1
|
Hsu JCN, Sekizawa S, Tochinai R, Kuwahara M. Loss of Group II Metabotropic Glutamate Receptor Signaling Exacerbates Hypertension in Spontaneously Hypertensive Rats. Life (Basel) 2021; 11:life11070720. [PMID: 34357092 PMCID: PMC8307370 DOI: 10.3390/life11070720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel therapeutic strategy to control hypertension. We infused a group II metabotropic glutamate receptor (mGluR) antagonist (LY341495, 0.40 μg/day), using a mini-osmotic pump, into the dorsal medulla oblongata in young spontaneously hypertensive rats (SHRs), as this area is adjacent to the nucleus tractus solitarius (NTS), of which the neurons are involved in baroreflex pathways with glutamatergic transmission. Blood pressure was recorded for conscious rats with the tail cuff method. A 6-week antagonist treatment from 6 to 12 weeks of age slightly but significantly increased systolic blood pressure by >30 mmHg, compared to that in SHRs without treatment. Moreover, the effect continued even 3 weeks after the treatment ended, and concurred with an increase in blood catecholamine concentration. However, heart rate variability analysis revealed that LY341495 treatment had little effect on autonomic activity. Meanwhile, mRNA expression level of mGluR subtype 2, but not subtype 3 in the brainstem was significantly enhanced by the antagonist treatment in SHRs, possibly compensating the lack of mGluR signaling. In conclusion, mGluR2 signaling in the dorsal brainstem is crucial for preventing the worsening of hypertension over a relatively long period in SHRs, through a mechanism of catecholamine secretion. This may be a specific drug target for hypertension therapy.
Collapse
|
2
|
Hsu JCN, Sekizawa SI, Tochinai R, Kuwahara M. Chronic stimulation of group II metabotropic glutamate receptors in the medulla oblongata attenuates hypertension development in spontaneously hypertensive rats. PLoS One 2021; 16:e0251495. [PMID: 34010316 PMCID: PMC8133461 DOI: 10.1371/journal.pone.0251495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 μg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.
Collapse
Affiliation(s)
- Julia Chu-Ning Hsu
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-ichi Sekizawa
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Heterosynaptic crosstalk: GABA-glutamate metabotropic receptors interactively control glutamate release in solitary tract nucleus. Neuroscience 2010; 174:1-9. [PMID: 21129447 DOI: 10.1016/j.neuroscience.2010.11.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 11/22/2022]
Abstract
Synaptic terminals often contain metabotropic receptors that act as autoreceptors to control neurotransmitter release. Less appreciated is the heterosynaptic crossover of glutamate receptors to control GABA release and vice versa GABA receptors which control glutamate release. In the brainstem, activation of solitary tract (ST) afferents releases glutamate onto second-order neurons within the solitary tract nucleus (NTS). Multiple metabotropic receptors are expressed in NTS for glutamate (mGluRs) and for GABA (GABA(B)). The present report identifies mGluR regulation of glutamate release at second and higher order sensory neurons in NTS slices. We found strong inhibition of glutamate release to group II and III mGluR activation on mechanically isolated NTS neurons. However, the same mGluR-selective antagonists paradoxically decreased glutamate release (miniature, mEPSCs) at identified second-order NTS neurons. Unaltered amplitudes were consistent with selective presynaptic mGluR actions. GABA(B) blockade in slices resolved the paradoxical differences and revealed a group II/III mGluR negative feedback of mEPSC frequency similar to isolated neurons. Thus, the balance of glutamate control is tipped by mGluR receptors on GABA terminals resulting in predominating heterosynaptic GABA(B) inhibition of glutamate release. Regulation by mGluR or GABA(B) was not consistently evident in excitatory postsynaptic currents (EPSCs) in higher-order NTS neurons demonstrating metabotropic receptor distinctions in processing at different NTS pathway stages. These cellular localizations may figure importantly in understanding interventions such as brain-penetrant compounds or microinjections. We conclude that afferent glutamate release in NTS produces a coordinate presynaptic activation of co-localized mGluR and GABA(B) feedback on cranial afferent terminals to regulate glutamate release.
Collapse
|
4
|
Cheng S, Zhang J, Zhu P, Ma Y, Xiong Y, Sun L, Xu J, Zhang H, He J. The PDZ domain protein CAL interacts with mGluR5a and modulates receptor expression. J Neurochem 2010; 112:588-98. [DOI: 10.1111/j.1471-4159.2009.06454.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Sekizawa SI, Bechtold AG, Tham RC, Bonham AC. A novel postsynaptic group II metabotropic glutamate receptor role in modulating baroreceptor signal transmission. J Neurosci 2009; 29:11807-16. [PMID: 19776267 PMCID: PMC2804989 DOI: 10.1523/jneurosci.2617-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/20/2009] [Accepted: 08/10/2009] [Indexed: 02/07/2023] Open
Abstract
The nucleus tractus solitarius (NTS) is essential for orchestrating baroreflex control of blood pressure. When a change in blood pressure occurs, the information is transmitted by baroreceptor afferent fibers to the central network by glutamate binding to ionotropic glutamate receptors on second-order baroreceptor neurons. Glutamate also activates presynaptic group II and III metabotropic glutamate receptors (mGluRs), depressing both glutamate and GABA release to modulate baroreceptor signal transmission. Here we present a novel role for postsynaptic group II mGluRs to further fine-tune baroreceptor signal transmission at the first central synapses. In a brainstem slice with ionotropic glutamate and GABA receptors blocked, whole-cell patch-clamp recordings of second-order baroreceptor neurons revealed that two group II mGluR agonists evoked concentration-dependent membrane hyperpolarizations. The hyperpolarization remained when a presynaptic contribution was prevented with Cd(2+), was blocked by a postsynaptic intervention of intracellular dialysis of the G-protein signaling inhibitor, was mimicked by endogenous release of glutamate by tractus solitarius stimulation, and was prevented by a group II mGluR antagonist. Postsynaptic localization of group II mGluRs was confirmed by fluorescent confocal immunohistochemistry and light microscopy. Group II mGluR induced-currents consisted of voltage-dependent outward and inward components, prevented by tetraethylammonium chloride and tetrodotoxin, respectively. In contrast to group II mGluR-induced hyperpolarization, there was no effect on intrinsic excitability as determined by action potential shape or firing in response to depolarizing current injections. The data suggest a novel mechanism for postsynaptic group II mGluRs to fine-tune baroreceptor signal transmission in the NTS.
