1
|
Su AL, Lash LH, Loch-Caruso R. N-Acetyl-L-cysteine and aminooxyacetic acid differentially modulate toxicity of the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine in human placental villous trophoblast BeWo cells. Toxicology 2023; 495:153611. [PMID: 37544576 PMCID: PMC10874504 DOI: 10.1016/j.tox.2023.153611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Trichloroethylene (TCE) is a known human carcinogen with toxicity attributed to its metabolism. S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of TCE formed downstream in TCE glutathione (GSH) conjugation and is upstream of several toxic metabolites. Despite knowledge that DCVC stimulates reactive oxygen species (ROS) generation and apoptosis in placental cells, the extent to which these outcomes are attributable to DCVC metabolism is unknown. The current study used N-acetyl-L-cysteine (NAC) at 5 mM and aminooxyacetic acid (AOAA) at 1 mM as pharmacological modifiers of DCVC metabolism to investigate DCVC toxicity at concentrations of 5-50 µM in the human placental trophoblast BeWo cell model capable of forskolin-stimulated syncytialization. Exposures of unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells were studied. NAC pre/co-treatment with DCVC either failed to inhibit or exacerbated DCVC-induced H2O2 abundance, PRDX2 mRNA expression, and BCL2 mRNA expression. Although NAC increased mRNA expression of CYP3A4, which would be consistent with increased generation of the toxic metabolite N-acetyl-DCVC sulfoxide (NAcDCVCS), a CYP3A4 inhibitor ketoconazole did not significantly alter BeWo cell responses. Moreover, AOAA failed to inhibit cysteine conjugate β-lyase (CCBL), which bioactivates DCVC, and did not affect the percentage of nuclei condensed or fragmented, a measure of apoptosis, in all BeWo cell models. However, syncytialized cells had higher CCBL activity compared to unsyncytialized cells, suggesting that the former may be more sensitive to DCVC toxicity. Together, although neither NAC nor AOAA mitigated DCVC toxicity, differences in CCBL activity and potentially CYP3A4 expression dictated the differential toxicity derived from DCVC.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
2
|
Jefremov V, Rakitin A, Mahlapuu R, Zilmer K, Bogdanovic N, Zilmer M, Karelson E. 17beta-Oestradiol stimulation of G-proteins in aged and Alzheimer's human brain: comparison with phytoestrogens. J Neuroendocrinol 2008; 20:587-96. [PMID: 18363809 DOI: 10.1111/j.1365-2826.2008.01696.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neuroprotective action of oestrogens and oestrogen-like compounds is in the focus of basic and clinical research. Although such action has been shown to be associated with neuronal plasma membranes, the implication of G-proteins remains to be elucidated. This study revealed that micromolar concentrations (microM) of 17beta-oestradiol and phytoestrogens, genistein and daidzein, significantly (P < 0.05) stimulate G-proteins ([(35)S]GTP gamma S binding) in the post-mortem hippocampal membranes of age-matched control women with the respective maximum effects of 28, 20 and 15% at 10 microM. In the frontocortical membranes, the stimulation of G-proteins did not differ significantly from that in hippocampal membranes. Although in the hippocampus and frontal cortex of the Alzheimer's disease (AD) women's brain, 10 microM 17beta-oestradiol produced significantly (P < 0.05) lower stimulation of G-proteins than in the control regions, stimulation by phytoestrogens revealed no remarkable decline. 17beta-Oestradiol, genistein and daidzein revealed a selective effect on various G-proteins (G(alphas), G(alpha o), G(alpha i1) or G(alpha 11) plus G(beta 1 gamma 2)) expressed in Sf9 cells. At a concentration of 10 microM, 17beta-oestradiol suppressed the H(2)O(2) and homocysteine stimulated G-proteins in the frontocortical membranes of control women to a greater extent than phytoestrogens. In AD, the suppressing effect of each compound was lower than in the controls. In the cell-free systems, micromolar concentrations of phytoestrogens scavenged OH(*) and the 2.2-diphenyl-1-picrylhydrazyl free radical (DPPH(*)) more than 17beta-oestradiol did. In the frontocortical membranes of control women, the 20 microM 17beta-oestradiol stimulated adenylate cyclase with 20% maximal effect, whereas, in AD, the effect was insignificant. Genistein did not stimulate enzyme either in control or AD frontocortical membranes. Our data confirm that the agents stimulate G-proteins in control and AD women's brains, although 17beta-oestradiol and phytoestrogens have similarities and differences in this respect. We suggest that, besides the ER-dependent one, the ER-independent antioxidant mechanism is responsible for the oestrogen stimulation of G-proteins in the brain membranes. Both of these mechanisms could be involved in the neuroprotective signalling of oestrogens that contributes to their preventive/therapeutic action against postmenopausal neurological disorders.
