1
|
Du R, Chen Z, Zhao S, Ge J, Zhao D. Enhanced dextran production by Weissella confusa in co-culture with Candida shehatae and its quorum sensing regulation mechanism. Int J Biol Macromol 2025; 295:139662. [PMID: 39793821 DOI: 10.1016/j.ijbiomac.2025.139662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Lactic acid bacteria (LAB) are well-known for its expertise in synthesizing exopolysaccharides (EPS), which are linked to significant health benefits, such as its prebiotic effects and ability to modulate the immune system. However, the synthesis of EPS is hindered by low yields. The objective of this study was to investigate the impact of co-cultivation on EPS output by Weissella confusa XG-3 when paired with Candida shehatae. The structure and characteristics of the purified EPS were analyzed. Gel permeation chromatography (GPC) revealed a molecular weight of 3.45 × 106 Da. High-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy and fourier transform infrared (FT-IR) spectroscopy showed that the EPS was a linear homopolysaccharide, mainly composed of glucose units, with a proposed structure of dextran featuring α-(1, 6) glycosidic linkages and occasional α-(1,3) branching. Fermentation processes were conducted in both mono-culture and co-culture settings, with tracking of pivotal gene expression. The result showed that the expression of luxS, ackA and wzb was significantly up-regulated in the co-culture system, which was positively correlated with dextransucrase activity and dextran production. C. shehatae promoted the growth of W. confusa XG-3 by consuming organic acids in the culture system through direct contact, initiating quorum sensing (QS), inducing dsr expression, increasing dextransucrase activity, and ultimately promoting dextran synthesis.
Collapse
Affiliation(s)
- Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zehai Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shouqi Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Prinčič L, Orsi RH, Martin NH, Wiedmann M, Trmčić A. Phenotypic and genomic characterizations of Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata strains reveal no clear association between genetic content and ropy phenotype. J Dairy Sci 2024; 107:1370-1385. [PMID: 37944807 DOI: 10.3168/jds.2023-23922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
Ropy defect of pasteurized fluid milk is a type of spoilage which manifests itself by an increased viscosity, slimy body, and string-like flow during pouring. This defect has, among other causes, been attributed to the growth, proliferation and exopolysaccharide production by coliform bacteria, which are most commonly introduced in milk as post-pasteurization contaminants. As we identified both Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata that were linked to a ropy defect, the goal of this study was to characterize 3 K. pneumoniae ssp. pneumoniae strains and 2 R. inusitata for (1) their ability to grow and cause ropy defect in milk at 6°C and 21°C and to (2) probe the genetic basis for observed ropy phenotype. Although all K. pneumoniae ssp. pneumoniae and R. inusitata strains showed net growth of >4 log10 over 48 h in UHT milk at 21°C, only R. inusitata strains displayed growth during 28-d incubation period at 6°C (>6 log10). Two out of 3 K. pneumoniae ssp. pneumoniae strains were capable of causing the ropy defect in milk at 21°C, as supported by an increase in the viscosity of milk and string-like flow during pouring; these 2 strains were originally isolated from raw milk. Only one R. inusitata strains was able to cause the ropy defect in milk; this strain was able to cause the defect at both 6°C and 21°C, and was originally isolated from a pasteurized milk. These findings suggest that the potential of K. pneumoniae ssp. pneumoniae and R. inusitata to cause ropy defect in milk is a strain-dependent characteristic. Comparative genomics provided no definitive answer on genetic basis for the ropy phenotype. However, for K. pneumoniae ssp. pneumoniae, genes rffG, rffH, rfbD, and rfbC involved in biosynthesis and secretion of enterobacterial common antigen (ECA) could only be found in the 2 strains that produced ropy defect, and for R. inusitata a set of 2 glycosyltransferase- and flippase genes involved in nucleotide sugar biosynthesis and export could only be identified in the ropy strain. Although these results provide some initial information for potential markers for strains that can cause ropy milk, the relationship between genetic content and ropiness in milk remains poorly understood and merits further investigation.