Collapse
Affiliation(s)
- Shin-ichi Sekizawa
- Department of Pharmacology, University of California Davis, 95616-0635, USA.
| | | | | | | |
Collapse
|
6
|
Austgen JR, Fong AY, Foley CM, Mueller PJ, Kline DD, Heesch CM, Hasser EM. Expression of Group I metabotropic glutamate receptors on phenotypically different cells within the nucleus of the solitary tract in the rat. Neuroscience 2008; 159:701-16. [PMID: 19013221 DOI: 10.1016/j.neuroscience.2008.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 09/09/2008] [Accepted: 09/30/2008] [Indexed: 02/07/2023]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are G-coupled receptors that modulate synaptic activity. Previous studies have shown that Group I mGluRs are present in the nucleus of the solitary tract (NTS), in which many visceral afferents terminate. Microinjection of selective Group I mGluR agonists into the NTS results in a depressor response and decrease in sympathetic nerve activity. There is, however, little evidence detailing which phenotypes of neurons within the NTS express Group I mGluRs. In brainstem slices, we performed immunohistochemical localization of Group I mGluRs and either glutamic acid decarboxylase 67 kDa isoform (GAD67), neuronal nitric oxide synthase (nNOS) or tyrosine hydroxylase (TH). Fluoro-Gold (FG, 2%; 15 nl) was microinjected in the caudal ventrolateral medulla (CVLM) of the rat to retrogradely label NTS neurons that project to CVLM. Group I mGluRs were distributed throughout the rostral-caudal extent of the NTS and were found within most NTS subregions. The relative percentages of Group I mGluR expressing neurons colabeled with the different markers were FG (6.9+/-0.7) nNOS (5.6+/-0.9), TH (3.9+/-1.0), and GAD67 (3.1+/-1.4). The percentage of FG containing cells colabeled with Group I mGluR (13.6+/-2.0) was greater than the percent colabeled with GAD67 (3.1+/-0.5), nNOS (4.7+/-0.5), and TH (0.1+/-0.08). Cells triple labeled for FG, nNOS, and Group I mGluRs were identified in the NTS. Thus, these data provide an anatomical substrate by which Group I mGluRs could modulate activity of CVLM projecting neurons in the NTS.
Collapse
Affiliation(s)
- J R Austgen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Iglesias I, Castillo CA, León D, Ruíz MA, Albasanz JL, Martín M. Metabotropic glutamate receptor/phospholipase C system in female rat heart. Brain Res 2007; 1153:1-11. [PMID: 17493590 DOI: 10.1016/j.brainres.2007.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 12/15/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system. This amino acid mediates learning and memory processes acting through ionotropic and metabotropic receptor binding. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that stimulate phospholipase C (PLC) or inhibit adenylyl cyclase (AC). MGluRs have been widely described in CNS. However, little is known about these receptors in peripheral system. The present work describes the mGluR/PLC pathway in membranes from pregnant and non-pregnant rat heart by radioligand binding, Western-blot assays and PLC activity determination. Furthermore, mRNA coding mGluR1, mGluR5, alphaGq/11 and PLCbeta1 was identified by RT-PCR. Binding assays indicated total mGlu receptor numbers of 4.7+/-0.2 pmol/mg protein and 4.2+/-1.0 pmol/mg protein in non-pregnant and pregnant rats respectively, and their corresponding KD values were 545.3+/-85.6 nM and 1062.8+/-393.6 nM. Western blots revealed bands corresponding to mGluR1 and mGluR5 receptors, confirming that these receptors are expressed in heart. The beta1 isoform of PLC, which mediates group I mGluRs (mGluR I) response, was also expressed in rat heart. Moreover, PLC activity was modulated by calcium in a dose-dependent manner. Finally, specific agonists for mGluRs increased the PLC activity and the increase was prevented by specific mGluR antagonists. These results demonstrate the presence of group I mGlu receptors and their functional coupling to the PLC stimulation in female rat heart, suggesting a possible role of mGluR/PLC pathway in this tissue.
