1
|
Molochnikov I, Cohen D. Hemispheric differences in the mesostriatal dopaminergic system. Front Syst Neurosci 2014; 8:110. [PMID: 24966817 PMCID: PMC4052732 DOI: 10.3389/fnsys.2014.00110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/24/2014] [Indexed: 11/20/2022] Open
Abstract
The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance.
Collapse
Affiliation(s)
- Ilana Molochnikov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
2
|
Meyer F, Louilot A. Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 2014; 8:118. [PMID: 24778609 PMCID: PMC3985036 DOI: 10.3389/fnbeh.2014.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/16/2022] Open
Abstract
The psychic disintegration characteristic of schizophrenia is thought to result from a defective connectivity, of neurodevelopmental origin, between several integrative brain regions. The parahippocampal region and the prefrontal cortex are described as the main regions affected in schizophrenia. Interestingly, latent inhibition (LI) has been found to be reduced in patients with schizophrenia, and the existence of a dopaminergic dysfunction is also generally well accepted in this disorder. In the present review, we have integrated behavioral and neurochemical data obtained in a LI protocol involving adult rats subjected to neonatal functional inactivation of the entorhinal cortex, the ventral subiculum or the prefrontal cortex. The data discussed suggest a subtle and transient functional blockade during early development of the aforementioned brain regions is sufficient to induce schizophrenia-related behavioral and dopaminergic abnormalities in adulthood. In summary, these results support the view that our conceptual and methodological approach, based on functional disconnections, is valid for modeling some aspects of the pathophysiology of schizophrenia from a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Francisca Meyer
- 1Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Alain Louilot
- 2INSERM U 1114, Faculty of Medicine, FMTS, University of Strasbourg Strasbourg, France
| |
Collapse
|
3
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
4
|
Early prefrontal functional blockade in rats results in schizophrenia-related anomalies in behavior and dopamine. Neuropsychopharmacology 2012; 37:2233-43. [PMID: 22588351 PMCID: PMC3422488 DOI: 10.1038/npp.2012.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growing evidence suggests schizophrenia may arise from abnormalities in early brain development. The prefrontal cortex (PFC) stands out as one of the main regions affected in schizophrenia. Latent inhibition, an interesting cognitive marker for schizophrenia, has been found in some studies to be reduced in acute patients. It is generally widely accepted that there is a dopaminergic dysfunctioning in schizophrenia. Moreover, several authors have reported that the psychostimulant, D-amphetamine (D-AMP), exacerbates symptoms in patients with schizophrenia. We explored in rats the effects in adulthood of neonatal transient inactivation of the PFC on behavioral and neurochemical anomalies associated with schizophrenia. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, latent inhibition-related dopaminergic responses and dopaminergic reactivity to D-AMP were monitored using in vivo voltammetry in the left core part of the nucleus accumbens in adult freely moving rats. Dopaminergic responses and behavioral responses were followed in parallel. Prefrontal neonatal inactivation resulted in disrupted behavioral responses of latent inhibition and latent inhibition-related dopaminergic responses in the core subregion. After D-AMP challenge, the highest dose (1.5 mg/kg i.p.) induced a greater dopamine increase in the core in rats microinjected with TTX, and a parallel increase in locomotor activity, suggesting that following prefrontal neonatal TTX inactivation animals display a greater behavioral and dopaminergic reactivity to D-AMP. Transitory inactivation of the PFC early in the postnatal developmental period leads to behavioral and neurochemical changes in adulthood that are meaningful for schizophrenia modeling. The data obtained may help our understanding of the pathophysiology of this disabling disorder.
Collapse
|
5
|
Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum. Neuropsychopharmacology 2011; 36:1421-32. [PMID: 21430650 PMCID: PMC3096811 DOI: 10.1038/npp.2011.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.