Collapse
Affiliation(s)
- Lucija Prinčič
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria 1190
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Nicole H Martin
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Aljoša Trmčić
- Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Zhang K, Liu S, Liang S, Xiang F, Wang X, Lian H, Li B, Liu F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure-activity relationship, and application in the food industry: A review. Int J Biol Macromol 2024; 257:128733. [PMID: 38092118 DOI: 10.1016/j.ijbiomac.2023.128733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Over the past few decades, researchers have discovered that probiotics play an important role in our daily lives. With the further deepening of research, more and more evidence show that bacterial metabolites have an important role in food and human health, which opens up a new direction for the research of lactic acid bacteria (LAB) in the food and pharmaceutical industry. Many LAB have been widely studied because of the ability of exopolysaccharides (EPS). Lactic acid bacteria exopolysaccharides (LAB EPS) not only have great potential in the treatment of human diseases but also can become natural ingredients in the food industry to provide special qualitative structure and flavor. This paper has organized and summarized the biosynthesis, strain selection, production process parameters, structure, and biological activity of LAB EPS, filling in the monotony and incompleteness of previous articles' descriptions of LAB EPS. Therefore, this paper focuses on the general biosynthetic pathway, structural characterization, structure-activity relationship, biological activity of LAB EPS, and their application in the food industry, which will help to deepen people's understanding of LAB EPS and develop new active drugs from LAB EPS. Although the research results are relatively affluent, the low yield, complex structure, and few clinical trials of EPS are still the reasons that hinder its development. Therefore, future knowledge expansion should focus on the regulation of structure, physicochemical properties, function, higher production of EPS, and clinical trial applications, which can further increase the commercial significance and value of EPS. Furthermore, better understanding the structure-function relationship of EPS in food remains a challenge to date.
Collapse
Affiliation(s)
- Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Liang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fangqin Xiang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huiqiang Lian
- Guangdong Jinhaikang Medical Nutrition Co., Ltd, Meizhou, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Nguyen HTH, Gomes Reis M, Wa Y, Alfante R, Chanyi RM, Altermann E, Day L. Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures. Foods 2023; 12:foods12091875. [PMID: 37174413 PMCID: PMC10178633 DOI: 10.3390/foods12091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Texture and flavour are the key attributes determining sensory quality and are highly affected by starter cultures. A selection of phenotypic strains is needed to create diverse texture and flavour to meet consumers' preferences. In this study, the use of five lactic acid bacteria strains in the production of fermented milk, along with the metabolite profiles, microstructure, and rheological properties of the fermented milk samples, was investigated. Our results showed that Lactobacillus helveticus (LH) and Streptococcus thermophilus (ST) had a stronger acidification during fermentation but resulted in products with a coarser protein network compared to Lactococcus lactis (BL1) and Leuconostoc mesenteroides (CL3). Milk fermented by LH had the highest viscosity and exopolysaccharide concentration, while milk fermented by ST had the highest concentration of diacetyl. Although Leuconostoc pseudomesenteroides (CL3ST) had a minimal acidification capability, it produced high levels of ethyl-derived compounds associated with sweet, fruity, and floral fragrances. The results demonstrated that LH and ST could be used as starter cultures targeting fermented milks with different viscosities, while BL1, CL3, and CL3ST are suitable as adjunct cultures to impact different acidic sharpness and flavour notes.
Collapse
Affiliation(s)
- Hanh T H Nguyen
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Mariza Gomes Reis
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Yunchao Wa
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Renna Alfante
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Ryan M Chanyi
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- School of Veterinary Science, Massey University, Palmerston North 4100, New Zealand
| | - Eric Altermann
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- School of Veterinary Science, Massey University, Palmerston North 4100, New Zealand
| | - Li Day
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| |
Collapse
|
5
|
Xia W, Han J, Zhu S, Wang Y, Zhang W, Wu Z. Structural elucidation of the exopolysaccharide from Streptococcus thermophilus XJ53 and the effect of its molecular weight on immune activity. Int J Biol Macromol 2023; 230:123177. [PMID: 36623615 DOI: 10.1016/j.ijbiomac.2023.123177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
EPS53, a homogeneous exopolysaccharide (EPS) was isolated from Streptococcus thermophiles XJ53 fermented in skimmed milk via anion exchange column chromatography. The relative molecular weight of EPS53 was above 6.7 × 105 g/mol; its repeating structural unit of EPS53 consisted of β-T-Galp, β-1,3-Galf, α-1,3-Glcp and β-1,3,6-Glcp residues in a molar ratio of 1:1:1:1, with β-T-Galp attached to the O-6 position of β-1,3,6-Glcp,identical to the EPS produced from S. thermophilus SFi39. EPS53-D, purified under similar conditions as EPS53 except for the deproteinization of trichloroacetic acid (TCA), had a lower molecular weight but the same repeating structural unit. The effects of EPS53 and EPS53-D on proliferation, phagocytosis and nitric oxide (NO) release of macrophage RAW264.7 were compared. EPS53 exhibited stronger immune activity than EPS53-D, suggesting that the molecular weight might have an important effect on the activity of EPS molecules. Treatment with TCA might affect the activities of native EPSs produced by fermentation.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Shiming Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yilin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China.