Collapse
Affiliation(s)
- Inmaculada Iglesias
- Area de Bioquímica, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias Químicas, Centro Regional de Investigaciones Biomédicas, Avda. Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Simms AE, Paton JFR, Pickering AE. Disinhibition of the cardiac limb of the arterial baroreflex in rat: a role for metabotropic glutamate receptors in the nucleus tractus solitarii. J Physiol 2006; 575:727-38. [PMID: 16809369 PMCID: PMC1995684 DOI: 10.1113/jphysiol.2006.112672] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Accepted: 06/22/2006] [Indexed: 11/08/2022] Open
Abstract
The nucleus tractus solitarii (NTS) is the first site of integration for primary baroreceptor afferents, which release glutamate to excite second-order neurones through ionotropic receptors. In vitro studies indicate that glutamate may also activate metabotropic receptors (mGluRs) to modulate the excitability of NTS neurones at pre- and postsynaptic loci. We examined the functional role of metabotropic glutamate receptors (mGluRs) in modulating the baroreceptor reflex in the rat NTS. Using the working heart-brainstem preparation, the baroreflex was activated using brief pressor stimuli and the consequent cardiac (heart rate change) and non-cardiac sympathetic (T8-10 chain) baroreflex gains were obtained. Microinjections of glutamate antagonists were made bilaterally into the NTS at the site of termination of baroreceptor afferents. NTS microinjection of kynurenate (ionotropic antagonist) inhibited both the cardiac and sympathetic baroreflex gains (16 +/- 5% and 59 +/- 11% of control, respectively). The non-selective mGluR antagonist MCPG produced a dose-dependent inhibition of the cardiac gain (30 +/- 3% of control) but not the sympathetic gain. Selective inhibitions of the cardiac gain were also seen with LY341495 and EGLU suggesting the response was mediated by group II mGluRs. This effect on cardiac gain involves attenuation of the parasympathetic baroreflex as it persists in the presence of atenolol. Prior NTS microinjection of bicuculline (GABA(A) antagonist) prevented the mGluR-mediated attenuation of the cardiac gain. These results are consistent with the reported presynaptic inhibition of GABAergic transmission by group II mGluRs in the NTS and constitute a plausible mechanism allowing selective feed-forward disinhibition to increase the gain of the cardiac limb of the baroreflex without changing the sympathoinhibitory component.
Collapse
Affiliation(s)
- Annabel E Simms
- Department of Physiology, Bristol Heart Institute, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
9
|
Browning KN, Zheng Z, Gettys TW, Travagli RA. Vagal afferent control of opioidergic effects in rat brainstem circuits. J Physiol 2006; 575:761-76. [PMID: 16825311 PMCID: PMC1995679 DOI: 10.1113/jphysiol.2006.111104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrated recently that increasing the levels of cAMP allows opioids to modulate GABAergic synaptic transmission between the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Using a combination of electrophysiological, immunohistochemical and biochemical approaches, we provide evidence that vagal afferent fibres dampen cAMP levels within the vagal brainstem circuits via tonic activation of group II metabotropic glutamate receptors (mGluRs). Whole-cell patch-clamp recordings were made from identified neurons of the rat DMV. Following chronic vagal deafferentation, the opioid agonist methionine-enkephalin (ME) inhibited the amplitude of evoked IPSC (eIPSC) in 32 of 33 neurons, without exogenous enhancement of cAMP levels. The ME-induced inhibition was prevented by the group II mGluR-selective agonist APDC. Following perfusion with the group II mGluR-selective antagonist EGLU, ME inhibited eIPSC amplitude in brainstem slices of control rats. Immunohistochemical experiments revealed that, following vagal deafferentation, mu-opioid receptors were colocalized on GABAergic profiles apposing DMV neurons; the number of colocalized profiles was significantly decreased by pretreatment with APDC. Radioimmunoassay and Western blot analysis showed that cAMP and phosphorylated cyclic AMP response element binding protein (pCREB) levels in the dorsal vagal complex were increased following vagal deafferentation. Our data show that by tonically dampening the levels of cAMP within the GABAergic synaptic contacts, activated group II mGluRs prevent the modulation of this synapse by endogenous opioids. These data suggest that the plasticity, hence the response, of central circuits controlling the vagal motor outflow to visceral organs is modulated and finely tuned by vagal afferent fibres.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
10
|
Weiland TJ, Anthony-Harvey-Beavis D, Voudouris NJ, Kent S. Metabotropic glutamate receptors mediate lipopolysaccharide-induced fever and sickness behavior. Brain Behav Immun 2006; 20:233-45. [PMID: 16242909 DOI: 10.1016/j.bbi.2005.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/20/2005] [Accepted: 08/31/2005] [Indexed: 11/18/2022] Open
Abstract
Several mechanisms have been proposed for neuroimmune communication supporting the sickness syndrome (fever, anorexia, inactivity, and cachexia) following infection. We examined the role of glutamate as a neurochemical intermediary of sickness behavior induced by intraperitoneal lipopolysaccharide (LPS). Mice implanted with biotelemetry devices capable of detecting body temperature (Tb) were administered LPS (50 or 500 microg/kg i.p., serotype 0111:B4) with or without i.p. pretreatment with vehicle or broad-spectrum antagonists selective for N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic (AMPA)/kainite, or metabotropic glutamate (mGlu) receptors. While NMDA and AMPA/kainate receptor antagonism failed to attenuate LPS-induced sickness behavior, antagonism of metabotropic receptors with l(+)-AP3 reduced the febrile (0-11h: control: 37.32+/-0.16 degrees C, l(+)-AP3: 36.66+/-0.27), anorexic (control: -87+/-5%, l(+)-AP3: 48+/-12% scotophase food intake), and cachexic (control: -8.9+/-0.4%, l(+)-AP3: -6.1+/-1.3% body weight) effects of 500 microg/kg LPS, and produced a biphasic Tb effect in response to 50 microg/kg LPS (1h: -0.90+/-0.26; 6h: 1.78+/-0.35 degrees C relative to baseline). At this dose the Tb of l(+)-AP3-treated mice was 1.18 degrees C lower than controls 2h post-injection, and 0.68 degrees C greater that controls 8h post-injection. These results suggest a role for mGlu receptors in mediating fever, anorexia, and cachexia possibly via activation of extra-vagal pathways, since the attenuating effect of l(+)-AP3 increased with increasing dosages of LPS. Given the critical role ascribed to mGlu receptors in neurotransmitter release and astrocytic processes, it is possible that these observations reflect an l(+)-AP3-induced attenuation of these systems.