Collapse
|
6
|
Zald DH, Woodward ND, Cowan RL, Riccardi P, Ansari MS, Baldwin RM, Cowan RL, Smith CE, Hakyemez H, Li R, Kessler RM. The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: a principal component analysis of [18F]fallypride binding. Neuroimage 2010; 51:53-62. [PMID: 20149883 PMCID: PMC2862467 DOI: 10.1016/j.neuroimage.2010.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/31/2010] [Accepted: 02/03/2010] [Indexed: 11/27/2022] Open
Abstract
Individual differences in dopamine D2-like receptor availability arise across all brain regions expressing D2-like receptors. However, the interrelationships in receptor availability across brain regions are poorly understood. To address this issue, we examined the relationship between D2-like binding potential (BPND) across striatal and extrastriatal regions in a sample of healthy participants. PET imaging was performed with the high affinity D2/D3 ligand [18F]fallypride in 45 participants. BPND images were submitted to voxel-wise principal component analysis to determine the pattern of associations across brain regions. Individual differences in D2-like BPND were explained by three distinguishable components. A single component explained almost all of the variance within the striatum, indicating that individual differences in receptor availability vary in a homogenous manner across the caudate, putamen, and ventral striatum. Cortical BPND was only modestly related to striatal BPND and mostly loaded on a distinct component. After controlling for the general level of cortical D2-like BPND, an inverse relationship emerged between receptor availability in the striatum and the ventral temporal and ventromedial frontal cortices, suggesting possible cross-regulation of D2-like receptors in these regions. The analysis additionally revealed evidence of: (1) a distinct component involving the midbrain and limbic areas; (2) a dissociation between BPND in the medial and lateral temporal regions; and (3) a dissociation between BPND in the medial/midline and lateral thalamus. In summary, individual differences in D2-like receptor availability reflect several distinct patterns. This conclusion has significant implications for neuropsychiatric models that posit global or regionally specific relationships between dopaminergic tone and behavior.
Collapse
Affiliation(s)
- David H Zald
- Department of Psychology, Vanderbilt University, 325 Wilson Hall, 111 21st Ave. South, Nashville, TN 37212, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Coutureau E, Di Scala G. Entorhinal cortex and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:753-61. [PMID: 19376185 DOI: 10.1016/j.pnpbp.2009.03.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Understanding the function of the entorhinal cortex (EC) has been an important subject over the years, not least because of its cortical intermediary to and from the hippocampus proper, and because of electrophysiological advances which have started to reveal the physiology in behaving animals. Clearly, a lot more needs to be done but is clear to date that EC is not merely a throughput station providing all hippocampal subfields with sensory information, but that processing within EC contributes significantly to attention, conditioning, event and spatial cognition possibly by compressing representations that overlap in time. These are transmitted to the hippocampus, where they are differentiated again and returned to EC. Preliminary evidence for such a role, but also their possible pitfalls are summarised.