| |
Collapse
|
6
|
The Profile of Exopolysaccharides Produced by Various Lactobacillus Species from Silage during Not-Fat Milk Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) and released into fermented milk play a protective role from stress factors as well as improve emulsifying and thickening properties of the product, reduce syneresis, and increase elasticity. Here we report the relationship between the properties, composition, and microstructure of EPS produced by six different strains of lactobacilli (L. bulgaricus and five strains isolated from silage). The presence of fructose together with negative-charged uronic acid was found to play a significant role in changing the EPS properties. Thus, the increased fraction of rhamnose and arabinose and a decrease in xylose leads to compaction of the EPS, decreased porosity and increased both OH- and superoxide scavenging and Fe-chelating activities. By contrast, increased xylose and low rhamnose and arabinose apparently leads to loss of large aggregates and high DPPH activity and FRAP. The high content of glucose, however, provides the formation of large pores. The increased fructan fraction (69.9 mol%) with a high fraction of galacturonic (18.2 mol%) and glucuronic acids (6.7 mol%) apparently determines the highly porous spongy-folded EPS microstructure. Taken together, our results indicate that both the quantitative characteristics of the individual components of the fraction and the structural features of EPS are important for the antioxidant potential of fermented milk and depend on the strain used for milk fermentation, suggesting the advantage of a multicomponent starter to achieve the optimal beneficial properties of fermented milk.
Collapse
|
7
|
Nachtigall C, Surber G, Wefers D, Vogel C, Rohm H, Jaros D. Capsular Exopolysaccharides from Two Streptococcus thermophilus Strains Differ in Their Moisture Sorption Behavior. Foods 2023; 12:foods12030596. [PMID: 36766125 PMCID: PMC9914836 DOI: 10.3390/foods12030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Streptococcus thermophilus is a species frequently used in the manufacture of fermented milk. Apart from acid production, some strains additionally synthesize exopolysaccharides (EPS) which contribute to texture improvement and syneresis reduction, both being attributable to the EPS's high water binding capacity. There are two different types of EPS that may be produced, namely free exopolysaccharides (fEPS) which are secreted into the medium, and capsular EPS (cEPS) which remain attached to the bacterial cell wall. This study aims to analyze their individual contribution to techno-functional properties of fermented milk by determining the moisture sorption behavior of isolated fEPS and cell-attached cEPS from two S. thermophilus strains separately: ST-1G, a producer of non-ropy fEPS and cEPS, and ST-2E, a producer of ropy fEPS and cEPS. Differences in moisture load and sorption kinetics, determined for the first time for microbial EPS, were related to structural and macromolecular properties. The observed data are discussed by using previously published data on the physical properties of stirred fermented milk produced with these two strains. ST-1G EPS showed a higher cEPS fraction, a higher moisture load and slower moisture desorption than EPS produced by ST-2E, thus contributing to lower syneresis in fermented milk. For ST-2E, higher gel viscosity was related to a higher intrinsic viscosity and molecular mass of the ropy fEPS. Both strains produced complex EPS or EPS mixtures with clearly different molecular structures.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Georg Surber
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Daniel Wefers
- Institute of Chemistry, Food Chemistry–Functional Food, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cordula Vogel
- Institute of Soil Science and Site Ecology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Harald Rohm
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
- Correspondence: ; Tel.: +49-351-463-32420
| | - Doris Jaros
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
8
|
Cao F, Liang M, Liu J, Liu Y, Renye JA, Qi PX, Ren D. Characterization of an exopolysaccharide (EPS-3A) produced by Streptococcus thermophilus ZJUIDS-2-01 isolated from traditional yak yogurt. Int J Biol Macromol 2021; 192:1331-1343. [PMID: 34673108 DOI: 10.1016/j.ijbiomac.2021.10.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Yak yogurt, one of the naturally fermented dairy products prepared by local herdsmen in the Qinghai-Tibet Plateau, contains a diverse array of microorganisms. We isolated and identified a novel Streptococcus thermophilus strain, ZJUIDS-2-01, from the traditional yak yogurt. We further purified and carried out detailed structural, physiochemical, and bioactivity studies of an exopolysaccharide (EPS-3A) produced by S. thermophilus ZJUIDS-2-01. The weight-average molecular weight (Mw) of EPS-3A was estimated to be 1.38 × 106 Da by High-Performance Gel Permeation Chromatography (HPGPC). The monosaccharide analysis established its composition to be glucose, galactose, N-acetyl-D-galactosamine, and rhamnose in a ratio of 5.2:2.5:6.4:1.0. The molecular structure of EPS-3A was determined by the combination of permethylation analysis, FT-IR, and NMR spectroscopic techniques. The ζ-potential measurements indicated that EPS-3A had a pKa value of ~4.40. The DSC yielded a melting point (Tm) of 80.4 °C and enthalpy change (ΔH) of 578 J/g for EPS-3A, comparable to those of the xanthan gum (XG), a commercial EPS. EPS-3A exhibited better O/W emulsion stability and flocculating capacity than XG. Furthermore, it also demonstrated similar antioxidant activity to XG and promising in vitro antibacterial properties. This work evidenced that EPS-3A derived from S. thermophilus ZJUIDS-2-01 holds the potential for food and industrial applications.