Collapse
Affiliation(s)
- Tracey J Weiland
- School of Psychological Science, La Trobe University, Bundoora, Vic. 3086, Australia.
| | | | | | | |
Collapse
|
11
|
Sekizawa SI, Bonham AC. Group I Metabotropic Glutamate Receptors on Second-Order Baroreceptor Neurons Are Tonically Activated and Induce a Na+–Ca2+Exchange Current. J Neurophysiol 2006; 95:882-92. [PMID: 16192328 DOI: 10.1152/jn.00772.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nucleus tractus solitarius (NTS) is essential for coordinating baroreflex control of blood pressure. The baroreceptor sensory fibers make glutamatergic synapses onto second-order NTS neurons. Glutamate spillover activates Group II and III presynaptic metabotropic glutamate receptors (mGluRs) on the baroreceptor central terminals to inhibit synaptic transmission, but the role of postsynaptic mGluRs is less understood. We used whole cell patch-clamping in anatomically identified second-order baroreceptor neurons in a brain stem slice to test whether Group I, II, and III mGluRs had postsynaptic effects at this first central synapse in the baroreceptor afferent pathway. The Group I agonist DHPG induced a depolarization and spiking that was mimicked by endogenous glutamate. Group I mGluR blockade prevented the depolarization and slightly hyperpolarized the neurons, suggesting a small tonic Group I mGluR activation. The DHPG-induced inward current consisted of voltage-dependent and -independent components; the former was blocked by TEA and the latter was blocked by replacing extracellular NaCl with LiCl or Tris-HCl. The DHPG current was potentiated in a Ca2+-free external solution and was diminished by intracellular dialysis with BAPTA and by perfusion with Na+–Ca2+exchanger blockers, KB-R7943 or 3′,4′-dichlorobenzamil. Intracellular dialysis with GDPβS or heparin and perfusion with the PLC inhibitor U-73122 or the Ca2+-calmodulin inhibitor W-7 significantly decreased the DHPG current. The data suggest that Group I mGluRs on baroreceptor neurons are functional; are activated by endogenous glutamate; and activate a Na+–Ca2+exchanger through G-protein, PLC, IP3, and Ca2+-calmodulin mechanisms to excite the cell, thus providing postsynaptic mechanisms to enhance or prolong baroreceptor signal transmission.
Collapse
Affiliation(s)
- Shin-ichi Sekizawa
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95817, USA
| | | |
Collapse
|
12
|
Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaidi SI, Massari VJ, Ferguson DG. Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol (1985) 2005; 98:1961-82. [PMID: 15894534 DOI: 10.1152/japplphysiol.01340.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review summarizes recent work on two basic processes of central nervous system (CNS) control of cholinergic outflow to the airways: 1) transmission of bronchoconstrictive signals from the airways to the airway-related vagal preganglionic neurons (AVPNs) and 2) regulation of AVPN responses to excitatory inputs by central GABAergic inhibitory pathways. In addition, the autocrine-paracrine modulation of AVPNs is briefly discussed. CNS influences on the tracheobronchopulmonary system are transmitted via AVPNs, whose discharge depends on the balance between excitatory and inhibitory impulses that they receive. Alterations in this equilibrium may lead to dramatic functional changes. Recent findings indicate that excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second-order neurons within the nucleus of the solitary tract (NTS), via a glutamate-AMPA signaling pathway. These neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command to airway effector organs: smooth muscle, submucosal secretory glands, and the vasculature, through intramural ganglionic neurons. The strength and duration of reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs and autocrine-paracrine controlling mechanisms. Downregulation of GABAergic inhibitory influences may result in a shift from inhibitory to excitatory drive that may lead to increased excitability of AVPNs, heightened airway responsiveness, and sustained narrowing of the airways. Hence a better understanding of these normal and altered central neural circuits and mechanisms could potentially improve the design of therapeutic interventions and the treatment of airway obstructive diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Dept. of Physiology and Biophysics, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mueller PJ, Foley CM, Vogl HW, Hay M, Hasser EM. Cardiovascular response to a group III mGluR agonist in NTS requires NMDA receptors. Am J Physiol Regul Integr Comp Physiol 2005; 289:R198-208. [PMID: 15790752 DOI: 10.1152/ajpregu.00185.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that microinjection of the putative group III metabotropic glutamate receptor (mGluR) agonist, l(+)-2-amino-4-phosphonobutyric acid (L-AP4), into the nucleus tractus solitarius (NTS) produces depressor and sympathoinhibitory responses. These responses are significantly attenuated by a group III mGluR antagonist and may involve ionotropic glutamatergic transmission. Alternatively, a previous report in vitro suggests that preparations of L-AP4 may nonspecifically activate NMDA channels due to glycine contamination (Contractor A, Gereau RW, Green T, and Heinemann SF. Proc Natl Acad Sci USA 95: 8969-8974, 1998). Therefore, the present study tested whether responses to L-AP4 specifically require the N-methyl-D-aspartate (NMDA) receptor and whether they are due to actions at the glycine site on the NMDA channel. To test these possibilities in vivo, we performed unilateral microinjections of L-AP4, glycine, and selective antagonists into the NTS of urethane-anesthetized rats. L-AP4 (10 mM, 30 nl) produced sympathoinhibitory responses that were abolished by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP-5, 10 mM) but were unaffected by the non-NMDA antagonist 6-nitro-7-sulfamobenzoquinoxaline-2,3-dione (NBQX, 2 mM). Microinjection of glycine (0.02-20 mM) failed to mimic sympathoinhibitory responses to L-AP4, even in the presence of the inhibitory glycine antagonist, strychnine (3 mM). Strychnine blocked pressor and sympathoexcitatory actions of glycine (20 mM) but failed to reveal a sympathoinhibitory component due to presumed activation of NMDA receptors. The results of these experiments suggest that responses to L-AP4 require NMDA receptors and are independent of non-NMDA receptors. Furthermore, although it is possible that glycine contamination or other nonspecific actions are responsible for the sympathoinhibitory actions of L-AP4, our data and data in the literature argue against this possibility. Thus we conclude that responses to L-AP4 in the NTS are mediated by an interaction between group III mGluRs and NMDA receptors. Finally, we also caution that nonselective actions of L-AP4 should be considered in future studies.