Collapse
Affiliation(s)
- V Jefremov
- Department of Biochemistry, Tartu University, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
3
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Abstract
The interaction of Abeta with synaptosomal plasma membranes decreases membrane fluidity. Using model membrane/liposome systems the interaction of Abeta with specific lipids (e.g. phospholipids, gangliosides, cholesterol) has been defined. The formation of the beta-sheet structure of Abeta when undergoing peptide aggregation is important for Abeta's membrane perturbing properties. This effect can be correlated with the peptide length of Abeta, the longer Abeta1-42 having the greatest effect on membrane fluidity and on neurotoxicity.
Collapse
Affiliation(s)
- Gunter P Eckert
- Department of Pharmacology, ZAFES, Biocenter University of Frankfurt, Germany
| | | | | |
Collapse
|
5
|
Igbavboa U, Johnson-Anuna LN, Rossello X, Butterick TA, Sun GY, Wood WG. Amyloid beta-protein1-42 increases cAMP and apolipoprotein E levels which are inhibited by beta1 and beta2-adrenergic receptor antagonists in mouse primary astrocytes. Neuroscience 2006; 142:655-60. [PMID: 16904834 DOI: 10.1016/j.neuroscience.2006.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022]
Abstract
Amyloid beta-protein (Abeta) increases apolipoprotein E (apoE) levels in astrocytes which could alter lipid trafficking. The mechanism for the Abeta-induced increase in apoE levels is not well understood. It is well established that stimulation of beta-adrenergic receptors (betaARs) increases cAMP levels. Elevation of cAMP levels increases apoE abundance. The current study determined if Abeta(1-42) stimulation of cAMP and apoE levels could be inhibited by betaAR antagonists in astrocytes. We demonstrate that Abeta(1-42) but not the reverse protein Abeta(42-1) or Abeta(1-40) stimulated cAMP formation and this stimulation was inhibited by selective betaAR antagonists in mouse primary cortical astrocytes. Abeta(1-42) significantly increased apoE levels which were significantly inhibited by the betaAR selective antagonists with the greatest inhibition observed with the beta(2) antagonist. Separate lines of evidence have suggested that agonist-induced stimulation of betaARs and increases in apoE abundance may serve a neuroprotective role in astrocytes. Our results indicate a potential interaction between betaARs and apoE which may contribute to reducing Abeta(1-42) neurotoxicity.
Collapse
Affiliation(s)
- U Igbavboa
- Geriatric Research, Education and Clinical Center, VA Medical Center and Department of Pharmacology, University of Minnesota School of Medicine, One Veterans Drive, Minneapolis, MN 55417, USA
| | | | | | | | | | | |
Collapse
|
6
|
Karelson E, Fernaeus S, Reis K, Bogdanovic N, Land T. Stimulation of G-proteins in human control and Alzheimer's disease brain by FAD mutants of APP(714-723): implication of oxidative mechanisms. J Neurosci Res 2005; 79:368-74. [PMID: 15614786 DOI: 10.1002/jnr.20371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the effects of amyloid precursor protein (APP) fragment 714-723 (APP(714-723); peptide P1) and its V717F and V717G mutants (peptides P2 and P3, respectively) on G-protein activity ([35S]GTPgammaS binding) in membranes from postmortem human control and Alzheimer's disease (AD) brains. The peptides P1, P2, and P3 revealed a significant stimulatory effect on [35S]GTPgammaS binding in control temporal cortex. The most potent stimulator, P3, at 10 microM concentration enhanced [35S]GTPgammaS binding by 500%. The effect was threefold stronger than that for wild-type P1 and twofold stronger than that for P2. In sporadic AD, the stimulatory effect of P1, P2, and P3 on G-proteins was reduced significantly whereas in Swedish familial AD (SFAD), only P1 elicited marked stimulation (at 10 microM by 50%). In control sensory postcentral cortex, the stimulation of G-proteins by P3 was 1.5-fold lower than that in control temporal cortex, whereas in AD and SFAD the effect showed no remarkable regional difference. Treatment of membranes with H2O2 produced 1.5-fold higher stimulation in [35S]GTPgammaS binding to temporal cortex than that in binding to sensory postcentral cortex. In AD and SFAD, the stimulation by H2O2 revealed no significant regional difference. Glutathione, desferrioxamine (DFO), and 17beta-estradiol markedly decreased the strong stimulatory effect by P3 on [35S]GTPgammaS binding to control temporal cortex, with the protective effect by DFO being most potent. The G(alphaO)-protein levels were not changed in AD or SFAD brain membranes as compared to levels in control membranes. We suggest that strong G-protein stimulation by P3 in the human brain implies the specific (per)oxidation mechanism that might be affected by regional content of peroxidizing substrates and antioxidants.