Collapse
Affiliation(s)
- Feiwei Cao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingming Liang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Liu
- College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - John A Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Phoebe X Qi
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
9
|
Zhai Z, Xie S, Zhang H, Yi H, Hao Y. Homologous Over-Expression of Chain Length Determination Protein EpsC Increases the Molecular Weight of Exopolysaccharide in Streptococcus thermophilus 05-34. Front Microbiol 2021; 12:696222. [PMID: 34354691 PMCID: PMC8329376 DOI: 10.3389/fmicb.2021.696222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
In Streptococcus thermophilus, EpsC is a polysaccharide co-polymerase which is involved in determining the chain length of EPS synthesized by the Wzx/Wzy-dependent pathway. Our previous study found that there was a positive correlation between transcription level of epsC and molecular weight of EPS in S. thermophilus 05-34. To further investigate the effects of EpsC on EPS biosynthesis, this gene was over-expressed in S. thermophilus 05-34 in this study. Reverse transcription qPCR and Western blotting confirmed the successful transcription and translation of epsC in 05-34, respectively. The yield of EPS was not affected by the over-expression of EpsC. Gas chromatography-mass spectrometry (GC-MS) showed that the monosaccharide composition was still composed of galactose and glucose in a molar ratio of 1.0:0.8, whereas high performance gel permeation chromatography (HPGPC) indicated that the molecular weight of EPS was increased from 4.62 × 105 Da to 9.17 × 105 Da by the over-expression of EpsC. In addition, S. thermophilus 05epsC which could produce higher molecular weight EPS improved the viscoelasticity and water-holding capacity of yogurt, but significantly reduced the level of syneresis in yogurt. In summary, these results indicated that homologous over-expression of EpsC in S. thermophilus could increase the molecular weight of EPS and improve the microrheological or physical properties of yogurt.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuxin Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongxing Zhang
- Department of Food Science, Beijing University of Agriculture, Beijing, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Xu Z, Guo Q, Zhang H, Xiong Z, Zhang X, Ai L. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. Int J Biol Macromol 2021; 178:263-269. [PMID: 33639187 DOI: 10.1016/j.ijbiomac.2021.02.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
The application of Streptococcus thermophilus S-3 into yogurt production was studied and the structural properties of the generated exopolysaccharides (EPS-S3) were characterized. The proposed structure of EPS-S3 was obtained. EPS-S3 contained a high ratio of N-Acetyl-galactosamine with the Mw of 574 kDa, which was higher than that of AR333 (314 kD) leading to higher apparent viscosity. Streptococcus thermophilus strain S-3 was co-cultured with Lactobacillus delbrueckii for yogut production which highly increased the acidifying rate and post-acidification rate. The quality of the co-cultured yogurts in terms of apparent viscosity, syneresis capacity, water holding capacity and rheological properties were much better than that by using Lactobacillus bulgaricus only. The production mechanism of EPS-S3 from gene regulated level was also discussed which is helpful to facilitate the application of Streptococcus thermophilus strain into milk production.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiumin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Exopolysaccharides from Lactococcus lactis affect manufacture, texture and sensory properties of concentrated acid milk gel suspensions (fresh cheese). Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Nachtigall C, Surber G, Herbi F, Wefers D, Jaros D, Rohm H. Production and molecular structure of heteropolysaccharides from two lactic acid bacteria. Carbohydr Polym 2020; 236:116019. [PMID: 32172839 DOI: 10.1016/j.carbpol.2020.116019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
In the dairy industry, exopolysaccharides (EPS) produced in situ from lactic acid bacteria are of great interest because of their contribution to product texture. Some EPS cause ropiness which might be linked to specific physical and chemical EPS properties. EPS show a broad variety of chemical structures and, because analysis is rather complex, it is still a major challenge to establish structure-function relationships. The aim of this study was to produce EPS with different degree of ropiness, perform in-depth structural elucidations and relate this information to their behaviour in aqueous solutions. After cultivation of Streptococcus thermophilus DGCC7919 and Lactococcus lactis LL-2A and subsequent EPS isolation, both EPS showed similar macromolecular properties, but pronounced differences in monosaccharide composition and glycosidic linkages. Our data suggests that mainly the side chains in the EPS from LL-2A might be responsible for a higher ropiness than that observed for EPS from DGCC7919.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Georg Surber