Collapse
Affiliation(s)
- Patrick J Mueller
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, 134 Research Park, University of Missouri, Columbia, MO 65211-3300, USA
| | | | | | | | | |
Collapse
|
14
|
Chen CY, Bonham AC. Glutamate suppresses GABA release via presynaptic metabotropic glutamate receptors at baroreceptor neurones in rats. J Physiol 2004; 562:535-51. [PMID: 15539399 PMCID: PMC1665512 DOI: 10.1113/jphysiol.2004.076885] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The nucleus tractus solitarii (NTS) is essential for coordinating arterial baroreflex control of blood pressure. The primary baroreceptor afferent fibres make their first excitatory synaptic contact at second-order NTS neurones with glutamate as the major neurotransmitter. Glutamate regulates its own release by activating presynaptic metabotropic glutamate autoreceptors (mGluRs) on the baroreceptor central terminals to suppress its further release in frequency-dependent manner. Gamma-aminobutyric acid (GABA) interneurones provide the major inhibitory synaptic input. It is the integration of excitatory and inhibitory inputs that shapes the NTS output of baroreceptor signals. We hypothesized that glutamate released from the primary central afferent terminals can spill over to presynaptic mGluRs on GABA interneurones to suppress GABA release at the second-order baroreceptor neurones. We assessed GABA transmission in second-order baroreceptor neurones identified by attached aortic depressor nerve (ADN) boutons. The medial NTS was stimulated to evoke GABA inhibitory postsynaptic currents (eIPSCs). Glutamate spillover, generated by brief 2 s, 25 Hz trains of stimuli applied to the tractus solitarius (TS), induced a small (10%) but significant reduction in the eIPSC amplitudes. The depression was enhanced to a 25% decrease by increasing glutamate in the cleft with a glutamate-uptake inhibitor (M-trans-pyrrolidine-2,4-dicarboxylic acid, 1 mum), blocked by a Group II mGluR antagonist (LY341495, 200 nm) and mimicked by a Group II agonist ((2S,3S,4S)-CCG/(2S,1'S,2'S)-2-carboxycyclopropyl; L-CCG-I). A presynaptic mGluR locus was established by the mGluR agonist-mediated increase in the paired-pulse ratio of two consecutive eIPSCs in conjunction with the decrease in the first eIPSC, and a decrease in the frequency (39-46% reduction at EC(50) concentration), but not amplitude, of spontaneous and miniature GABA IPSCs. The data indicate that endogenous glutamate activation of Group II presynaptic mGluRs can decrease GABA release at the first central synapses, suggesting a heterosynaptic role for the Group II mGluRs in shaping baroreceptor signal transmission.