Collapse
Affiliation(s)
- Etienne Coutureau
- Centre de Neurosciences Intégratives et Cognitives, UMR 5228 CNRS, Universités de Bordeaux 1 & 2, Avenue des Facultés, 33405 Talence, France
| | | |
Collapse
|
8
|
Budilin SY, Midzyanovskaya IS, Shchegolevskii NV, Ioffe ME, Bazyan AS. Asymmetry in dopamine levels in the nucleus accumbens and motor preference in rats. ACTA ACUST UNITED AC 2008; 38:991-4. [DOI: 10.1007/s11055-008-9082-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 06/18/2007] [Indexed: 11/25/2022]
|
9
|
Peterschmitt Y, Meyer F, Louilot A. Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition. Neuroscience 2008; 154:898-910. [PMID: 18486351 DOI: 10.1016/j.neuroscience.2008.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 02/29/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
It has previously been reported that dopamine (DA) responses observed in the core and dorsomedial shell parts of the nucleus accumbens (Nacc) in latent inhibition (LI) are dependent on the left entorhinal cortex (ENT). The present study was designed to investigate the influence of the left ventral subiculum (SUB) closely linked to the ENT on the DA responses obtained in the Nacc during LI, using an aversive conditioned olfactory paradigm and in vivo voltammetry in freely moving rats. In the first (pre-exposure) session, functional blockade of the left SUB was achieved by local microinjection of tetrodotoxin (TTX). In the second session, rats were aversively conditioned to banana odor, the conditional stimulus (CS). In the retention (test) session the results were as follows: (1) pre-exposed (PE) conditioned animals microinjected with TTX, displayed aversion toward the CS; (2) in the core part of the Nacc, for PE-TTX-conditioned rats as for non-pre-exposed (NPE) conditioned animals, DA levels remained close to the baseline whereas DA variations in both groups were significantly different from the DA increases observed in PE-conditioned rats microinjected with the solvent (phosphate-buffered saline (PBS)); (3) in the shell part of the Nacc, for PE-TTX-conditioned rats, DA variations were close to or above the baseline. They were situated between the rapid DA increases observed in NPE-conditioned animals and the transient DA decreases obtained in PE-PBS-conditioned animals. These findings suggest that, in parallel to the left ENT, the left SUB controls DA LI-related responses in the Nacc. The present data may also offer new insight into the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
10
|
Pum M, Carey RJ, Huston JP, Müller CP. Dissociating effects of cocaine and d-amphetamine on dopamine and serotonin in the perirhinal, entorhinal, and prefrontal cortex of freely moving rats. Psychopharmacology (Berl) 2007; 193:375-90. [PMID: 17468969 DOI: 10.1007/s00213-007-0791-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 04/03/2007] [Indexed: 02/06/2023]
Abstract
RATIONALE Neuroimaging studies with humans showed widespread activation of the cortex in response to psychostimulant drugs. However, the neurochemical nature of these brain activities is not characterized. OBJECTIVE The aim of the present study was to investigate the effects of cocaine and d-amphetamine on dopamine (DA) and serotonin (5-HT) in cortical areas of the hippocampal network in comparison to the prefrontal cortex (PFC). MATERIALS AND METHODS We conducted in vivo microdialysis experiments in behaving rats measuring DA and 5-HT in the perirhinal cortex (PRC), entorhinal cortex (EC), and PFC, after application of cocaine (0, 5, 10, 20 mg/kg; i.p.) or d-amphetamine (0, 0.5, 1.0, 2.5 mg/kg; i.p.). RESULTS Cocaine and d-amphetamine dose-dependently increased DA and 5-HT levels in the PRC, EC, and PFC. A predominant DA response to d-amphetamine was only found in the PFC, but not in the PRC and EC. Cocaine increased DA and 5-HT to an equal extent in the PFC and PRC but induced a predominant 5-HT response in the EC. When comparing the neurochemical responses between the drugs at an equal level of behavioral activation, cocaine was more potent than d-amphetamine in increasing 5-HT in the PFC, while no differences were found in the PRC or EC or in the DA responses in all three cortical areas. CONCLUSIONS We conclude that cocaine and d-amphetamine increase DA and 5-HT levels in PRC and EC largely to the same extent as in the PFC.