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Frauke Herbi
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
13
|
Effect of mono or co-culture of EPS-producing Streptococcus thermophilus strains on the formation of acid milk gel and the appearance of texture defects. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Surber G, Mende S, Jaros D, Rohm H. Clustering of Streptococcus thermophilus Strains to Establish a Relation between Exopolysaccharide Characteristics and Gel Properties of Acidified Milk. Foods 2019; 8:E146. [PMID: 31052192 PMCID: PMC6560422 DOI: 10.3390/foods8050146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022] Open
Abstract
In situ produced extracellular polysaccharides (EPS) from lactic acid bacteria are generally known to affect the texture of fermented dairy products; however, the interplay between EPS and product properties is still poorly understood. The aim of this study was to establish a relationship between concentration and properties of EPS, and gel formation of milk analysed by noninvasive Multispeckle Diffusing Wave Spectroscopy. Twenty Streptococcus thermophilus strains were classified with respect to EPS concentration (8-126 mg GE/kg) and ropiness (thread length: 15-80 mm). Five groups identified by cluster analysis demonstrate the high strain-to-strain variability even within one species of lactic acid bacteria. Results from acidification and gelation experiments averaged per cluster indicate that fermentation time and gel stiffness is higher for strains that produce ropy EPS. A further increase in gel stiffness was detected for strains that also produced cell-bound EPS, which underlines the importance of both ropy and cell-bound EPS for improving acid gel properties. The results may be helpful for a proper selection of EPS-producing starter cultures.
Collapse
Affiliation(s)
- Georg Surber
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Susann Mende
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Doris Jaros
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Harald Rohm
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
15
|
Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr Polym 2019; 207:317-332. [DOI: 10.1016/j.carbpol.2018.11.093] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
|
16
|
Xu Z, Guo Q, Zhang H, Wu Y, Hang X, Ai L. Exopolysaccharide produced by Streptococcus thermophiles S-3: Molecular, partial structural and rheological properties. Carbohydr Polym 2018; 194:132-138. [DOI: 10.1016/j.carbpol.2018.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/17/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023]
|
17
|
Khanal SN, Lucey JA. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. J Dairy Sci 2018; 101:3799-3811. [DOI: 10.3168/jds.2017-13203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022]
|
18
|
Khan S, Birch J, Van Calsteren MR, Ipsen R, Peters GHJ, Svensson B, Harris P, Almdal K. Interaction between structurally different heteroexopolysaccharides and β-lactoglobulin studied by solution scattering and analytical ultracentrifugation. Int J Biol Macromol 2018; 111:746-754. [PMID: 29329814 DOI: 10.1016/j.ijbiomac.2018.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Despite a very large number of bacterial exopolysaccharides have been reported, detailed knowledge on their molecular structures and associative interactions with proteins is lacking. Small-angle X-ray scattering, dynamic light scattering and analytical ultracentrifugation (AUC) were used to characterize the interactions of six lactic acid bacterial heteroexopolysaccharides (HePS-1-HePS-6) with β-lactoglobulin (BLG). Compared to free HePSs, a large increase in the X-ray radius of gyration RG, maximum length L and hydrodynamic diameter dH of HePS-1-HePS-4 mixed with BLG revealed strong aggregation, the extent of which depended on the compact conformation and degree of branching of these HePSs. No significant effects were observed with HePS-5 and HePS-6. Turbidity and AUC analyses showed that both soluble and insoluble BLG-HePS complexes were formed. The findings provide new insights into the role of molecular structures in associative interactions between HePSs and BLG which has relevance for various industrial applications.
