations in the hippocampus, dorsolateral prefrontal cortex, and dorsal thalamus. These findings have fostered the view of schizophrenia as a disorder of connectivity and of the synapse. Although attractive, such concepts are vague, and differentiating primary events from epiphenomena has been difficult. A way forward is provided by the recent identification of several putative susceptibility genes (including neuregulin, dysbindin, COMT, DISC1, RGS4, GRM3, and G72). We discuss the evidence for these and other genes, along with what is known of their expression profiles and biological roles in brain and how these may be altered in schizophrenia. The evidence for several of the genes is now strong. However, for none, with the likely exception of COMT, has a causative allele or the mechanism by which it predisposes to schizophrenia been identified. Nevertheless, we speculate that the genes may all converge functionally upon schizophrenia risk via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry. NMDA receptor-mediated glutamate transmission may be especially implicated, though there are also direct and indirect links to dopamine and GABA signalling. Hence, there is a correspondence between the putative roles of the genes at the molecular and synaptic levels and the existing understanding of the disorder at the neural systems level. Characterization of a core molecular pathway and a 'genetic cytoarchitecture' would be a profound advance in understanding schizophrenia, and may have equally significant therapeutic implications.
Collapse
Affiliation(s)
- P J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
| | | |
Collapse
|
28
|
Sobin C, Kiley-Brabeck K, Daniels S, Blundell M, Anyane-Yeboa K, Karayiorgou M. Networks of attention in children with the 22q11 deletion syndrome. Dev Neuropsychol 2004; 26:611-26. [PMID: 15456687 PMCID: PMC2753367 DOI: 10.1207/s15326942dn2602_5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 22q11 chromosomal deletion syndrome (22q11 DS) is associated with learning disabilities and a complex neuropsychological profile. Previous findings have suggested that executive attention deficits might underlie other neurocognitive anomalies. We administered the child Attention Network Test (ANT) to 52 children ages 5.0 to 11.5, 32 22q11 DS children (19 girls) and 20 controls (13 girls) and assessed the efficiency of segregated executive, orienting, and alerting networks. We hypothesized that 22q11 DS children have impaired executive network efficiency as compared to control siblings. The internal validity of the child ANT was confirmed for this population. Analysis of variance results showed significant main effects for flanker and cue types and no interaction effect in either 22q11 DS children or control siblings. Compared to control siblings, 22q11 DS children had significantly larger (less efficient) executive network scores, significantly increased errors on only incongruent trials, and a significant correlation between executive network scores and accuracy. The implications of these findings for future neurocognitive studies of 22q11 DS children are considered.
Collapse
Affiliation(s)
- Christina Sobin
- Laboratory of Human Neurogenetics, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kessler A, Costabeber E, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD. Effect of proline on creatine kinase activity in rat brain. Metab Brain Dis 2003; 18:169-77. [PMID: 12822836 DOI: 10.1023/a:1023871204910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type II Hyperprolinemia is an inherited disorder caused by a deficiency of delta1-pyrroline-5-carboxilic acid dehydrogenase, whose biochemical hallmark is proline accumulation in plasma and tissues. Although neurologic symptoms occur in most patients, the neurotoxicity of proline is still controversial. The main objective of this study was to investigate the effect of acute and chronic administration of proline on creatine kinase activity in the homogenates of cerebellum and midbrain from Wistar rats. Acute treatment was performed by subcutaneous administration of one injection of proline to 22-day-old rats. For chronic treatment, proline was administered four times a day from the 6th to the 21st postpartum day. The results showed that creatine kinase activity was significantly inhibited in the cerebellum and midbrain of rats subjected to acute proline administration. In contrast, this activity was increased in animals subjected to chronic administration. We also measured the in vitro effect of proline on creatine kinase activity in the same cerebral structures of 22-day-old nontreated rats. Proline significantly inhibited creatine kinase activity. Considering the importance of creatine kinase for the maintenance of energy homeostasis in the brain, it is conceivable that an alteration of this enzyme activity in the brain may be one of the mechanisms by which proline might be neurotoxic.
Collapse
Affiliation(s)
- Adriana Kessler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Tunbridge E, Burnet PWJ, Sodhi MS, Harrison PJ. Catechol-o-methyltransferase (COMT) and proline dehydrogenase (PRODH) mRNAs in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Synapse 2003; 51:112-8. [PMID: 14618678 DOI: 10.1002/syn.10286] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Catechol-o-methyltransferase (COMT) and proline dehydrogenase (PRODH) may both be susceptibility genes for schizophrenia. As part of the evaluation of their roles in psychosis, we used reverse transcription-polymerase chain reaction to measure COMT and PRODH mRNAs in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, major depression, and normal controls (n = 15 subjects in each group). We also genotyped two common COMT polymorphisms (-287A/G and 158Val/Met) which might affect its expression. Neither COMT nor PRODH mRNA abundance differed between diagnostic groups, nor when controls were compared with all psychotic patients. COMT mRNA levels were unrelated to COMT genotypes. We conclude that any involvement of COMT and PRODH genes in schizophrenia is not accompanied by significant alterations in their overall mRNA expression, at least in dorsolateral prefrontal cortex. As COMT and PRODH are both located on chromosome 22q11, the results also argue against the hypothesis that schizophrenia is associated with a decrease in expression of all 22q11 genes, as had been suggested by the high prevalence of psychosis in people with hemizygous 22q11 deletions.