Collapse
Affiliation(s)
- Ello Karelson
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
7
|
Lovell MA, Xiong S, Markesbery WR, Lynn BC. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res 2005; 30:113-22. [PMID: 15756939 DOI: 10.1007/s11064-004-9692-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence supports a role for altered mitochondrial function in the pathogenesis of neuron degeneration in Alzheimer's disease (AD). Although several studies have examined the effect of amyloid beta peptide (Abeta), on activities of individual proteins in primary neuron cultures, there have been no studies of the effects of Abeta on the mitochondrial proteome. Here, we quantitatively measured changes in mitochondrial proteins of primary rat cortical neuron cultures exposed to 25 microM Abeta(25-35) for 16 h using isotope coded affinity tag (ICAT) labeling and 2-dimensional liquid chromatography/tandem mass spectrometry (2D-LC/MS/MS) which allows simultaneous identification and quantification of cysteine-containing proteins. The analysis of enriched mitochondrial fractions identified 10 proteins including sodium/potassium-transporting ATPase, cofilin, dihydropyrimidinase, pyruvate kinase and voltage dependent anion channel 1 that were statistically significantly (P < 0.05) altered in Abeta-treated cultures. Elevations of proteins associated with energy production suggest that cells undergoing Abeta-mediated apoptosis increase synthesis of proteins essential for ATP production and efflux in an attempt to maintain metabolic function.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
8
|
Gu QB, Zhao JX, Fei J, Schwarz W. Modulation of Na(+),K(+) pumping and neurotransmitter uptake by beta-amyloid. Neuroscience 2004; 126:61-7. [PMID: 15145073 DOI: 10.1016/j.neuroscience.2004.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2004] [Indexed: 01/19/2023]
Abstract
Micromolar concentrations of beta-amyloid (Abeta), a 40/42-amino-acid-long proteolytic fragment (Abeta(1-40/42)) of the amyloid precursor protein, was shown previously to play a crucial role in pathogenesis of Alzheimer's disease. We used the Xenopus oocyte expression system to investigate specific effects of micromolar concentrations of Abeta(1-42) on the neurotransmitter transporters for gamma-aminobutyric acid (GABA), GAT1, and for the excitatory amino acid glutamate, EAAC1, which are driven by the transmembrane Na(+) gradient that is regulated by the Na(+),K(+)-ATPase. Brief treatment with Abeta(1-42), up to 80 min, leads to a significant inhibition of ion translocation by the Na(+),K(+)-ATPase (30-40%); also glutamate uptake is inhibited (20%) while GABA uptake is not affected. Since reduced glutamate uptake will result in elevated, neurotoxic concentrations of extracellular glutamate, we investigated the effects of Abeta(1-42) and the smaller fragments, Abeta(12-28) and Abeta(25-35), on EAAC1 in more detail. Prolonged incubation in 1 microM Abeta(1-42) leads to further, strong inhibition of glutamate uptake and EAAC1-mediated current (after 4 h inhibition amounts to more than 80%). Abeta(12-28) is less effective with 50% inhibition after 4 h of incubation at 20 microM. Abeta(1-42) and Abeta(12-28) affect EAAC1-mediated current to a similar extent as the rate of glutamate uptake. The effects on EAAC1-mediated current are irreversible if Abeta were applied for longer time periods. Peptides directly microinjected into the oocyte are ineffective suggesting that the observed effect were mediated by extracellular proteins. Abeta(25-35) hardly affects EAAC1-mediated current or glutamate uptake. The results demonstrate that Abeta specifically inhibits the Na(+),K(+) pump and EAAC1. The domain between amino acids 12 and 28 of Abeta seems to play a crucial role for inhibition of EAAC1. The inhibition of EAAC1 by neurotoxic, elevated extracellular glutamate levels may contribute to Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Q B Gu