Collapse
Affiliation(s)
- Sanaullah Khan
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark; Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark.
| | - Johnny Birch
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Marie-Rose Van Calsteren
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Khanal SN, Lucey JA. Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y. J Dairy Sci 2017; 100:6906-6917. [DOI: 10.3168/jds.2017-12835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/06/2017] [Indexed: 11/19/2022]
|
20
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
21
|
Pachekrepapol U, Lucey J, Gong Y, Naran R, Azadi P. Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. J Dairy Sci 2017; 100:3424-3435. [DOI: 10.3168/jds.2016-12125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
|
22
|
New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017; 199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus thermophilus is the most important thermophilic dairy starter, and is widely used in the dairy industry. Streptococcus thermophilus exopolysaccharides received wide attention over recent decades, because they can improve the properties of the dairy product and confer beneficial health effects. The understanding of the regulatory and biosynthetic mechanisms of EPS will improve the EPS biosynthesis, increase the productivity of EPSs, and develop EPSs with desirable properties. The structure of EPSs is the focus of this study. Revealing the structure-function relationship can lead to increase the knowledge base and from there to increased research of EPS. The EPS yield is a key limiting factor in the research and utilization of EPS. In the present review, biosynthetic pathways and genetics of S. thermophilus EPSs were described and reviewed. At the same time, functional properties and applications of EPS, and strategies for enhancement of EPS production are discussed.
Collapse
|
23
|
Khan S, Birch J, Harris P, Van Calsteren MR, Ipsen R, Peters GHJ, Svensson B, Almdal K. Revealing the Compact Structure of Lactic Acid Bacterial Heteroexopolysaccharides by SAXS and DLS. Biomacromolecules 2017; 18:747-756. [DOI: 10.1021/acs.biomac.6b01597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sanaullah Khan
- Department
of Micro- and Nanotechnology, DTU, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark
| | - Johnny Birch
- Enzyme
and Protein Chemistry, Department of Systems Biology, DTU, Elektrovej, Building
375, DK-2800 Kgs.
Lyngby, Denmark
| | - Pernille Harris
- Department
of Chemistry, DTU, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Marie-Rose Van Calsteren
- Saint-Hyacinthe
Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe,
Quebec J2S 8E3, Canada
| | - Richard Ipsen
- Department
of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Günther H. J. Peters
- Department
of Chemistry, DTU, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme
and Protein Chemistry, Department of Systems Biology, DTU, Elektrovej, Building
375, DK-2800 Kgs.
Lyngby, Denmark
| | - Kristoffer Almdal
- Department
of Micro- and Nanotechnology, DTU, Ørsteds Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Abinaya Sindu P, Gautam P. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions. Can J Microbiol 2017; 63:61-73. [DOI: 10.1139/cjm-2015-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal fatty acid salts (MFAS) in untreated industrial effluents cause environmental pollution. The use of biocompatible agents for remediation may help in reducing the harm caused to the ambient aquatic organism. Pseudomonas aeruginosa is a ubiquitous organism that thrives under harsh conditions and is resistant to toxic metal ions. The present study shows a proof-of-concept of using this organism in the biodegradation of MFAS. MFAS were prepared and we studied their effect on the growth of the planktonic form and the formation of biofilm by P. aeruginosa. We observed biofilm formation in the presence of all the MFAS when used as the sole carbon source, albeit the quantity of biofilm formed in the presence of cadmium and copper was less. There was no effect on the planktonic form of the organism but the formation of biofilm increased in the presence of magnesium palmitate. This study shows that metal ions play a pivotal role in the formation of biofilm. HPLC (high-performance liquid chromatography) analysis of the biofilm polysaccharide showed that hexose sugar was a major component when compared with pentose sugar. The structure of biofilm polysaccharide and the coordination of the metal ion with the biofilm polysaccharide were confirmed by FTIR (Fourier transform infrared spectroscopy) and Raman spectroscopy.