Collapse
Affiliation(s)
- Elizabeth Tunbridge
- Department of Psychiatry, University of Oxford, Neurosciences Building, Warneford Hospital, Oxford, OX3 7JX, UK
| | | | | | | |
Collapse
|
31
|
Humbertclaude V, Rivier F, Roubertie A, Echenne B, Bellet H, Vallat C, Morin D. Is hyperprolinemia type I actually a benign trait? Report of a case with severe neurologic involvement and vigabatrin intolerance. J Child Neurol 2001; 16:622-3. [PMID: 11510941 DOI: 10.1177/088307380101600820] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperprolinemia type I is a deficiency of proline oxidase (McKusick 23950), leading to hyperprolinemia and iminoglycinuria, usually with renal involvement. Hyperprolinemia type I is considered a benign trait. We reported a case of hyperprolinemia type I with a severe neurologic disorder and without renal involvement. The patient had marked psychomotor delay and right hemiparesis. Epilepsy was characterized by status epilepticus or a cluster of seizures. Laboratory findings revealed elevated levels of proline in the serum, urine, and cerebrospinal fluid without delta1-pyrroline 5-carboxylate dehydrogenase in the plasma or urine. Fluorescence in situ hybridization excluded a chromosome 22q11 deletion. Vigabatrin inhibits ornithine transaminase. Thus, vigabatrin could lead to a depletion of the normal pool of pyrroline 5-carboxylate dehydrogenase and could aggravate the clinical condition of the child. In this study, vigabatrin was discontinued. In the following months, the patient had marked psychomotor improvement, without modification of the epilepsy. We suggest that vigabatrin should be avoided in hyperprolinemia type I.
Collapse
Affiliation(s)
- V Humbertclaude
- Service de Neurologie Pédiatrique, CHU Saint Eloi, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 2000; 129:1-19. [PMID: 11154732 DOI: 10.1016/s0009-2797(00)00211-8] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehydes are highly reactive molecules that are intermediates or products involved in a broad spectrum of physiologic, biologic and pharmacologic processes. Aldehydes are generated from chemically diverse endogenous and exogenous precursors and aldehyde-mediated effects vary from homeostatic and therapeutic to cytotoxic, and genotoxic. One of the most important pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). Oxidation of the carbonyl functional group is considered a general detoxification process in that polymorphisms of several human ALDHs are associated a disease phenotypes or pathophysiologies. However, a number of ALDH-mediated oxidation form products that are known to possess significant biologic, therapeutic and/or toxic activities. These include the retinoic acid, an important element for vertebrate development, gamma-aminobutyric acid (GABA), an important neurotransmitter, and trichloroacetic acid, a potential toxicant. This review summarizes the ALDHs with an emphasis on catalytic properties and xenobiotic substrates of these enzymes.
Collapse
Affiliation(s)
- V Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
33
|
Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, Nadler JV, Karayiorgou M. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 1999; 21:434-9. [PMID: 10192398 DOI: 10.1038/7777] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hemizygous cryptic deletions of the q11 band of human chromosome 22 have been associated with a number of psychiatric and behavioural phenotypes, including schizophrenia. Here we report the isolation and characterization of PRODH, a human homologue of Drosophila melanogaster sluggish-A (slgA), which encodes proline dehydrogenase responsible for the behavioural phenotype of the slgA mutant. PRODH is localized at chromosome 22q11 in a region deleted in some psychiatric patients. We also isolated the mouse homologue of slgA (Prodh), identified a mutation in this gene in the Pro/Re hyperprolinaemic mouse strain and found that these mice have a deficit in sensorimotor gating accompanied by regional neurochemical alterations in the brain. Sensorimotor gating is a neural filtering process that allows attention to be focused on a given stimulus, and is affected in patients with neuropsychiatric disorders. Furthermore, several lines of evidence suggest that proline may serve as a modulator of synaptic transmission in the mammalian brain. Our observations, in conjunction with the chromosomal location of PRODH, suggest a potential involvement of this gene in the 22q11-associated psychiatric and behavioural phenotypes.
Collapse
Affiliation(s)
- J A Gogos
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Crump FT, Fremeau RT, Craig AM. Localization of the brain-specific high-affinity l-proline transporter in cultured hippocampal neurons: molecular heterogeneity of synaptic terminals. Mol Cell Neurosci 1999; 13:25-39. [PMID: 10049529 DOI: 10.1006/mcne.1998.0727] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of a brain-specific, high-affinity Na+-(and Cl--)dependent l-proline transporter in subpopulations of putative glutamatergic pathways in mammalian brain suggests a physiological role for this carrier in excitatory neurotransmission (Fremeau et al. , Neuron 8: 915-926, 1992). To assess further the cell-type and subcellular localization of PROT, we examined its distribution in low-density cultures of embryonic rat hippocampus. PROT immunoreactivity was detected beginning at 8 days in culture in a highly punctate pattern localizing to a subset of synaptic terminals. PROT was not detected at GABAergic terminals but was specifically localized to a subset of excitatory nerve terminals. PROT-labeled terminals showed partial apposition to AMPA-type and NMDA-type glutamate receptor clusters. Immunolabeling of isolated neurons grown in microisland cultures revealed that PROT was expressed by 60% of cultured hippocampal neurons. Individual microisland cultures were immunopositive for either PROT or glutamic acid decarboxylase, but never both. In the expressing pyramidal neurons, PROT was targeted to all presynaptic terminals. These findings indicate that PROT contributes to the molecular heterogeneity of glutamatergic terminals and suggest a novel presynaptic regulatory role for PROT in excitatory transmission at specific glutamatergic synapses.
Collapse
Affiliation(s)
- F T Crump
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois, 61801, USA
| | | | | |
Collapse
|