- Shanghai Institute of Biochemistry and Cell Biology, 320 YueYang Road, 200031 Shanghai, China
| | | | | | | |
Collapse
|
9
|
Galeotti N, Bartolini A, Ghelardini C. Diphenhydramine-induced amnesia is mediated by Gi-protein activation. Neuroscience 2004; 122:471-8. [PMID: 14614911 DOI: 10.1016/j.neuroscience.2003.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of the i.c.v. administration of antisense oligodeoxynucleotides directed against the alpha subunit of different Gi-proteins (anti-Gialpha(1), anti-Gialpha(2), anti-Gialpha(3), anti-Goalpha(1), anti-Goalpha(2)) on the amnesia induced by the H(1)-antihistamine diphenhydramine (20 mg kg(-1) s.c.) was evaluated in the mouse passive avoidance test. Pretreatment with anti-Gialpha(1) (12.5-25 microg per mouse i.c.v.) and anti-Gialpha(2) (25 microg per mouse i.c.v.), administered 24 and 18 h before test, prevented antihistamine-induced amnesia. By contrast, pretreatment with an anti-Gialpha(3) (25 microg per mouse i.c.v.), anti-Goalpha(1) (25 microg per mouse i.c.v.) and anti-Goalpha(2) (25 microg per mouse i.c.v.) did not modify the detrimental effect induced by diphenhydramine. At the highest effective doses, none of the compounds used impaired motor coordination, as revealed by the rota rod test, nor modified spontaneous motility and inspection activity, as revealed by the hole board test. These results suggest the important role played by the Gi(1)- and Gi(2)-protein pathway in the transduction mechanism involved in the impairment of memory processes produced by the H(1)-antihistamine diphenhydramine.
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy
| | | | | |
Collapse
|
10
|
Galeotti N, Bartolini A, Ghelardini C. α-2 agonists induce amnesia through activation of the Gi-protein signalling pathway. Neuroscience 2004; 126:451-60. [PMID: 15207363 DOI: 10.1016/j.neuroscience.2004.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2004] [Indexed: 11/26/2022]
Abstract
The post-receptorial mechanism of the amnesic action of the alpha2-agonists clonidine and guanabenz was investigated in the mouse passive avoidance test. Animals were i.c.v. injected with pertussis toxin (PTX) or with antisense oligonucleotides, complementary to the sequence of the alpha-subunit mRNA of Gi1, Gi2, Gi3, Go1 and Go2 proteins. The administration of PTX (0.25 microg per mouse i.c.v.) reversed the amnesia induced by both alpha2-agonists. Similarly, anti-Gialpha1 (6.25-12.5 microg per mouse i.c.v.), anti-Gialpha3 (3.12-12.5 microg per mouse i.c.v.), anti-Goalpha1 (12.5-25 microg per mouse i.c.v.) antagonised the detrimental effect induced by clonidine and guanabenz. By contrast, pretreatment with anti-Gialpha2 (3.12-25 microg per mouse i.c.v.) and anti-Goalpha2 (12.5-25 microg per mouse i.c.v.) never modified the impairment of memory processes induced by the alpha2-agonists. At the highest effective doses, none of the compounds used impaired motor coordination (rota rod test), nor modified spontaneous motility and inspection activity, (hole board test). These results indicate the involvement of Gi1, Gi3, and Go1, but not Gi2 and Go2, protein subtypes in the transduction mechanism responsible for the induction of amnesia by clonidine and guanabenz.