Collapse
Affiliation(s)
- P. Abinaya Sindu
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Pennathur Gautam
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
25
|
Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L. Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification and characterization. Int J Biol Macromol 2016; 86:402-7. [DOI: 10.1016/j.ijbiomac.2016.01.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022]
|
26
|
Li D, Li J, Zhao F, Wang G, Qin Q, Hao Y. The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium. Food Chem 2016; 197:367-72. [DOI: 10.1016/j.foodchem.2015.10.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/29/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
|
27
|
Impact of starch and exopolysaccharide-producing lactic acid bacteria on the properties of set and stirred yoghurts. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Zhang J, Cao Y, Wang J, Guo X, Zheng Y, Zhao W, Mei X, Guo T, Yang Z. Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydr Polym 2016; 146:368-75. [PMID: 27112886 DOI: 10.1016/j.carbpol.2016.03.063] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 11/25/2022]
Abstract
Exopolysaccharide (EPS) produced by Streptococcus thermophilus GST-6 in skim milk was extracted and purified. The EPS was composed of glucose and galactose in a molar ratio of 1.80:1.03 with identical primary structure to the EPS from S. thermophilus ST1 reported previously. The purified EPS was sulphated at a sulphonation degree of 0.26±0.03, and presence of sulphate groups in the sulphated EPS (SEPS) was confirmed. Microstructural studies demonstrated a porous web with coarse surface for the EPS while the SEPS appeared as stacked flakes with relatively uniform shapes. Sulphonation of the EPS slightly decreased its degrading temperature from 234.6°C to 232.5°C. The DPPH, superoxide and hydroxyl radicals scavenging activities of the EPS were significantly (P<0.05) improved after sulphonation. The SEPS also showed stronger inhibitory activity than the EPS against Eschericia coli, Salmonella typhimurium and Staphylococcus aureus.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Yongqiang Cao
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| | - Xialei Guo
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Yi Zheng
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Wen Zhao
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Xueyang Mei
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Ting Guo
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Zhennai Yang
- Beijing Laboratory of Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
29
|
Effect of exopolysaccharide-producing starter cultures and post-fermentation mechanical treatment on textural properties and microstructure of low fat yoghurt. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Mende S, Rohm H, Jaros D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
van de Velde F, de Hoog EH, Oosterveld A, Tromp RH. Protein-Polysaccharide Interactions to Alter Texture. Annu Rev Food Sci Technol 2015; 6:371-88. [DOI: 10.1146/annurev-food-022814-015558] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Els H.A. de Hoog
- NIZO food research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands;
| | | | - R. Hans Tromp
- NIZO food research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands;
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
32
|
Yilmaz M, Dertli E, Toker O, Tatlisu N, Sagdic O, Arici M. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: An optimization study based on fermentation kinetics. J Dairy Sci 2015; 98:1604-24. [DOI: 10.3168/jds.2014-8936] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/02/2014] [Indexed: 01/14/2023]
|
33
|
Microstructure and stability of skim milk acid gels containing an anionic bacterial exopolysaccharide and commercial polysaccharides. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Addition of purified exopolysaccharide isolates from S. thermophilus to milk and their impact on the rheology of acid gels. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Insights into the ropy phenotype of the exopolysaccharide-producing strain Bifidobacterium animalis subsp. lactis A1dOxR. Appl Environ Microbiol 2013; 79:3870-4. [PMID: 23584772 DOI: 10.1128/aem.00633-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The proteome of the ropy strain Bifidobacterium animalis subsp. lactis A1dOxR, compared to that of its nonropy isogenic strain, showed an overproduction of a protein involved in rhamnose biosynthesis. Results were confirmed by gene expression analysis, and this fact agreed with the high rhamnose content of the ropy exopolysaccharide.
Collapse
|
36
|
Gentès MC, St-Gelais D, Turgeon SL. Exopolysaccharide–milk protein interactions in a dairy model system simulating yoghurt conditions. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0121-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance. FOOD BIOPHYS 2012. [DOI: 10.1007/s11483-012-9260-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Nishimura J, Saito T, Yoneyama H, Lan Bai L, Okumura K, Isogai E. Biofilm Formation by <i>Streptococcus mutans</i> and Related Bacteria. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.23025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Effect of Exopolysaccharide Producing Lactic Acid Bacterial on the Gelation and Texture Properties of Yogurt. ACTA ACUST UNITED AC 2012. [DOI: 10.4028/www.scientific.net/amr.430-432.890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacterial play a important role in yogurt texture and gel quality. The performance of lactic acid bacteria starter directly affected the quality of yogurt. Exopolysaccharide (EPS)-producing LAB may improve the texture of fermented milks, depending on the strain. EPS production was found to have a major effect on the texture properties and gelation properties, but varying textures with EPS production, structure and interaction with milk proteins. Yoghurts fermented with EPS-producing cultures showed different mouth thickness and ropiness rheological parameters and varying syneresis and gel firmness. The mechanism that how the metabolic properties of EPS producing lactic acid bacteria affect the texture and gel quality of yogurt is reviewed in the article.