Collapse
Affiliation(s)
- Chao-Yin Chen
- Department of Medical Pharmacology and Toxicology, Tupper Hall Room 1311, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
15
|
Endoh T. Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 2004; 1024:212-24. [PMID: 15451384 DOI: 10.1016/j.brainres.2004.07.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 02/07/2023]
Abstract
It is well known that metabotropic glutamate receptors (mGluRs) have multiple actions on neuronal excitability mediated by G-protein-coupled receptors, although the exact mechanisms by which these actions occur are not understood. This study examines the effects of mGluRs agonists on voltage-dependent Ca2+ channels (VDCCs) currents (ICa) in the nucleus tractus solitarius (NTS) of rats using patch-clamp recording methods. An application of (RS)-3,5-dihydroxyphenylglycine (DHPG, Group I mGluR agonist) caused both facilitation and inhibition of L-type and N/P/Q-types ICa, respectively. Neither (2S, 2'R, 3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG, Group II mGluRs agonist) nor L-(+)-2-amino-4-phosphonobutyric acid (AP-4, Group III mGluRs agonist) nor (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, mGluR5 agonist) modulated ICa. Intracellular dialysis of the Gq/11-protein antibody and Gi-protein antibody attenuated the DHPG-induced facilitation and inhibition, respectively. The phospholipase C (PLC) inhibitor, as well as inhibition of either the protein kinase C (PKC) or inositol-1,4,5-trisphosphate (IP3) attenuated the DHPG-induced facilitation of ICa but not a DHPG-induced inhibition. Application of a strong depolarizing voltage prepulse attenuated the DHPG-induced inhibition of ICa. These results indicate that mGluR1 facilitates L-type VDCCs via Gq/11-protein involving PKC including IP3 formation. On the other hand, mGluR1 inhibits N- and P/Q-types VDCCs via Gi-protein betagamma subunits.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
| |
Collapse
|
16
|
Lin Y, Matsumura K, Fukuhara M, Kagiyama S, Fujii K, Iida M. Ghrelin Acts at the Nucleus of the Solitary Tract to Decrease Arterial Pressure in Rats. Hypertension 2004; 43:977-82. [PMID: 14993197 DOI: 10.1161/01.hyp.0000122803.91559.55] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ghrelin is an orexigenic peptide originally isolated from the stomach. Intracerebroventricular administration of ghrelin has been shown to elicit decreases in arterial pressure and renal sympathetic nerve activity in conscious rabbits. The aim of the present study was to determine the role of ghrelin in the brain stem in cardiovascular responses in rats. Unilateral microinjection of ghrelin into the nucleus of the solitary tract significantly decreased the mean arterial pressure and heart rate (-17.3+/-0.8 mm Hg and -13.6+/-3.5 bpm by 20 pmol). The microinjection of ghrelin into the nucleus of the solitary tract also suppressed the renal sympathetic nerve activity (-29.5+/-3.4%; P<0.0001). Pretreatment with intravenous injection of pentolinium (5 mg/kg), a ganglion-blocking agent, eliminated these cardiovascular responses induced by the microinjection of ghrelin (20 pmol) into the nucleus of the solitary tract; however, pretreatment with intravenous injection of atropine sulfate (0.1 mg/kg), an antagonist of muscarinic acetylcholine receptors, failed to prevent them. In contrast, unilateral microinjection of ghrelin into the area postrema, rostral, and caudal ventrolateral medulla caused no significant changes in the mean arterial pressure and heart rate. On the other hand, immunohistochemical study revealed that the receptor for ghrelin, the growth hormone secretagogue receptor, was expressed in the neuronal cells of the nucleus of the solitary tract and the dorsal motor nucleus of the vagus, but not in the cells of the area postrema. These results suggest that ghrelin acts at the nucleus of the solitary tract to suppress sympathetic activity and to decrease arterial pressure in rats.
Collapse
Affiliation(s)
- Yingzi Lin
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Lin CH, Lo WC, Hsiao M, Tung CS, Tseng CJ. Interactions of carbon monoxide and metabotropic glutamate receptor groups in the nucleus tractus solitarii of rats. J Pharmacol Exp Ther 2004; 308:1213-8. [PMID: 14617688 DOI: 10.1124/jpet.103.060186] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide has been shown to act as a neurotransmitter and neuronal messenger in the brain. Heme oxygenase catalyzes the conversion of heme to carbon monoxide and biliverdin. We have recently reported that carbon monoxide was involved in central cardiovascular regulation. Carbon monoxide modulated the baroreflex and may affect glutamatergic neurotransmission. In addition, metabotropic glutamate receptors may be coupled to the activation of heme oxygenase in the nucleus tractus solitarii of rats. The present study was designed to investigate the possible interactions of carbon monoxide and metabotropic glutamate receptor groups in the nucleus tractus solitarii. Unilateral microinjection of several agonists for metabotropic glutamate receptor groups such as (R,S)-3,5-dihydroxyphenylglycine (DHPG) (group I) (0.03 nmol), 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC) (group II) (0.3 nmol), and l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) (group III) (0.3 nmol) produced a significant decrease in blood pressure and heart rate. Among the metabotropic glutamate receptor agonists, prior administration of zinc protoporphyrin IX, an inhibitor of heme oxygenase activity, significantly attenuated the cardiovascular effects of APDC and l-AP4, and failed to attenuate the cardiovascular responses of DHPG. These results indicated interactions between carbon monoxide and group II and III metabotropic glutamate receptors in central cardiovascular regulation.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
18
|
Matsumura K, Tsuchihashi T, Fujii K, Iida M. Neural regulation of blood pressure by leptin and the related peptides. REGULATORY PEPTIDES 2003; 114:79-86. [PMID: 12832094 DOI: 10.1016/s0167-0115(03)00116-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent biological advances make it possible to discover new peptides associated with obesity. Leptin, neuropeptide Y, corticotrophin-releasing factor (CRF), alpha-melanocyte stimulating hormone (alpha-MSH), and cocaine- and amphetamine-regulated transcript (CART) peptides are known to participate in appetite and feeding behavior. Various lines of evidence suggest that these peptides participate not only in feeding behavior but also in cardiovascular and sympathetic regulations. Both leptin and ghrelin are secreted from the peripheral tissue; then they reach the brain to modulate sympathetic activity. These two peptides seem to play important roles to transmit peripheral metabolic information to the brain, and to convert it to cardiovascular and sympathetic information. Leptin activates neurons containing alpha-melanocyte stimulating hormone and cocaine- and amphetamine-regulated transcript peptides, resulting in increases in sympathetic activity and blood pressure. Cardiovascular action of alpha-melanocyte stimulating hormone is mediated through melanocortin-4 receptor, and agouti-related protein (AGRP) plays a role as an endogenous melanocortin-4 receptor antagonist. In contrast, ghrelin and neuropeptide Y in the brain suppress sympathetic activity and decrease blood pressure. Depressor and sympathoinhibitory effects of central neuropeptide Y are inhibited by leptin. Furthermore, central ghrelin modulates baroreflex control of renal sympathetic nerve activity and heart rate. Thus, leptin and the related peptides, which participate in appetite and feeding behavior, seem to function together to regulate cardiovascular system and sympathetic nerve activity, and may play a key role in the association between obesity and hypertension.