Collapse
Affiliation(s)
- M Pum
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
11
|
Lesting J, Neddens J, Busche A, Teuchert-Noodt G. Hemisphere-specific effects on serotonin but not dopamine innervation in the nucleus accumbens of gerbils caused by isolated rearing and a single early methamphetamine challenge. Brain Res 2005; 1035:168-76. [PMID: 15722056 DOI: 10.1016/j.brainres.2004.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 12/08/2004] [Accepted: 12/11/2004] [Indexed: 11/27/2022]
Abstract
The aim of this study was twofold: We examined whether serotonin (5-HT) and dopamine (DA) innervations of the nucleus accumbens are lateralised and whether the environment or the combination with an early pharmacological impact might interfere with the postnatal maturation of the monoaminergic innervation. Male gerbils were assigned to either enriched rearing (ER) or isolated rearing (IR). Animals from both rearing conditions additionally received a single dose of either methamphetamine [MA (50 mg/kg ip)] or saline on postnatal day 14. DA and 5-HT fibres of the adult animals (postnatal day 90-110) were immunocytochemically stained and fibre densities were quantified in nucleus accumbens core and shell of both the left and right hemisphere. Our data demonstrate that the DA and 5-HT innervation is not lateralised in saline-treated animals of both rearing conditions. IR increases the DA fibre density in both hemispheres of saline controls, whereas an additional MA treatment reverses this effect. In both ER and IR groups, MA provokes an excessive 5-HT fibre in growth of only the right hemisphere. The combination of IR with MA induces right-side asymmetries of the 5-HT fibre density in both the core and shell. From the data obtained, we conclude that the maturation of the monoaminergic innervation of the nucleus accumbens is vulnerable to postnatal stimuli. The subtle "innervation imbalance" observed in our studies is consistent with previously reported effects in other brain regions of this animal model and may be causative for behavioural disturbances.
Collapse
Affiliation(s)
- Jörg Lesting
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
12
|
Neddens J, Dawirs RR, Bagorda F, Busche A, Horstmann S, Teuchert-Noodt G. Postnatal maturation of cortical serotonin lateral asymmetry in gerbils is vulnerable to both environmental and pharmacological epigenetic challenges. Brain Res 2004; 1021:200-8. [PMID: 15342268 DOI: 10.1016/j.brainres.2004.06.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 11/18/2022]
Abstract
Long-term effects of postnatal differential rearing conditions and/or early methamphetamine (MA) application on serotonin (5-HT) fibre density were investigated in several cortical areas of both hemispheres of gerbils. The aim of this study was twofold: (1) Is the 5-HT fibre innervation of the cerebral cortex lateralised, and (2) if so, do postnatal environmental conditions and/or an early drug challenge interfere with development of 5-HT cerebral asymmetries? For that purpose, male gerbils were reared either under semi-natural or restricted environmental and social conditions, under both conditions once (on postnatal day 14) being treated with either a single dose of MA (50 mg/kg, i.p.) or saline. On postnatal day 110, 5-HT fibres were immunohistochemically stained and innervation densities quantified in prefrontal cortex, insular cortex, frontal cortex, parietal cortex, and entorhinal cortex. It was found that (1) 5-HT innervation in the cerebral cortex was clearly lateralised; (2) direction and extent of this asymmetry were not uniformly distributed over the different areas investigated; (3) both early methamphetamine challenge and rearing condition differentially interfered with adult 5-HT cerebral asymmetry; (4) combining MA challenge with subsequent restricted rearing tended to reverse the effects of MA on 5-HT cerebral asymmetry in some of the cortical areas investigated; and (5) significant responses in 5-HT cerebral asymmetry only occurred in prefrontal and entorhinal association cortices. The present findings suggest that the ontogenesis of cortical laterality is influenced by epigenetic factors and that disturbances of the postnatal maturation of lateralised functions may be associated with certain psychopathological behaviours.