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy
| | | | | |
Collapse
|
11
|
Mahlapuu R, Viht K, Balaspiri L, Bogdanovic N, Saar K, Soomets U, Land T, Zilmer M, Karelson E, Langel U. Amyloid precursor protein carboxy-terminal fragments modulate G-proteins and adenylate cyclase activity in Alzheimer's disease brain. ACTA ACUST UNITED AC 2003; 117:73-82. [PMID: 14499483 DOI: 10.1016/s0169-328x(03)00292-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of three C-terminal sequences and of transmembrane domain from amyloid precursor protein (APP) on the activity of G-proteins and of the coupled cAMP-signalling system in the postmortem Alzheimer's disease (AD) and age-matched control brains was compared. 10 microM APP(639-648)-APP(657-676) (PEP1) causes a fivefold stimulation in the [35S]GTPgammaS-binding to control hippocampal G-proteins. APP(657-676) (PEP2) and APP(639-648) (PEP4) showed less pronounced stimulation whereas cytosolic APP(649-669) (PEP3) showed no regulatory activity in the [35S]GTPgammaS-binding. PEP1 also showed 1.4-fold stimulatory effect of on the high-affinity GTPase and adenylate cyclase activity in control membranes, whereas in AD hippocampal membranes the stimulatory effect of PEP1 was substantially weaker. The PEP1 stimulation of the [35S]GTPgammaS-binding to the control membranes was significantly reduced by 1.5 mM glutathione, 0.5 mM antioxidant N-acetylcysteine and, in the greatest extent, by 0.01 mM of desferrioxamine. In AD hippocampus these antioxidants revealed no remarkable reducing effect on PEP1-induced stimulation. Our results suggest that C-terminal and transmembrane APP sequences possess receptor-like G-protein activating function in human hippocampus and that abnormalities of this function contribute to AD progression. The stimulatory action of these sequences on G-protein mediated signalling suggests the region-specific formation of reactive species.
Collapse
Affiliation(s)
- Riina Mahlapuu
- Department of Biochemistry, Tartu University, 50411 Tartu, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang SSS, Kazantzi V, Good TA. A Kinetic Analysis of the Mechanism of beta-Amyloid Induced G Protein Activation. J Theor Biol 2003; 221:269-78. [PMID: 12628233 DOI: 10.1006/jtbi.2003.3189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Amyloid (A beta) is the primary protein component of senile plaques found in Alzheimer's disease. In an aggregated (amyloid fibril, protofibril, or low molecular weight oligomer) state, A beta has been consistently shown to be toxic to neurons, but the molecular mechanism of this toxicity is poorly understood. We have previously shown that A beta activates a G(i/o) protein, and that inhibition of this specific G protein activation attenuated A beta-induced cell toxicity. In the present study, we use a kinetic analysis to examine the mechanism of A beta-induced G protein activation. Using synthetic A beta(1-40) and phospholipid vesicles containing purified G(0)alpha subunits, we examined the relationship between A beta concentration, G(0)alpha subunit concentration, GTP concentration and rate of GTP hydrolysis experimentally. We found that at low concentrations of A beta (less than 10 microM), A beta increased the rate of GTP hydrolysis over the rate of hydrolysis in the absence of peptide, however, at high concentrations of A beta, significantly decreased rates of GTP hydrolysis were observed. We postulated several molecular level mechanisms for the observed rate behavior, from those mechanisms derived rate equations, and then tested the mechanisms against our experimental rate data. Based on our results, we identified a plausible mechanism for A beta-induced G protein activation which is consistent with available experimental data. This work demonstrates the utility of an engineering approach to examining steps in the mechanism of A beta-induced cell toxicity and could provide insight into our understanding of the mechanism of Alzheimer's disease.