Collapse
Affiliation(s)
- Kiyoshi Matsumura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
19
|
Pamidimukkala J, Hoang CJ, Hay M. Expression of metabotropic glutamate receptor 8 in autonomic cell groups of the medulla oblongata of the rat. Brain Res 2002; 957:162-73. [PMID: 12443992 DOI: 10.1016/s0006-8993(02)03619-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) in the medulla oblongata have been suggested to have a functional role in the regulation of cardiovascular baroreflexes. The present study examines the localization of mGluR8 autonomic nuclei of the medulla of the rat. mGluR8 immunoreactivity was observed in the cell bodies and/or processes of the dorsolateral, interstitial, medial, intermediate, ventral, ventrolateral, subpostremal, commissural, parvicellular and gelatinosus subnuclei of the nucleus tractus solitarius (NTS). The intensity of mGluR8 staining was highest in the commissural and interstitial subnuclei at the level of the area postrema. Commissural NTS is involved in regulation of baro-, and chemo-reflexes whereas the interstitial nucleus mediates respiratory reflexes. In the area postrema, diffuse staining was observed in the cell bodies, dendrites and fibers of the dorsal and central regions. In vagal outflow nuclei, mGluR8 immunoreactivity was observed in: (1). the cell bodies and processes of the dorsal motor nucleus of the vagus (DMN) throughout the rostro-caudal extent; and (2). the cell bodies and fibers throughout the rostro-caudal extent of the dorsal and ventral division the nucleus ambiguus (NA). Staining in the ventrolateral medulla was restricted to regions ventral to the nucleus ambiguus and dorsal to the lateral reticulate nucleus. The present study is the first to provide a detailed mapping of mGluR8 within the autonomic nuclei of the medulla and suggests that this subtype may be involved in shaping synaptic transmission in these central nuclei.
Collapse
Affiliation(s)
- Jaya Pamidimukkala
- Department of Veterinary Biomedical Sciences, 134 Research Park, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
20
|
Matsumura K, Tsuchihashi T, Fujii K, Abe I, Iida M. Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension 2002; 40:694-9. [PMID: 12411464 DOI: 10.1161/01.hyp.0000035395.51441.10] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ghrelin is an orexigenic peptide originally isolated from the stomach. Intravenous administration of ghrelin has been shown to elicit a decrease in arterial pressure without a significant change in heart rate (HR), suggesting that ghrelin may act on the central nervous system to modulate sympathetic activity. The aim of the present study was to determine the central effects of ghrelin on cardiovascular and sympathetic responses in conscious rabbits. Intravenous injection of ghrelin elicited dose-related decreases in arterial pressure and HR, without a significant change in renal sympathetic nerve activity. On the other hand, intracerebroventricular injection of 1 nmol of ghrelin decreased arterial pressure, HR, and renal sympathetic nerve activity. Peak depressor or sympathoinhibitory responses of mean arterial pressure and renal sympathetic nerve activity (-19.0+/-1.5 mm Hg and -43.3+/-5.4%) were observed at 50 and 40 minutes, respectively, after intracerebroventricular injection of 1 nmol of ghrelin. Furthermore, a subdepressor dose of intracerebroventricular infusion of ghrelin (0.3 nmol/150 micro L per hour) significantly augmented the baroreflex sensitivities assessed by renal sympathetic nerve activity and HR compared with those of vehicle infusion (G(max); -17.8+/-3.1 versus -9.4+/-1.6%/mm Hg, P<0.05; -12.5+/-1.8 versus -6.6+/-1.2 bpm/mm Hg, P<0.05; respectively). These results suggest that intravenous injection of ghrelin acts, at least in part, on the central nervous system to decrease arterial pressure and renal sympathetic nerve activity, and that central ghrelin participates in the regulations of the sympathetic nerve activity to the kidney and the baroreceptor reflex in conscious rabbits.
Collapse
Affiliation(s)
- Kiyoshi Matsumura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
21
|
Viard E, Sapru HN. Cardiovascular responses to activation of metabotropic glutamate receptors in the nTS of the rat. Brain Res 2002; 952:308-21. [PMID: 12376193 DOI: 10.1016/s0006-8993(02)03260-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although several agonists and antagonists for different subtypes of metabotropic glutamate receptors (mGLURs) have become available in recent years, detailed information regarding their selectivity is not complete in the in vivo animal models. The purpose of the present investigation was to study the cardiovascular effects of microinjections of some of these mGLUR agonists and antagonists into the nucleus tractus solitarius (nTS). Microinjections (100 nl) of EC(50) concentrations of 3,5-DHPG (0.005 mM; mGLUR(1) agonist), APDC (17.3 mM; mGLUR(2/3) agonist), PPG (11.7 mM; mGLUR(8) agonist) and L-AP(4) (1 mM; mGLUR(4) agonist) into the nucleus tractus solitarius of urethane-anesthetized male Wistar rats elicited depressor and bradycardic responses which may be mediated by pre- and/or postsynaptic mechanisms. The blocking effect of mGLUR antagonists used here was not specific for any one type of glutamate receptors (GLURs). For example, AIDA (50 mM; mGLUR(1) antagonist) blocked the effects of EC(50) concentrations of 3,5-DHPG, and PPG. LY341495 (135 mM; mGLUR(2/3) antagonist) blocked all of the mGLURs and ionotropic GLURs. EGLU, APICA and MCCG (250 mM each; mGLUR(2/3) antagonists) blocked the effects of APDC, NMDA and AMPA. CPPG (80 mM) and MSOP (125 mM), mGLUR(4) antagonists, blocked the effects of 3,5-DHPG, PPG and L-AP(4.) D-AP7 (NMDA receptor antagonist) and NBQX (a non-NMDA receptor antagonist) did not alter the responses of any of the mGLUR agonists. The data presented may be useful in assessing the role of metabotropic and ionotropic GLURs in mediating different cardiovascular reflexes.