Collapse
Affiliation(s)
- Jörg Neddens
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany. joerg.neddens@uni-bielefeld
| | | | | | | | | | | |
Collapse
|
13
|
Jeanblanc J, Peterschmitt Y, Hoeltzel A, Louilot A. Influence of the entorhinal cortex on accumbal and striatal dopaminergic responses in a latent inhibition paradigm. Neuroscience 2004; 128:187-200. [PMID: 15450366 DOI: 10.1016/j.neuroscience.2004.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 11/25/2022]
Abstract
The use of latent inhibition paradigms is one means of investigating the involvement of mesencephalic dopaminergic (DA) neurons in cognitive processes. We have shown recently that DA neurons reaching the core and the dorsomedial shell parts of the nucleus accumbens and the anterior part of the striatum are differentially involved in latent inhibition. In other respects, theoretical, behavioral and anatomo-functional data suggest that the entorhinal cortex (ENT) may control latent inhibition expression. In this study, using in vivo voltammetry in freely moving rats, we investigated the influence of the ENT on the DA responses obtained in the core and dorsomedial shell parts of the nucleus accumbens and the anterior part of the striatum. For this purpose a reversible inactivation of the left ENT was achieved by the local microinjection of tetrodotoxin, 3 h before pre-exposure to the conditional stimulus (banana odour). During the second session, animals were aversively conditioned to banana odour. Results obtained during the third session (test session), in animals submitted to the reversible blockade of the ENT before the first session were as follows: (1) pre-exposed conditioned animals displayed behavioral aversive responses; (2) where core DA responses were concerned, responses were situated between those observed in pre-exposed and non-pre-exposed conditioned animals; (3) by contrast, where the dorsomedial shell part of the nucleus accumbens and the anterior striatum were concerned, DA variations were not statistically different in pre-exposed and non-pre-exposed conditioned rats. These data suggest that the left ENT exerts a crucial influence over the latent-inhibition-related DA responses in the left dorsomedial shell part of the nucleus accumbens and the left anterior part of the striatum, whereas one or more other brain regions control DA variations in the left core part of the nucleus accumbens. These data may help us to understand the pathophysiology of schizophrenic psychoses.
Collapse
Affiliation(s)
- J Jeanblanc
- INSERM U 405 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
14
|
Jeanblanc J, Hoeltzel A, Louilot A. Differential involvement of dopamine in the anterior and posterior parts of the dorsal striatum in latent inhibition. Neuroscience 2003; 118:233-41. [PMID: 12676153 DOI: 10.1016/s0306-4522(02)00823-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The involvement of mesostriatal dopaminergic neurons in cognitive operations is not well understood, and needs to be further clarified. The use of latent inhibition paradigms is a means of investigating cognitive processes. In this study, we investigated the involvement in latent inhibition of dopaminergic inputs in the anterior part and posterior part of the dorsal striatum. The latent inhibition phenomenon was observed in a conditioned olfactory aversion paradigm. Changes in extracellular dopamine levels induced by the conditioned olfactory stimulus (banana odor) were monitored in the two parts of the dorsal striatum in the left hemisphere after pre-exposure to the olfactory stimulus using in vivo voltammetry in freely moving rats. During the conditioning session animals received either an i.p. injection of NaCl (0.9%) (control groups) or an i.p. injection of LiCl (0.15 M) (conditioned groups). Dopamine variations and place preference or aversion toward the stimulus were analyzed simultaneously in pre-exposed and non-pre-exposed animals. Data collected during the retention (test) session were as follows. Where the anterior part of the striatum was concerned, similar enhancements in dopamine levels (+100%) were obtained in pre-exposed and non-pre-exposed control animals, as well as in the pre-exposed experimental animals. In contrast, dopamine levels in the non-pre-exposed experimental group (conditioned animals) remained fairly consistently close to the baseline after the presentation of the olfactory stimulus. Where the posterior part of the striatum was concerned, increases in extracellular dopamine levels were similar (+50%) for the different groups. The present results suggested that dopaminergic neurons reaching the anterior part of the dorsal striatum are implicated in the latent inhibition phenomenon and affective perception, whereas dopaminergic terminals in the posterior part of the dorsal striatum appeared to be involved neither in latent inhibition nor in affective perception of the stimulus, seeming only to be affected by the intrinsic properties of the stimulus. Cognitive as well as affective deficits have been reported in patients with schizophrenia. Thus the present data may be considered in the context of the pathophysiology of schizophrenic psychoses.