Collapse
|
40
|
Qin Q, Xia B, Xiong Y, Zhang S, Luo Y, Hao Y. Structural Characterization of the Exopolysaccharide Produced by Streptococcus thermophilus 05-34 and Its In Situ Application in Yogurt. J Food Sci 2011; 76:C1226-30. [DOI: 10.1111/j.1750-3841.2011.02397.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
De Vuyst L, Weckx S, Ravyts F, Herman L, Leroy F. New insights into the exopolysaccharide production of Streptococcus thermophilus. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Gentès MC, St-Gelais D, Turgeon SL. Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0039-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Wang SY, Chen HC, Dai TY, Huang IN, Liu JR, Chen MJ. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk. J Dairy Sci 2011; 94:623-35. [DOI: 10.3168/jds.2010-3503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022]
|
44
|
Säwén E, Huttunen E, Zhang X, Yang Z, Widmalm G. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2010; 47:125-134. [PMID: 20474086 DOI: 10.1007/s10858-010-9413-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: --> 3)[alpha-D-Glcp-(1 --> 4)]-beta-D-Galp-(1 --> 4)-beta-D-Glcp-(1 --> 4)[beta-D-Galf-(1 --> 6)]-beta-D-Glcp-(1 --> 6)-beta-D-Glcp-(1 -->, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Influence of gallic acid and catechin polyphenols on probiotic properties of Streptococcus thermophilus CHCC 3534 strain. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0393-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Suitability of high pressure-homogenized milk for the production of probiotic fermented milk containing Lactobacillus paracasei and Lactobacillus acidophilus. J DAIRY RES 2009; 76:74-82. [PMID: 19121239 DOI: 10.1017/s0022029908003828] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High pressure homogenization (HPH) is one of the most promising alternatives to traditional thermal treatment for food preservation and diversification. In order to evaluate its potential for the production of fermented milks carrying probiotic bacteria, four types of fermented milks were manufactured from HPH treated and heat treated (HT) milk with and without added probiotics. Microbiological, physicochemical and organoleptic analyses were carried out during the refrigerated period (35 d at 4 degrees C). HPH application to milk did not modify the viability of the probiotic cultures but did increase the cell loads of the starter cultures (ca. 1 log order) compared with traditional products. The coagula from HPH-milk was significantly more compacted (P<0.05) (higher firmness) than that obtained with HT-milk, and it had the highest values of consistency, cohesiveness and viscosity indexes compared with fermented milks produced without HPH treatment. All the samples received high sensory analysis scores for each descriptor considered. HPH treatment of milk can potentially diversify the market for probiotic fermented milks, especially in terms of texture parameters.
Collapse
|
48
|
Girard M, Schaffer-Lequart C. Attractive interactions between selected anionic exopolysaccharides and milk proteins. Food Hydrocoll 2008. [DOI: 10.1016/j.foodhyd.2007.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, Pedersen MB. Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl Environ Microbiol 2008; 74:4703-10. [PMID: 18539806 PMCID: PMC2519362 DOI: 10.1128/aem.00132-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/16/2008] [Indexed: 11/20/2022] Open
Abstract
A DNA microarray platform based on 2,200 genes from publicly available sequences was designed for Streptococcus thermophilus. We determined how single-nucleotide polymorphisms in the 65- to 75-mer oligonucleotide probe sequences affect the hybridization signals. The microarrays were then used for comparative genome hybridization (CGH) of 47 dairy S. thermophilus strains. An analysis of the exopolysaccharide genes in each strain confirmed previous findings that this class of genes is indeed highly variable. A phylogenetic tree based on the CGH data showed similar distances for most strains, indicating frequent recombination or gene transfer within S. thermophilus. By comparing genome sizes estimated from the microarrays and pulsed-field gel electrophoresis, the amount of unknown DNA in each strain was estimated. A core genome comprised of 1,271 genes detected in all 47 strains was identified. Likewise, a set of noncore genes detected in only some strains was identified. The concept of an industrial core genome is proposed. This is comprised of the genes in the core genome plus genes that are necessary in an applied industrial context.
Collapse
Affiliation(s)
- Thomas Bovbjerg Rasmussen
- Department of Physiology, Cultures & Enzymes Division, Chr. Hansen A/S, Bøge Alle 10-12, DK-2970 Hørsholm, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Celik GY, Aslim B, Beyatli Y. Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2007.11.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|