Collapse
Affiliation(s)
- Eddy Viard
- Department of Neurological Surgery, MSB H-586, New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103-2757, USA
| | | |
Collapse
|
22
|
Hoang CJ, Hay M. Expression of metabotropic glutamate receptors in nodose ganglia and the nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 2001; 281:H457-62. [PMID: 11406515 DOI: 10.1152/ajpheart.2001.281.1.h457] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to identify the complement of metabotropic glutamate receptors (mGluRs) expressed in nodose ganglia and the nucleus tractus solitarius (NTS). mRNA from these tissues was isolated and amplified with standard RT-PCR with primers specific for each mGluR subtype. The results of this analysis showed that the NTS expresses all eight mGluR subtypes, whereas nodose ganglia express only group III mGluRs: mGluR4, mGluR6, mGluR7, and mGluR8. Application of the group III-specific mGluR agonist L-(+)-2-amino-4-phosphonobutyric acid (100 microM) reversibly inhibited voltage-gated calcium currents isolated from DiI-labeled aortic baroreceptor neurons and unlabeled nodose neurons. The results of this study suggest that group III mGluRs are the primary mGluR subtype expressed in visceral afferent neurons and that these receptors may be involved in afferent central transmission.
Collapse
Affiliation(s)
- C J Hoang
- Dalton Cardiovascular Research Center, University of Missouri at Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
23
|
Affiliation(s)
- D Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China.
| | | |
Collapse
|
24
|
Abstract
The G protein-coupled metabotropic glutamate (mGlu) receptors are differentially localized at various synapses throughout the brain. Depending on the receptor subtype, they appear to be localized at presynaptic and/or postsynaptic sites, including glial as well as neuronal elements. The heterogeneous distribution of these receptors on glutamate and nonglutamate neurons/cells thus allows modulation of synaptic transmission by a number of different mechanisms. Electrophysiological studies have demonstrated that the activation of mGlu receptors can modulate the activity of Ca(2+) or K(+) channels, or interfere with release processes downstream of Ca(2+) entry, and consequently regulate neuronal synaptic activity. Such changes evoked by mGlu receptors can ultimately regulate transmitter release at both glutamatergic and nonglutamatergic synapses. Increasing neurochemical evidence has emerged, obtained from in vitro and in vivo studies, showing modulation of the release of a variety of transmitters by mGlu receptors. This review addresses the neurochemical evidence for mGlu receptor-mediated regulation of neurotransmitters, such as excitatory and inhibitory amino acids, monoamines, and neuropeptides.
Collapse
Affiliation(s)
- J Cartmell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | |
Collapse
|
25
|
Tsuchihashi T, Liu Y, Kagiyama S, Matsumura K, Abe I, Fujishima M. Metabotropic glutamate receptor subtypes involved in cardiovascular regulation in the rostral ventrolateral medulla of rats. Brain Res Bull 2000; 52:279-83. [PMID: 10856825 DOI: 10.1016/s0361-9230(00)00264-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that metabotropic glutamate receptors (mGluR) participate in cardiovascular regulation in the rostral ventrolateral medulla (RVLM) of rats. In the present study, we have tried to elucidate which subtype of mGluR contributes to cardiovascular responses elicited by L-glutamate in the RVLM. Adult male Wistar rats (348 +/- 11 g, n = 21) were anesthetized and artificially ventilated. Microinjections of agonists and antagonists for each mGluR subtype were done into unilateral RVLM. Each of group I, II and III mGluR agonist (1 nmol/50 nl) produced significant increases in arterial pressure (18 +/- 2, 9 +/- 2 and 34 +/- 3 mmHg, respectively) and heart rate (18 +/- 4, 13 +/- 3 and 33 +/- 12 bpm, respectively). Microinjections of group I, II and III mGluR antagonists failed to inhibit the cardiovascular responses induced by subsequently injected agonists. However, group I antagonist [(RS)-1-aminoindan-1,5-dicarboxylic acid] elicited transient increases in arterial pressure and heart rate, followed by decreases in both variables (-19 +/- 4 mmHg and -22 +/- 4 bpm). These results suggest that all of three subtypes of mGluR participate in cardiovascular responses induced by L-glutamate, and group I mGluR may play an important role in the maintenance of arterial pressure.
Collapse
Affiliation(s)
- T Tsuchihashi
- Department of Medicine and Clinical Science, Kyushu University, Fukuoka,
| | | | | | | | | | | |
Collapse
|