Collapse
Affiliation(s)
- J Jeanblanc
- INSERM U 405 and Institute of Physiology, University Louis Pasteur, Faculty of Medicine, 11 rue Humann, 67085 Cedex, Strasbourg, France
| | | | | |
Collapse
|
15
|
Seillier A, Coutureau E, Thiriet N, Herbeaux K, Zwiller J, Di Scala G, Will B, Majchrzak M. Bilateral lesions of the entorhinal cortex differentially modify haloperidol- and olanzapine-induced c-fos mRNA expression in the rat forebrain. Neuropharmacology 2003; 45:190-200. [PMID: 12842125 DOI: 10.1016/s0028-3908(03)00147-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lesions of the entorhinal cortex are now an accepted model for mimicking some of the neuropathological aspects of schizophrenia, since evidence has accumulated for the presence of cytoarchitectonic abnormalities within this cortex in schizophrenic patients. The present study was undertaken to address the functional consequences of bilateral entorhinal cortex lesions on antipsychotic-induced c-fos expression. After a 15-day recovery period, the effect of a typical antipsychotic, haloperidol (1 mg/kg), on c-fos mRNA expression was compared with that of an atypical one, olanzapine (10 mg/kg), in both sham-lesioned and entorhinal cortex-lesioned rats. In sham-lesioned rats, both haloperidol and olanzapine induced c-fos expression in the caudal cingulate cortex, dorsomedial and dorsolateral caudate-putamen, nucleus accumbens core and shell and lateral septum. In addition, olanzapine, but not haloperidol, increased c-fos expression within the central amygdala. In entorhinal cortex-lesioned rats, haloperidol-induced c-fos expression was markedly reduced in most areas. In contrast, the olanzapine-induced c-fos expression was not altered in the nucleus accumbens shell and lateral septum of the lesioned rats. These findings reveal that entorhinal cortex lesions affect c-fos expression in a compound- and regional-dependent manner. Our results further emphasize the importance of the exploration of the mechanisms of action of antipsychotic drugs in the context of an associated cortical pathology.
Collapse
Affiliation(s)
- A Seillier
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521, Université Louis Pasteur, CNRS, IFR des Neurosciences, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jeanblanc J, Hoeltzel A, Louilot A. Dissociation in the involvement of dopaminergic neurons innervating the core and shell subregions of the nucleus accumbens in latent inhibition and affective perception. Neuroscience 2002; 111:315-23. [PMID: 11983317 DOI: 10.1016/s0306-4522(02)00019-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mesencephalic dopaminergic neurons have been found to be involved in affective processes. Their implication in cognitive processes appears less well understood. The use of latent inhibition paradigms is a means of studying these kinds of processes. In this study, we investigated the involvement of dopaminergic projections in the core, the dorsomedial shell and the ventromedial shell of the nucleus accumbens, in latent inhibition in olfactory aversive learning. Variations in extracellular dopamine levels induced by an aversively conditioned olfactory stimulus were monitored in the three parts of the nucleus accumbens in the left hemisphere, after pre-exposure to the olfactory stimulus using in vivo voltammetry in freely moving rats. The parallel between dopamine changes and place preference or aversion toward the stimulus were analyzed in pre-exposed and non-pre-exposed animals. Results showed that dopaminergic neurons innervating the nucleus accumbens are differentially involved in the latent inhibition phenomenon. Dopaminergic neurons innervating the core and the dorsomedial shell subregions of the nucleus accumbens appeared to be involved in latent inhibition processes, unlike those reaching the ventromedial shell. Nonetheless dopamine in the ventromedial shell was found to be involved in affective perception of the stimulus.The present data suggest that dopaminergic neurons innervating the three nucleus accumbens subregions are functionally related to networks involved in parallel processing of the cognitive and affective values of environmental information, and that interaction between these systems, at some levels, may lead to a given behavioral output. These data may provide new insights into the pathophysiology of schizophrenic psychoses.