Collapse
Affiliation(s)
- Steven S-S Wang
- Department of Chemical Engineering, Texas A>&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
13
|
Wang SS, Rymer DL, Good TA. Reduction in cholesterol and sialic acid content protects cells from the toxic effects of beta-amyloid peptides. J Biol Chem 2001; 276:42027-34. [PMID: 11557751 DOI: 10.1074/jbc.m102834200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Amyloid (Abeta) is the primary protein component of senile plaques associated with Alzheimer's disease and has been implicated in the neurotoxicity associated with the disease. A variety of evidence points to the importance of Abeta-membrane interactions in the mechanism of Abeta neurotoxicity and indicates that cholesterol and gangliosides are particularly important for Abeta aggregation and binding to membranes. We investigated the effects of cholesterol and sialic acid depletion on Abeta-induced GTPase activity in cells, a step implicated in the mechanism of Abeta toxicity, and Abeta-induced cell toxicity. Cholesterol reduction and depletion of membrane-associated sialic acid residues both significantly reduced the Abeta-induced GTPase activity. In addition, cholesterol and membrane-associated sialic acid residue depletion or inhibition of cholesterol and ganglioside synthesis protected PC12 cells from Abeta-induced toxicity. These results indicate the importance of Abeta-membrane interactions in the mechanism of Abeta toxicity. In addition, these results suggest that control of cellular cholesterol and/or ganglioside content may prove useful in the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- S S Wang
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122, USA
| | | | | |
Collapse
|
14
|
Galeotti N, Ghelardini C, Bartolini A. Differential prevention of morphine amnesia by antisense oligodeoxynucleotides directed against various Gi-protein alpha subunits. Br J Pharmacol 2001; 133:267-74. [PMID: 11350863 PMCID: PMC1572787 DOI: 10.1038/sj.bjp.0704081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effect of the i.c.v. administration of pertussis toxin (PTX) and antisense oligodeoxynucleotide directed against the alpha subunit of different Gi-proteins (anti-Gialpha1, anti-Gialpha2, anti-Gialpha3) on amnesia induced by morphine was evaluated in the mouse passive avoidance test. The administration of morphine (6 - 10 mg kg(-1) i.p.) immediately after the training session produced amnesia that was prevented by PTX (0.25 microg per mouse i.c.v.) administered 7 days before the passive avoidance test. Anti-Gialpha1 (6.25 microg per mouse i.c.v.) and anti-Gialpha3 (12.5 microg per mouse i.c.v.), administered 18 and 24 h before the training session, prevented the morphine amnesia. By contrast, pretreatment with anti-Gialpha2 (3.12 - 25 microg per mouse i.c.v.) never modified the impairment of memory processes induced by morphine. At the highest effective doses, none of the compounds used impaired motor coordination, as revealed by the rota rod test, nor modified spontaneous motility and inspection activity, as revealed by the hole board test. These results suggest the important role played by Gi1 and Gi3 protein subtypes in the transduction mechanism involved in the impairment of memory processes produced by morphine.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy
| | - Carla Ghelardini
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy
- Author for correspondence:
| | - Alessandro Bartolini
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy
| |
Collapse
|
15
|
Rymer DL, Good TA. The role of G protein activation in the toxicity of amyloidogenic Abeta-(1-40), Abeta-(25-35), and bovine calcitonin. J Biol Chem 2001; 276:2523-30. [PMID: 11060290 DOI: 10.1074/jbc.m005800200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
More than 16 different proteins have been identified as amyloid in clinical diseases; among these, beta-amyloid (Abeta) of Alzheimer's disease is the best characterized. In the present study, we performed experiments with Abeta and calcitonin, another amyloid-forming peptide, to examine the role of G protein activation in amyloid toxicity. We demonstrated that the peptides, when prepared under conditions that promoted beta-sheet and amyloid fibril (or protofibril) formation, increased high affinity GTPase activity, but the nonamyloidogenic peptides had no discernible effects on GTP hydrolysis. These increases in GTPase activity were correlated to toxicity. In addition, G protein inhibitors significantly reduced the toxic effects of the amyloidogenic Abeta and calcitonin peptides. Our results further indicated that the amyloidogenic peptides significantly increased GTPase activity of purified Galpha(o) and Galpha(i) subunits and that the effect was not receptor-mediated. Collectively, these results imply that the amyloidogenic structure, regardless of the actual peptide or protein sequence, may be sufficient to cause toxicity and that toxicity is mediated, at least partially, through G protein activation. Our abilities to manipulate G protein activity may lead to novel treatments for Alzheimer's disease and the other amyloidoses.
Collapse
Affiliation(s)
- D L Rymer
- Department of Chemical Engineering, Texas A & M University, College Station 77843-3122, USA
| | | |
Collapse
|