Collapse
Affiliation(s)
- J Jeanblanc
- INSERM U 405 and Institute of Physiology, University Louis Pasteur, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
17
|
Coutureau E, Léna I, Daugé V, Di Scala G. The entorhinal cortex-nucleus accumbens pathway and latent inhibition: a behavioral and neurochemical study in rats. Behav Neurosci 2002; 116:95-104. [PMID: 11895187 DOI: 10.1037/0735-7044.116.1.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Latent inhibition (LI) refers to the decrease in conditioned response produced by the repeated nonrein-forced preexposure to the to-be-conditioned stimulus. Experiment I investigated the effects of electrolytic lesions of the entorhinal cortex on LI in a conditioned emotional response procedure. Entorhinal cortex lesions attenuated LI. Experiments 2 and 3 investigated whether this attenuation of LI could result from a modification in nucleus accumbens (NAcc) dopamine (DA) release. Rats with entorhinal cortex lesions displayed normal spontaneous and amphetamine-induced locomotor activity, as well as normal basal and amphetamine-induced release of DA within the NAcc (assessed by microdialysis). Taken together, these results show that entorhinal cortex lesions disrupt LI in a way that is unlikely to be due to an alteration of DA release within the NAcc.
Collapse
Affiliation(s)
- Etienne Coutureau
- Laboratoire de Neurosciences Comportementales et Cognitives, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France.
| | | | | | | |
Collapse
|
18
|
Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 2001; 100:749-68. [PMID: 11036209 DOI: 10.1016/s0306-4522(00)00336-5] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rearing rats in isolation has been shown to be a relevant paradigm for studying early life stress and understanding the genesis of depression and related affective disorders. Recent studies from our laboratory point to the relevance of studying the social isolation syndrome as a function of home caging conditions. Accordingly, the present series of experiments assessed the contribution of each condition to the expression of the prepulse inhibition of the acoustic startle, food hoarding and spontaneous locomotor activity. In addition, ex vivo neurochemical changes in the brains of isolated and grouped rats reared either in sawdust-lined or in grid-floor cages were determined by measuring dopamine and serotonin as well as their major metabolites in a "psychosis circuit" that includes mainly the hippocampus and selected hippocampal efferent pathways projecting towards the anterior cingulate and infralimbic cortices, nucleus accumbens, dorsolateral caudate nucleus, amygdala and entorhinal cortex. The results of the present study demonstrate that rearing rats in isolation (i) produces a syndrome of generalized locomotor hyperactivity; (ii) increases the startle response; (iii) impairs prepulse inhibition; (iv) tends to increase food hoarding behavior; (v) increases basal dopamine turnover in the amygdaloid complex; (vi) decreases basal dopamine turnover in the infralimbic part of the medial prefrontal cortex; and (vii) decreases basal turnover of serotonin in the nucleus accumbens. In the entorhinal cortex, dopamine neurotransmission seemed to be more sensitive to the caging conditions since a decreased basal turnover of dopamine was observed in grid-reared animals. Plasma corticosterone levels were also increased in grid-reared animals compared with rats reared in sawdust cages. Finally, isolates reared on grids showed a significant positive correlation between plasma corticosterone levels and dopamine in the left nucleus accumbens.Altogether, these results support the contention that there is a link between social isolation, attention deficit, spontaneous locomotor hyperactivity and reduced dopamine turnover in the medial prefrontal cortex. Furthermore, our data demonstrate that rearing rats in grid-floor cages represents a form of chronic mild stress associated with increased corticosterone levels, decreased basal turnover of entorhinal dopamine and increased dopamine activity in the left nucleus accumbens. Finally, a significant and selective decrease in the basal turnover of serotonin in the nucleus accumbens of isolated rats may be linked to the isolation-induced locomotor hyperactivity.
Collapse
Affiliation(s)
- C A Heidbreder
- SmithKline Beecham Pharmaceuticals, Department of Neuroscience, New Frontiers Science Park (North), Building H25, Room 104A, Essex CM19 5AW, Harlow, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haley RW, Marshall WW, McDonald GG, Daugherty MA, Petty F, Fleckenstein JL. Brain abnormalities in Gulf War syndrome: evaluation with 1H MR spectroscopy. Radiology 2000; 215:807-17. [PMID: 10831703 DOI: 10.1148/radiology.215.3.r00jn48807] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To test for neuronal brain damage in the basal ganglia and brainstem in Gulf War veterans by using magnetic resonance (MR) spectroscopy. MATERIALS AND METHODS Twenty-two Gulf War veterans with one of three factor analysis-derived syndromes (case patients); 18 well veterans matched for age, sex, and education level (control subjects); and six Gulf War veterans with syndrome 2 from a different population (replication sample) underwent long echo time (272 msec) proton (hydrogen 1) MR spectroscopy on a 4 x 2 x 2-cm voxel in the basal ganglia bilaterally and a 2 x 2 x 2-cm voxel in the pons. Syndromes 1-3 are described as "impaired cognition," "confusion-ataxia," and "central pain," respectively. RESULTS The N-acetylaspartate-to-creatine (NAA/Cr) ratio, which reflects functional neuronal mass, was significantly lower in the basal ganglia and brainstem of Gulf War veterans with the three syndromes than in those structures of the control subjects (P =.007). The finding was corroborated in the replication sample (P =.002). Veterans with syndrome 2 (the most severe clinically) had evidence of decreased NAA/Cr in both the basal ganglia and the brainstem; those with syndrome 1, in the basal ganglia only; and those with syndrome 3, in the brainstem only. CONCLUSION Veterans with different Gulf War syndromes have biochemical evidence of neuronal damage in different distributions in the basal ganglia and brainstem.
Collapse
Affiliation(s)
- R W Haley
- Dept. of Internal Medicine, Section of Epidemiology, University of Texas Southwestern Medical Center at Dallas, 75390-8874, USA
| | | | | | | | | | | |
Collapse
|
20
|
Louilot A, Besson C. Specificity of amygdalostriatal interactions in the involvement of mesencephalic dopaminergic neurons in affective perception. Neuroscience 2000; 96:73-82. [PMID: 10683412 DOI: 10.1016/s0306-4522(99)00530-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have recently shown that dopaminergic responses to an attractive or an aversive stimulus were respectively increased and decreased in the core part of the nucleus accumbens and the ventromedial dorsal striatum. By contrast, increases in dopaminergic responses were obtained in the shell part of the nucleus accumbens with stimuli of both affective values. In addition, the involvement of the basolateral amygdala in affective processes has been reported by several authors. Anatomo-functional relationships between the basolateral amygdala and striatal structures have also been described. Thus, in the present work we studied the regulation by the basolateral amygdala of affective dopaminergic responses in the two parts of the nucleus accumbens (core and shell) and the ventromedial dorsal striatum. More precisely, variations in extracellular levels of dopamine induced by an attractive or an aversive olfactory stimulus were studied using in vivo voltammetry in freely moving rats. Changes in dopamine levels in the three left striatal regions were measured after functional blockade of the ipsilateral basolateral amygdala with tetrodotoxin. Changes in place attraction or aversion toward the stimulus were studied in parallel to dopamine variations. The results obtained suggest a specific regulation of affective dopaminergic responses in the two parts of the nucleus accumbens by the basolateral amygdala and a lack of influence of the basolateral amygdala on the ventromedial dorsal striatum. The results suggest that attraction or aversion toward a stimulus are correlated with dopamine variations in the core of the nucleus accumbens and that the basolateral amygdala controls affective behavioural responses. These data may provide new insights into the pathophysiology of schizophrenic psychoses.
Collapse
Affiliation(s)
- A Louilot
- CNRS UMR 5541, Laboratoire de Neuropsychobiologie des Désadaptations, Université de Bordeaux II, 146 rue Léo Saignat, 33076, Bordeaux, France.
| | | |
Collapse
|